摘要
为明确外源γ-氨基丁酸(GABA)对枳幼苗生长发育与矿质元素吸收的调控作用,采用营养液培养方式,设置G1(0.01 mmol/L)、G2(0.05 mmol/L)、G3(0.1 mmol/L)、G4(0.5 mmol/L)、G5(1 mmol/L)5个GABA浓度梯度处理,分析不同浓度下GABA对枳幼苗生长、根系形态及矿质营养吸收的影响。结果显示,低浓度GABA(0.01、0.05、0.1 mmol/L)对枳幼苗株高、总根长和生物量积累无明显影响,但根系形态发生明显变化,根表面积和根体积增加;高浓度GABA(0.5、1 mmol/L)则对枳幼苗生长及根系发育起抑制作用,0.5 mmol/L GABA浓度时总根长、主根长及侧根长显著降低,浓度高至1 mmol/L时会进一步抑制株高和生物量的积累,并显著降低根表面积。低浓度的GABA能促进枳幼苗根系中N、P、Ca、B、Mo含量,提高茎中K含量和叶中P含量,并提高N、P、K、Mo的单株积累量;而高浓度GABA会减少枳幼苗各器官矿质元素(N除外)含量,抑制枳幼苗的养分积累。以上结果表明,外源GABA对枳幼苗根系生长及矿质营养元素吸收的影响呈“低浓度促进,高浓度抑制”趋势,适宜浓度的GABA能够促进枳幼苗根系发育,增加根系养分吸收面积,有利于矿质元素的积累与向上运输,其中最适浓度为0.05~0.1 mmol/L;浓度过高时则使枳幼苗的正常生长及矿质元素吸收受阻。
柑橘是世界上广泛栽培的重要经济果树之一,自改革开放以来,我国柑橘产业迅速发展,目前种植面积及产量均居世界首
γ-氨基丁酸(γ-aminobutyric acid,GABA)是一种普遍存在于生物体内的四碳非蛋白氨基酸,70多年前首次于马铃薯中被发
矿质营养元素是植物生长发育过程中所必需的基本物质,其在植物体内发挥着多种生理功能,如参与构成细胞结构、调节酶的活性、维持电化学平衡、影响光合作用和能量代谢、合成激素
本试验以枳[Poncirus trifoliata (L.) Raf.]实生幼苗为试验材料。选取当年新鲜饱满的枳种子在纯水中浸泡过夜,用5%的次氯酸钠消毒15 min,75%乙醇消毒90 s,去离子水冲洗干净后播撒于湿润纱布上,置于温度为28 ℃的黑暗培养箱中催芽。种子露白后移入0.6%的琼脂块中于恒温光照培养箱(光合有效辐射为200~220 μmol/(
试验于赣南师范大学温室进行。待恒温光照培养箱中的幼苗长至3~5片真叶后,选取长势一致的幼苗移入1 L塑料水培盒中进行水培。正式处理前,以1/2全营养液对枳幼苗进行为期10 d的预培养,使其适应水培环境。水培营养液组成为:1.5 mmol/L KNO3、1 mmol/
预培养结束后开始正式处理,试验设GABA 0.01 mmol/L(G1)、0.05 mmol/L(G2)、0.1 mmol/L(G3)、0.5 mmol/L(G4)和1 mmol/L(G5)5个浓度处理,以不加GABA的纯营养液作为对照(CK)。所用水培盒容积为1 L,每个处理3盒重复,每盒5株幼苗。气泵每2 h通气20 min,每3 d更换营养液1次,处理30 d后取样测定相关指标。
1)生长指标测定。每个处理随机选取12株幼苗用于测定生长指标。将幼苗分为根、茎、叶3个部分,用超纯水清洗干净,擦干表面水分后称鲜质量。用直尺测定株高和主根长度,根系扫描仪(Expression 10000XL 1.0,Epson Corporation,Janpan)扫描根系图像并用WinRhizo Pro(S) v. 2009c软件对总根长、根表面积、根体积、平均直径及根尖数进行分析。
2)幼苗形态观察。对每个处理幼苗整体生长状况、幼苗单株及根系形态进行拍照;并切取1 cm幼苗根尖置于体式显微镜下,观察不同处理下的根尖形态。
3)矿质元素含量测定。将样品放入烘箱中烘干并磨碎。称取干样0.10 g左右于坩埚中,置于电炉上碳化直至无黑烟,再转入马弗炉中550 ℃灰化6 h,待冷却后加入5 mL 5% HNO3溶解,用电感耦合等离子体质谱仪(ICP-MS,Agilent 7900,USA)测定P、K、Ca、Mg、B、Cu、Fe、Zn、Mn、Mo含量。全氮采用H2SO4-H2O2消煮,全自动智能化学分析仪(Smartchem200,FR)测定N含量。
对枳幼苗进行不同浓度的GABA处理30 d后,整体生长情况如

图1 不同浓度外源GABA处理下枳幼苗生长情况
Fig.1 Growth of trifoliate orange seedlings treated with different concentrations of exogenous GABA
图1A中用于形态拍照的幼苗株数为每处理12株。The number of plants used for photography was 12 plants per treatment. 不同小写字母表示枳幼苗在不同处理下存在显著差异(P < 0.05),下同。Different lowercase letters indicate significant differences (P < 0.05) between different treatments. The same as below.
外源添加GABA明显改变了枳幼苗的根系形态。由

图2 不同浓度外源GABA处理下枳幼苗根系形态变化
Fig.2 Morphological changes of roots of trifoliate orange seedlings treated with different concentrations of exogenous GABA
由

图3 不同浓度外源GABA处理下根中矿质元素含量
Fig.3 Content of mineral elements in roots treated with different concentrations of exogenous GABA
茎中不同矿质元素含量对外源GABA的响应有所差异。由

图4 不同浓度外源GABA处理下茎中矿质元素含量
Fig.4 Content of mineral elements in stems treated with different concentrations of exogenous GABA
由

图5 不同浓度外源GABA处理下枳幼苗叶矿质元素含量
Fig.5 Content of mineral elements in leaves treated with different concentrations of exogenous GABA
由

图6 不同浓度外源GABA处理下枳幼苗单株矿质元素的积累和分配
Fig.6 Accumulation and distribution of mineral elements in trifoliate orange seedlings treated with different concentrations of exogenous GABA
柱外不同大写字母表示单株元素积累量处理间差异显著(P<0.05);柱上不同小写字母表示同一部位元素积累量处理间差异显著(P<0.05)。Different capital letters outside the columns indicate significant difference in element accumulation of individual plant between treatments (P<0.05); different lowercase letters on the columns indicate significant difference in the amount of element accumulation in the same organ (P<0.05).
从各处理枳幼苗不同器官的元素积累量来看,除Mn主要在枳幼苗根系中积累外,N、P、K、Ca、Mg、Fe、Cu、B、Zn、Mo在叶中积累量最大。进一步分析元素的分配特征,发现低浓度GABA处理减少了根系中K的分配比,而高浓度(G4和G5)处理则促进了K向根中的分配;N、P、Ca、Mg、Fe、Mn在根系中的分配比在各浓度GABA处理下都有所升高;Cu和Zn在G1、G2处理下根系分配比例降低,G3处理下增加,G4处理时再次下降,G5处理下又升高;B根系分配比例在G1、G3、G4处理下升高,G2、G5处理时降低;Mo则随着GABA浓度的增加,在根中的分配比例也随之升高,并于G3处理下达到最高,之后降低。各浓度GABA处理都促进了P、K、Ca、Mg向茎中的分配,但对Fe、Mn、Cu向茎中的分配起抑制作用;茎中N、B、Zn、Mo的分配比则随着GABA浓度的增加呈先上升后下降的趋势。各浓度GABA处理下的N、P、K、Ca、Mg、Mn、B、Zn向叶中的分配比均有所减少,但促进了Cu向叶中的分配;G1、G2处理下的Mo在叶中的分配比例减少,但从G3处理开始呈上升趋势。
为进一步明确外源GABA处理下枳幼苗各部位的元素组成差异,分别对根、茎、叶的矿质元素进行主成分分析(

图7 不同浓度外源GABA处理矿质元素主成分分析得分图(A-C)与载荷图(D-F)
Fig.7 The score plot (A-C) and loading plot (D-F) from principal component analysis of the mineral elements in different concentrations of exogenous GABA treatments
植物的形态指标和生物量可以衡量植物的生长发育状况。本研究中,不同浓度GABA处理对枳幼苗地上部株高、根系形态及生物量积累的影响有所差异。测定结果表明,较低浓度的GABA处理对枳幼苗根系长度无明显影响,而高浓度会明显降低主根及侧根长度,这可能是由于过量积累的GABA影响了细胞壁相关基因表达,从而导致根系细胞伸长缺陷,主根伸长受
N、P、K是植物生长发育过程中最重要的三大矿质营养元素,其在植物体内的吸收与分配对植物新陈代谢及产量品质具有重要意
相较于大量元素,植物对微量元素的需求量很少,但微量元素在多种生物合成过程中承担着重要角色,参与多种催化剂和植物有效成分构成。GABA对植物微量元素的积累有明显影响。植物中的Fe通过可逆的氧化还原反应参与电子转移,是从呼吸到光合作用中的重要角
主成分分析结果进一步展现了各处理对枳幼苗不同部位元素含量的影响。根、茎、叶主成分分析中,G2、G3处理与其他处理明显区分开,而从元素含量的测定结果来看,G2、G3处理下大部分矿质元素含量显著升高,这表明0.05和0.1 mmol/L GABA能促进枳幼苗各部位对矿质元素的吸收,有利于植株生物量的积累并促进植株发育;G4和G5处理的分布区域相距较近甚至有所重叠,说明0.5及1 mmol/L GABA作为高浓度处理对枳幼苗养分吸收起抑制作用,因此,影响了植株尤其是根系的正常生长,而根系养分吸收能力的降低则会进一步阻碍枳幼苗对矿质元素的吸收。此外,高浓度GABA处理下茎和叶中矿质元素含量的下降较根更为明显,说明高浓度GABA对枳幼苗矿质元素的影响主要体现在抑制根系养分的向上运输,而非抑制根系的吸收能力,这与Zhu
参考文献References
郭文武,叶俊丽,邓秀新.新中国果树科学研究70年:柑橘[J].果树学报,2019,36(10):1264-1272.GUO W W,YE J L,DENG X X.Fruit scientific research in New China in the past 70 years:Citrus[J].Journal of fruit science,2019,36(10): 1264-1272 (in Chinese with English abstract). [百度学术]
万继锋,李娟,杨为海,等.柑橘果实响应高温、强光胁迫的活性氧代谢研究[J].福建农业学报,2019,34(8):920-924.WAN J F,LI J,YANG W H,et al.ROS metabolism of citrus fruits in response to high-temperature-intense-light stress[J].Fujian journal of agricultural sciences,2019,34(8):920-924(in Chinese with English abstract). [百度学术]
YOU J E,LEE J.Offline mobile diagnosis system for citrus pests and diseases using deep compression neural network[J].IET computer vision,2020,14(6):370-377. [百度学术]
GARCÍA-SÁNCHEZ F,PEREZ-PEREZ J G,BOTIA P,et al.The response of young mandarin trees grown under saline conditions depends on the rootstock[J].European journal of agronomy,2006,24(2):129-139. [百度学术]
单皓,张虎,崔爱民,等.外源生长调节物质对盐胁迫下玉米种子萌发的影响[J].中国农业科技导报,2018,20(8):82-90.SHAN H,ZHANG H,CUI A M,et al.Effect of exogenous growth regulator on seed germination of maize under salt stress[J].Journal of agricultural science and technology,2018,20(8):82-90 (in Chinese with English abstract). [百度学术]
STEWARD F C.γ-Aminobutyric acid :a constituent of the potato tuber?[J].Science,1949,110:439-440. [百度学术]
FAIT A,FROMM H,WALTER D,et al.Highway or byway:the metabolic role of the GABA shunt in plants[J].Trends in plant science,2008,13(1):14-19. [百度学术]
LI L,DOU N,ZHANG H,et al.The versatile GABA in plants[J/OL].Plant signaling & behavior,2021,16(3):1862565[2023-09-28].https://doi.org/10.1080/15592324.2020.1862565. [百度学术]
JI J,SHI Z,XIE T T,et al.Responses of GABA shunt coupled with carbon and nitrogen metabolism in poplar under NaCl and CdCl2 stresses[J/OL].Ecotoxicology and environmental safety,2020,193:110322[2023-09-28].https://doi.org/10.1016/j.ecoenv.2020.110322. [百度学术]
XU B,LONG Y,FENG X Y,et al.GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience[J/OL].Nature communications,2021,12(1):1952[2023-09-28].https://doi.org/10.1038/s41467-021-21694-3. [百度学术]
PALANIVELU R,BRASS L,EDLUND A F,et al.Pollen tube growth and guidance is regulated by POP2,an Arabidopsis gene that controls GABA levels[J].Cell,2003,114(1):47-59. [百度学术]
XIE T T,JI J,CHEN W,et al.GABA negatively regulates adventitious root development in poplar[J].Journal of experimental botany,2020,71(4):1459-1474. [百度学术]
MOLINA-RUEDA J J,PASCUAL M B,PISSARRA J,et al.A putative role for γ-aminobutyric acid (GABA) in vascular development in pine seedlings[J].Planta,2015,241(1):257-267. [百度学术]
HÄNSCH R,MENDEL R R.Physiological functions of mineral micronutrients (Cu,Zn,Mn,Fe,Ni,Mo,B,Cl)[J].Current opinion in plant biology,2009,12(3):259-266. [百度学术]
YANG Z,XU Y,SONG P,et al.Effects of gamma amino butyric acid (GABA) on nutrient uptake of loquat [Eriobotrya japonica (thunb.) lindl.] seedlings[J/OL].Horticulturae,2023,9(2):196[2023-09-28].https://doi.org/10.3390/horticulturae9020196. [百度学术]
MA X L,ZHU C H,YANG N,et al.γ-Aminobutyric acid addition alleviates ammonium toxicity by limiting ammonium accumulation in rice (Oryza sativa) seedlings[J].Physiologia plantarum,2016,158(4):389-401. [百度学术]
王泳超,张颖蕾,闫东良,等.干旱胁迫下γ-氨基丁酸保护玉米幼苗光合系统的生理响应[J].草业学报,2020,29(6):191-203.WANG Y C,ZHANG Y L,YAN D L,et al.Physiological role of γ-aminobutyric acid in protecting the photosynthetic system of maize seedings under drought stress[J].Acta prataculturae sinica,2020,29(6):191-203(in Chinese with English abstract). [百度学术]
宋建超,杨航,景媛媛,等.外源GABA对NaCl胁迫下垂穗披碱草种子萌发及幼苗生理特性的影响[J].草地学报,2022,30(2):403-411.SONG J C,YANG H,JING Y Y,et al.Effects of exogenous GABA on seed germination and physiological characteristics of Elymus nutans under NaCl stress[J].Acta agrestia sinica,2022,30(2):403-411 (in Chinese with English abstract). [百度学术]
RENAULT H,EL AMRANI A,PALANIVELU R,et al.GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell wall-related proteins in Arabidopsis thaliana[J].Plant and cell physiology,2011,52(5):894-908. [百度学术]
强斌斌,金喜军,周伟鑫,等.γ-氨基丁酸对大豆种子萌发及根系形态建成的调控效应[J].干旱地区农业研究,2023,41(1):69-77.QIANG B B,JIN X J,ZHOU W X,et al.Regulation effect of γ-aminobutyric acid on soybean seed germination and root morphogenesis[J].Agricultural research in the arid areas,2023,41(1):69-77 (in Chinese with English abstract). [百度学术]
张海龙.外源GABA对植物根系生长和低氧胁迫的调节作用[D].北京:北京林业大学,2020.ZHANG H L.Regulation of exogenous GABA on plant root growth and hypoxia stress[D].Beijing:Beijing Forestry University,2020 (in Chinese with English abstract). [百度学术]
BOERJAN W,CERVERA M T,DELARUE M,et al.Superroot,a recessive mutation in Arabidopsis,confers auxin overproduction[J].The plant cell,1995,7(9):1405-1419. [百度学术]
SEIFIKALHOR M,ALINIAEIFARD S,BERNARD F,et al.γ-Aminobutyric acid confers cadmium tolerance in maize plants by concerted regulation of polyamine metabolism and antioxidant defense systems[J/OL].Scientific reports,2020,10(1):3356[2023-09-28].https://doi.org/10.1038/s41598-020-59592-1. [百度学术]
HIJAZ F,KILLINY N.Exogenous GABA is quickly metabolized to succinic acid and fed into the plant TCA cycle[J/OL].Plant signaling & behavior,2019,14(3):e1573096[2023-09-28].https://doi.org/10.1080/15592324.2019.1573096. [百度学术]
储成才,王毅,王二涛.植物氮磷钾养分高效利用研究现状与展望[J].中国科学:生命科学,2021,51(10):1415-1423.CHU C C,WANG Y,WANG E T.Improving the utilization efficiency of nitrogen,phosphorus and potassium:current situation and future perspectives[J].Scientia sinica (vitae),2021,51(10):1415-1423 (in Chinese with English abstract). [百度学术]
SYLVESTER-BRADLEY R,KINDRED D R.Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency[J].Journal of experimental botany,2009,60(7):1939-1951. [百度学术]
施卫明,李光杰,艾超,等.中国植物营养生物学研究重要进展和展望[J].植物营养与肥料学报,2022,28(12):2310-2323.SHI W M,LI G J,AI C,et al.Important progress and prospects of plant nutritional biology in China[J].Journal of plant nutrition and fertilizers,2022,28(12):2310-2323 (in Chinese with English abstract). [百度学术]
VANCE C P,UHDE-STONE C,ALLAN D L.Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource[J].New phytologist,2003,157(3):423-447. [百度学术]
陆志峰,鲁剑巍,潘勇辉,等.钾素调控植物光合作用的生理机制[J].植物生理学报,2016,52(12):1773-1784.LU Z F,LU J W,PAN Y H,et al.Physiological mechanisms in potassium regulation of plant photosynthesis[J].Plant physiology journal,2016,52(12):1773-1784 (in Chinese with English abstract). [百度学术]
张旭,熊又升,谢媛圆,等.灌溉方式与施氮量对鲜食玉米生育前期生长发育的影响[J].灌溉排水学报,2021,40(12):54-60.ZHANG X,XIONG Y S,XIE Y Y,et al.Irrigation and nitrogen application affect early-stage growth and development of fruit corn[J].Journal of irrigation and drainage,2021,40(12):54-60 (in Chinese with English abstract). [百度学术]
杨志坚,冯金玲,吴小慧,等.氮磷钾施肥对闽楠幼苗营养元素吸收与利用的影响[J].生态学杂志,2021,40(4):998-1011.YANG Z J,FENG J L,WU X H,et al.Effects of N,P,and K fertilization on nutrient uptakes and utilizations of Phoebe bournei seedlings[J].Chinese journal of ecology,2021,40(4):998-1011(in Chinese with English abstract). [百度学术]
KARABOURNIOTIS G,HORNER H T,BRESTA P,et al.New insights into the functions of carbon-calcium inclusions in plants[J].New phytologist,2020,228(3):845-854. [百度学术]
刘璟,赵环宇,王昱桁,等.不同钾镁比对缺镁土壤上两种柑橘砧木生长和养分吸收的影响[J].中国土壤与肥料,2023,311(3):7-16.LIU J,ZHAO H Y,WANG Y H,et al.Effects of different potassium-magnesium ratios on growth and nutrient uptake of two citrus rootstocks on magnesium-deficient soils[J].Soil and fertilizer sciences in China,2023,311(3):7-16 (in Chinese with English abstract). [百度学术]
KIM S A,GUERINOT M L.Mining iron:iron uptake and transport in plants[J].FEBS letters,2007,581(12):2273-2280. [百度学术]
STANTON C,SANDERS D,KRÄMER U,et al.Zinc in plants:integrating homeostasis and biofortification[J].Molecular plant,2022,15(1):65-85. [百度学术]
张盼盼,乔江方,李川,等.氮锌配施对夏玉米籽粒矿质元素含量和累积量的影响[J].华北农学报,2023,38(3):87-99.ZHANG P P,QIAO J F,LI C,et al.Effect of nitrogen and zinc application on the concentration and accumulation of mineral elements in the grain of summer maize[J].Acta agriculturae boreali-sinica,2023,38(3):87-99 (in Chinese with English abstract). [百度学术]
BOWN A W,SHELP B J.Does the GABA shunt regulate cytosolic GABA?[J].Trends in plant science,2020,25(5):422-424. [百度学术]
唐丽静,王冬艳,宋诚亮.山东省沂源县耕层土壤营养元素有效态含量及其影响因素研究[J].山东农业科学,2014,46(8):71-74.TANG L J,WANG D Y,SONG C L.Study on available content of nutrient elements in surface soil and influencing factors in Yiyuan County,Shandong Province[J].Shandong agricultural sciences,2014,46(8):71-74 (in Chinese with English abstract). [百度学术]
刘鹏.钼胁迫对植物的影响及钼与其它元素相互作用的研究进展[J].农业环境保护,2002,21(3):276-278.LIU P.Effects of stress of molybdenum on plants and interaction between molybdenum and other elements[J].Agro-environmental protection,2002,21(3):276-278 (in Chinese with English abstract). [百度学术]
ZHU C H,QI Q,NIU H J,et al.γ-Aminobutyric acid suppresses iron transportation from roots to shoots in rice seedlings by inducing aerenchyma formation[J/OL].International journal of molecular sciences,2021,22(1):220[2023-09-28].https://doi.org/10.3390/ijms22010220. [百度学术]