摘要
为探究茶树自噬相关基因CsATG3b在茶树氮利用中的潜在作用,从茶树中克隆了CsATG3b基因,在拟南芥中验证其参与氮利用的功能。结果显示,CsATG3b的表达水平随着茶树叶片成熟度的增加呈上升的趋势;与野生型拟南芥相比,低氮条件下,CsATG3b过表达株系(CsATG3b-OE)的根冠比和氮含量显著增加;过表达CsATG3b改变氮在植株体内的分配,正常氮条件下促进氮向茎生部位分配,低氮条件下促进氮向根系分配;过表达CsATG3b株系在低氮条件下显著上调根中氮吸收与转运相关基因AtNRT1.1、AtNRT2.1、AtNRT2.2和莲座叶中氨基酸转运基因AtAAP1、AtAAP4、AtAAP6及自噬相关基因AtATG3、AtATG5、AtATG8b的表达水平;过表达CsATG3b株系在正常氮条件下氮的积累增加,在低氮条件下的氮利用效率显著提高。结果表明,过表达CsATG3b能够通过调控拟南芥氮的吸收转运基因和自噬相关基因表达,从而提高植株氮利用效率及耐低氮胁迫的能力。
关键词
氮是茶叶关键品质成分如游离氨基酸、咖啡碱和香气形成的物质基础,约占茶树全株干质量的4.5
细胞自噬是一种保守的细胞生物过程,通过降解细胞器或细胞质成分,使其中含有的矿质元素在植物体内循环,促进植物营养元素从衰老的源器官到库器官实现养分循环再利
在此基础上,本研究克隆了茶树CsATG3b基因,探讨了过表达CsATG3b对拟南芥在低氮和正常氮条件下氮利用的影响,揭示茶树CsATG3b基因在提高茶树氮利用效率和增产中的潜在应用价值。
从茶树基因组数据库(TPIA)搜索CsATG3b基因编码序列,利用primer5设计CsATG3b基因特异性引物CsATG3b-F和CsATG3b-R(
用途 Function | 引物名称 Primer name | 引物序列(5′-3′) Primer sequence(5′-3′) |
---|---|---|
基因克隆 Gene cloning | CsATG3b | F: ATGGTTCTGTCTCAGAAG; R: GGCAGCTCCAGCACATAA |
过表达载体构建 Overexpression vector construction | CsATG3b-OE | F: GCTCTAGAATGGTTCTGTCTCAG; R: TTCTCGAGTTATGTGCTGGAGCT |
实时荧光定量引物 qRT-PCR primer | AtNRT1.1 | F: AAATCGTGCGAATGTTAC; R: ATAGACGGCGGTGGTTAG |
AtNRT2.1 | F: CCATCTCTCGTGGATCTCTTTC; R: GTTGAGATTCTCCCGGATGATAG | |
AtNRT2.2 | F:TCGTCACTGCCGTTGTA; R: CACGTTAGCCCTTCTTCA | |
AtAAP1 | F: GCATCGCTGTCCACCTTATTG; R: CTTGTTGTCTGGATAGTTTCTGTTGC | |
AtAAP4 | F: CGTACAAAGTCAACGTTTTCAGAGC; R: ACTCCATCTCTCAACCTTCCTCTGTC | |
AtAAP6 |
F: ACCAATTTTTCAGTTCGTAGAGAGCC; R: ACCAATCTGAGGAAGTTGATACTAAAATC | |
AtATG3 | F: TCATCCACACTTGCCTGGTA; R: CCGAGATCAAAGTCCATTGTG | |
AtATG5 | F: TAATCGCCCTGTTGAGTTCC; R: TCGACCCATCTGCTTCTTCT: | |
AtATG8b | F: TTGGCCAATTTGTGTACGTT; R: TCCACCAAATGTGTTCTCTCC | |
CsATG3b | F: GCTGCTGGATGCGAAGT; R: CCTCCTCACCACCAAAG | |
AtGAPDH | F: TTGGTGACAACAGGTCAAGCA; R: AAACTTGTCGCTCAATGCAATC | |
CsGAPDH | F: TTGGCATCGTTGAGGGTCT; R: CAGTGGGAACACGGAAAGC |
将扩增得到的CsATG3b全长序列用XbaⅠ和XhoⅠ双酶切后与pBin35sRed载体连接(引物见
取福鼎大白茶、黄旦、鄂茶 10 号、铁观音、利川红 1 号5个品种无性系茶树的第1叶(展叶10 d,L1)、第5叶(展叶30 d,L2)、成熟叶(展叶180 d以上,L3),所有样品经液氮速冻,保存于―80 ℃,用于RNA提取和实时荧光定量PCR。
将野生型和CsATG3b转基因拟南芥种子浸没在1.5%的次氯酸钠溶液中消毒5 min后,用蒸馏水冲洗3次,播种于1/2 MS固体培养基上,4 ℃春化2 d后置于生长室中培养,培养条件为22 ℃,14 h/10 h光暗培养。14 d后选择生长一致的幼苗转移至1/2 Hoagland 营养液(pH=5.7)中培养20 d,随后转移至正常氮(NN,5.0 mmol/L)和低氮(LN,0.25 mmol/L)营养液中培养。不同氮处理14 d后取根、莲座叶和茎生部位(aerial part excluding rosette,APER)测定干物质质量和氮含量;同时,取以上不同氮水平处理植株的根尖和莲座叶,液氮冷冻后―80 ℃保存,用于RNA提取和实时荧光定量PCR。
将野生型和CsATG3b转基因拟南芥种子用适量蒸馏水处理后4 ℃条件下春化2 d,然后播种至装有泥炭土的营养钵中,保证营养钵中土量基本一致。设置2个氮素水平,分别是正常氮(TNN,2 g/kg)和低氮(TLN,0.1 g/kg)。
使用多糖多酚植物通用总RNA快速提取试剂盒(ZH120,北京华越洋生物科技有限公司)提取茶树RNA,使用PLANTpure通用植物总RNA快速提取试剂盒(RN3302,北京艾德莱生物公司)提取拟南芥总RNA,具体操作步骤见试剂盒说明书。采用反转录试剂盒(PC65,北京艾德莱生物公司)合成cDNA。以茶树 CsGAPDH 和拟南芥 AtGAPDH 作为内参基因,使用SYBR Green qPCR Mix试剂盒(PC33,北京艾德莱生物公司)在ABI荧光定量 PCR 仪上进行 qRT-PCR 分析。利用
营养液培养的拟南芥,取样时分成根、莲座叶和茎生部位3部分。所有样品120 ℃杀青30 min后80 ℃烘干至恒质量,称量各部分的干物质质量。样品研磨成粉后称取0.05 g装入20 mL消化管底部,用硫酸和过氧化氢消煮样品,使用流动注射分析仪(FIAstar 5000 analyzer,FOSS)测定消煮液的氮含量(以干物质质量计,mg/100 mg),每个样品3次生物学重复。
基质土培养的拟南芥,在营养生长时期对莲座叶(20 d)进行取样,生殖生长结束后将植株分为种子和残茬2部分取样。干物质质量和氮含量的测定方法与营养液培养的拟南芥相同。
结合各部位干物质质量,计算各部位实际氮素积累量,并根据公式计算出相应的氮素利用效率。收获指数(harvest index,HI)=种子干质量/植株总干质量;氮收获指数(N harvest index,NHI)=种子氮含量/植株总氮含量;氮利用率(nitrogen utilization efficiency,NUtE)=种子干质量/植株总氮含量;氮利用效率(nitrogen use efficiency,NUE)=NHI/HI。
茶树CsATG3b在不同成熟度的茶树叶片L1、L2和L3的表达水平检测结果显示(

图1 CsATG3b基因在5个茶树品种不同成熟度叶片中的表达模式
Fig.1 Expression patterns of CsATG3b in the leaves at gradient mature leaves of five tea plant cultivars
L1:正在展开的幼嫩叶;L2:展开30 d的叶片;L3:展叶180 d以上的叶片。茶树品种:福鼎大白(FDDB)、铁观音(TGY)、黄旦(HD)、鄂茶10号(EC10)和利川红1号(LCH1)。*:差异显著(P<0.05),**:差异极显著(P<0.01),下同。L1:Developing leaves;L2:Newly developed leaves;L3:Mature leaves.Tea cultivars:Fudingdabaicha(FDDB),Tieguanyin(TGY),Huangdan(HD),Echa 10(EC10) and Lichuanhong 1(LCH1). * indicates a significant difference at 0.05 level; ** indicates significant difference at 0.01 level.The same as follows.
利用转化获得的2个纯合的过表达株系CsATG3b-OE-1(OE-1)和CsATG3b-OE-3(OE-3)进行后续试验。在低氮(LN,0.25 mmol/L)培养条件下,CsATG3b-OE株系根和莲座叶的干质量显著高于野生型(WT)植株(

图2 营养液培养条件下CsATG3b过表达株系与野生型拟南芥根、莲座叶及茎生部位干物质质量的比较
Fig.2 Comparisons of dry weight of root, rosette leaves or APER between CsATG3b-overexpressing lines and wild type Arabidopsis plants cultured in hydroponic nutrient solution
A:根干质量Dry weight of root;B:莲座叶干质量Dry weight of rosette;C:茎生部位干质量Dry weight of APER,D:根冠干质量比Root-shoot ratio.
对根、莲座叶和茎生部位氮含量和氮素积累量的测定结果显示,根和茎生部位的氮含量在CsATG3b-OE株系和WT之间无显著差异(

图3 营养液培养条件下CsATG3b过表达株系与野生型拟南芥氮含量及氮素积累量的比较
Fig.3 Comparison of N content and N accumulation between CsATG3b-overexpressing lines and wild type Arabidopsis plants cultured in hydroponic nutrient solution
A:根中氮含量;B:莲座叶氮含量;C:茎生部位氮含量;D:根中氮素积累量;E:莲座叶氮素积累量;F:茎生部位氮素积累量。A: N content of root; B: N content of rosette; C: N content of APER; D: N accumulation of root; E: N accumulation of rosette; F: N accumulation of APER.

图4 营养液培养条件下CsATG3b过表达株系与野生型拟南芥氮分配的比较
Fig.4 Comparison of N allocation between CsATG3b-overexpressing and wild type Arabidopsis plants cultured in hydroponic nutrient solution
A:氮在根中的分配比;B:氮在莲座叶中的分配比;C:氮在茎生部位中的分配比;D:氮在植株中的分配比。A: N allocation in root; B: N allocation in rosette; C: N allocation in APER; D: N allocation in plant.
进一步检测根中氮素吸收转运相关基因的表达水平,结果如

图5 营养液培养条件下CsATG3b过表达株系与野生型拟南芥氮吸收转运和自噬相关基因转录水平的比较
Fig.5 Comparisons of relative expression levels of the genes related with nitrogen uptake,transport and autophagy between CsATG3b-overexpressing lines and wild type Arabidopsis plants cultured in hydroponic nutrient solution
基质土培养20 d后(营养生长阶段),TLN条件下CsATG3b-OE株系叶片的紫化程度明显低于野生型(

图6 基质土培养条件下CsATG3b过表达株系和野生型拟南芥营养生长时期莲座叶的干质量、氮含量和氮素积累量
Fig.6 Dry weight,N content and accumulation in rosette of CsATG3b-overexpressing lines and wild type Arabidopsis plants during vegetative growth under soil culture
A:营养生长Vegetative growth of CsATG3b-overexpressing (OE) lines and WT Arabidopsis plants; B:莲座叶干质量 Dry weight of rosette;C:莲座叶氮含量N content of rosette;D:莲座叶氮素积累量N accumulation of rosette.

图7 基质土培养条件下CsATG3b过表达株系和野生型拟南芥在生殖生长结束后的干物质质量、氮含量和氮素积累量
Fig.7 Dry weight, N content and accumulation of CsATG3b-overexpressing lines and wild type Arabidopsis plants after reproductive growth under soil culture
A:种子干质量Dry weight of seed;B:残茬干质量Dry weight of stubble;C:总植株干质量 Dry weight of whole plant;D:种子氮含量N content of seed;E:残茬氮含量N content of stubble;F:总植株氮含量N content of whole plant;G:种子氮素积累量N accumulation of seed;H:残茬氮素积累量N accumulation of stubble;I:总植株氮素积累量N accumulation of whole plant.
为研究CsATG3b是否在氮素从营养部位向种子转移中起作用,测定了植株残茬和种子中的氮含量,结果显示,在TLN条件下,CsATG3b-OE株系种子和残茬中的氮含量显著高于野生型;TNN条件下,只有残茬中的氮含量显著高于野生型(
收获指数(HI)是一个重要的生产力指标,在TLN条件下,CsATG3b-OE株系的HI显著高于野生型,在TNN条件下则无显著差异(

图8 过表达CsATG3b拟南芥植株的收获指数和氮效率参数
Fig.8 Harvest index and nitrogen indices in CsATG3b-overexpressing Arabidopsis plants
A:收获指数Harvest index(HI);B:氮素收获指数N harvest index(NHI);C:氮利用率N utilization efficiency(NUtE);D:氮利用效率 N use efficiency(NUE).
氮是茶树生长及茶叶品质形成的物质基础。茶叶每年多轮次的萌发与采摘消耗较多的氮,因此,在茶树年生长周期中对氮的需求存在节律
氮的利用包括吸收、同化、运输和再利用,与植物的生命周期密切相
前期研究发现养分胁迫条件下不同物种ATG基因的转录水平显著上调,自噬活性也协同提高,并且自噬发生水平也增
对于茶树来说,每一轮次新萌发的幼嫩叶是茶树的库器官,本研究推测CsATG3b扮演着促进氮在植物体内氮循环的角色,促进氮从衰老叶片向幼嫩叶片循环再利用从而提高茶树氮素利用率。过表达CsATG3b增加了细胞的自噬活性,促进营养物质在植株体内的再循环利用,从源器官向库器官的转移。此外,过表达CsATG3b能够增加拟南芥植株产量,提高植株的氮素利用效率,增强植株对低氮胁迫的耐受性,在茶树中可能具有促进幼嫩芽叶生长和增产的作用,对选育氮高效利用茶树品种具有一定的理论价值。
参考文献 References
ZHANG Y,YE X,ZHANG X,et al.Natural variations and dynamic changes of nitrogen indices throughout growing seasons for twenty tea plant (Camellia sinensis) varieties[J/OL].Plants,2020,9(10):1333[2023-10-08].https://doi.org/10.3390/plants9101333. [百度学术]
倪康,廖万有,伊晓云,等.我国茶园施肥现状与减施潜力分析[J].植物营养与肥料学报,2019,25(3):421-432.NI K,LIAO W Y,YI X Y,et al.Fertilization status and reduction potential in tea gardens of China[J].Journal of plant nutrition and fertilizers,2019,25(3):421-432 (in Chinese with English abstract). [百度学术]
MA L F,YANG X D,SHI Y Z,et al.Response of tea yield,quality and soil bacterial characteristics to long-term nitrogen fertilization in an eleven-year field experiment[J/OL].Applied soil ecology,2021,166:103976[2023-10-08].https://doi.org/10.1016/j.apsoil.2021.103976. [百度学术]
YANG X D,NI K,SHI Y Z,et al.Heavy nitrogen application increases soil nitrification through ammonia-oxidizing bacteria rather than archaea in acidic tea (Camellia sinensis L.) plantation soil[J/OL].The science of the total environment,2020,717:137248[2023-10-08].https://doi.org/10.1016/j.scitotenv.2020.137248. [百度学术]
蒋志敏,王威,储成才.植物氮高效利用研究进展和展望[J].生命科学, 2018 ,30(10):1060-1071.JIANG Z M, WANG W, CHU C C.Towards understanding of nitrogen use efficiency in plants[J].Chinese bulletin of life sciences,2018,30(10):1060-1071 (in Chinese with English abstract). [百度学术]
AVILA-OSPINA L,MOISON M,YOSHIMOTO K,et al.Autophagy,plant senescence,and nutrient recycling[J].Journal of experimental botany,2014,65(14):3799-3811. [百度学术]
杨玲钰,张蕾.植物自噬的研究进展[J].生命科学研究,2022,26(4):309-315.YANG L Y,ZHANG L.Progress in plant autophagy[J].Life science research,2022,26(4):309-315 (in Chinese with English abstract). [百度学术]
KROEMER G,MARIÑO G,LEVINE B.Autophagy and the integrated stress response[J].Molecular cell,2010,40(2):280-293. [百度学术]
ICHIMURA Y,KIRISAKO T,TAKAO T,et al.A ubiquitin-like system mediates protein lipidation[J].Nature,2000,408(6811):488-492. [百度学术]
HUANG W,MA D N,XIA L,et al.Overexpression of CsATG3a improves tolerance to nitrogen deficiency and increases nitrogen use efficiency in Arabidopsis[J].Plant physiology and biochemistry,2023,196:328-338. [百度学术]
CLOUGH S,BENT A.Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J].The plant journal,1998,16(6):735-743. [百度学术]
ZHANG C Y,ZHANG W,REN G D,et al.Chlorophyll synthase under epigenetic surveillance is critical for vitamin E synthesis,and altered expression affects tocopherol levels in Arabidopsis[J].Plant physiology,2015,168(4):1503-1511. [百度学术]
LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the
李维,向芬,周凌云,等.氮素减施对茶树光合作用和氮肥利用率的影响[J].生态学杂志,2020,39(1):93-98.LI W,ZHANG F,ZHOU L Y,et al.Effects of nitrogen fertilizer reduction on photosynthesis and nitrogen use efficiency in tea plant[J].Chinese journal of ecology,2020,39(1):93-98(in Chinese with English abstract). [百度学术]
HAN S J,YU B J,WANG Y,et al.Role of plant autophagy in stress response[J].Protein & cell,2011,2(10):784-791. [百度学术]
XIONG Y,CONTENTO A L,BASSHAM D C.AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana[J].The plant journal,2005,42(4):535-546. [百度学术]
XIONG Y,CONTENTO A L,NGUYEN P Q,et al.Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis[J].Plant physiology,2007,143(1):291-299. [百度学术]
ZHOU J,WANG J,CHENG Y,et al.NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses[J/OL].PLoS genetics,2013,9(1):e1003196[2023-10-08].https://doi.org/10.1371/journal.pgen.1003196. [百度学术]
GUIBOILEAU A,YOSHIMOTO K,SOULAY F,et al.Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis[J].New phytologist,2012,194(3):732-740. [百度学术]
XU G H,FAN X R,MILLER A J.Plant nitrogen assimilation and use efficiency[J].Annual review of plant biology,2012,63:153-182. [百度学术]
TEGEDER M,MASCLAUX-DAUBRESSE C.Source and sink mechanisms of nitrogen transport and use[J].New phytologist,2018,217(1):35-53. [百度学术]
LÉRAN S,VARALA K,BOYER J C,et al.A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants[J].Trends in plant science,2014,19(1):5-9. [百度学术]
MASCLAUX-DAUBRESSE C,CHEN Q W,HAVÉ M.Regulation of nutrient recycling via autophagy[J].Current opinion in plant biology,2017,39:8-17. [百度学术]
YOUNÈS D.Manipulating amino acid metabolism to improve crop nitrogen use efficiency for a sustainable agriculture[J/OL].Frontiers in plant science,2020,11:602548[2023-10-08].https://doi.org/10.3389/fpls.2020.602548. [百度学术]
BEDU M,MARMAGNE A,MASCLAUX-DAUBRESSE C,et al.Transcriptional plasticity of autophagy-related genes correlates with the genetic response to nitrate starvation in Arabidopsis thaliana[J/OL].Cells,2020,9(4):1021[2023-10-08].https://doi.org/10.3390/cells9041021. [百度学术]
SUN X,JIA X,HUO L Q,et al.MdATG18a overexpression improves tolerance to nitrogen deficiency and regulates anthocyanin accumulation through increased autophagy in transgenic apple[J].Plant,cell & environment,2018,41(2):469-480. [百度学术]
LI W W,CHEN M,WANG E H,et al.Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice[J/OL].BMC Genomics,2016,17(1):797[2023-10-08].https://doi.org/10.1186/s12864-016-3113-4. [百度学术]
XIA K F,LIU T,OUYANG J,et al.Genome-wide identification,classification,and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.)[J].DNA research,2011,18(5):363-377. [百度学术]
CHEN Q,LUO J,HAVE M,et al.Autophagy and nutrients management in plants[J/OL].Cells,2019,8(11):1426[2023-10-08].https://doi.org/10.3390/cells8111426. [百度学术]
FAN T,YANG W,ZENG X,et al.A rice autophagy gene OsATG8b is involved in nitrogen remobilization and control of grain quality[J/OL].Frontiers in plant science,2020,11:588[2023-10-08].https://doi.org/10.3389/fpls.2020.00588. [百度学术]
LI W W,CHEN M,ZHONG L,et al.Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis[J].Biochemical and biophysical research communications,2015,468(4):800-806. [百度学术]
ZHEN X X,LI X,YU J L,et al.OsATG8c-mediated increased autophagy regulates the yield and nitrogen use efficiency in rice[J/OL].International journal of molecular sciences,2019,20(19):4956[2023-10-08].https://doi.org/10.3390/ijms20194956. [百度学术]
CHEN Q W,SOULAY F,SAUDEMONT B,et al.Overexpression of ATG8 in Arabidopsis stimulates autophagic activity and increases nitrogen remobilization efficiency and grain filling[J].Plant and cell physiology,2019,60(2):343-352. [百度学术]
CHARDON F,NOËL V,MASCLAUX-DAUBRESSE C.Exploring NUE in crops and in Arabidopsis ideotypes to improve yield and seed quality[J].Journal of experimental botany,2012,63(9):3401-3412. [百度学术]