摘要
为了探明有机硼(硼酸二甘油酯)是否具有硼肥的功效,采用水培的方法,以“华油杂9号”为试验材料,研究硼酸和硼酸二甘油酯2种不同形态硼对油菜生长的影响和硼吸收利用的差异。结果显示,缺硼处理导致油菜叶片增厚、卷曲、生物量降低,而施用有机硼或无机硼均能促进油菜的生长;0.25 μmol/L低硼处理下,无机硼比有机硼更有利于油菜的生长,25 μmol/L适硼处理下,有机硼和无机硼对油菜总生物量具有相似的效果;无论处于低硼还是适硼环境,施用有机硼后油菜叶片叶绿素a、叶绿素b和类胡萝卜素等光合色素含量均显著高于施用无机硼;25 μmol/L适硼处理下,施用有机硼后光合速率较施用无机硼显著提高28.9%,叶片累积的淀粉粒增多,油菜单株硼吸收量显著增加11.7%,且主要增加的部位是油菜地上部。以上结果表明,适硼环境下,有机硼与无机硼在油菜上具有类似的生理功能,有机硼较无机硼更有利于油菜对硼的吸收累积和向上运输,促进光合色素的生成,从而提高光合效率。
硼(B)是植物必需微量营养元素,硼缺乏被认为是全世界最严重的农业问题之
植物硼主要以稳定单酯或双酯复合物的形式存在于细胞壁,硼在植物体内移动性差是导致植物缺硼的原因之
传统的硼肥多为无机态,施用量较低时,硼在植物体韧皮部移动性小,难以满足植物顶端生长旺盛的组织对硼的需求。值得注意的是,硼缺乏和毒害的范围很窄,土施无机硼的浓度略高于最佳施用量就可能对作物产生毒害,而水溶性硼肥浓度易控制,配合滴灌或叶面喷施,不易发生毒害现象,且用量少,效率高。最新微量元素叶面肥料的国家标准中,关于微量元素叶面硼肥含量指标为高于100 g/L(以元素B计
试验在华中农业大学微肥楼光照培养室进行,油菜品种为“华油杂9号”。营养液Hoagland 配方:5.04 mmol/L KNO3,5.00 mmol/L Ca(NO3)2·4H2O,1.99 mmol/L MgSO4·4H2O, 1.03 mmol/L KH2PO4;微量元素采用Arnon配方:9.14 μmol/L MnCl2·4H2O,0.38 μmol/L H2MoO4·4H2O,0.77 μmol/L ZnSO4·7H2O,0.32 μmol/L CuSO4·5H2O 和50.00 μmol/L Fe(Ⅲ)-EDTA。油菜种子经1%次氯酸钠消毒,去离子水多次冲洗,浸种24 h后于25 ℃下催芽1 d,挑选露白长度一致的种子置于纱网上水培,5 d后移苗种植于塑料遮光盆(307 mm×212 mm×87 mm)。营养液每5 d更换1次,第一次使用1/4浓度营养液,第二次使用1/2浓度营养液,以后均用全量营养液,处理30 d后测定相关指标。
以叶片硼含量达20 mg/kg的施硼量25 μmol/L作为适量的施硼量,以0.25 μmol/L浓度的硼作为低硼处理,设置5个试验处理:不施硼、0.25 μmol/L硼酸二甘油酯、25 μmol/L硼酸二甘油酯、0.25 μmol/L硼酸、25 μmol/L硼酸,每个处理种植4盆,每盆种植6株,每6株油菜为1个生物学重复。
1) 光合速率测定。油菜种植30 d后,通过便携式光合速率仪(Li-6400XT,LI-COR)对油菜完全展开的新叶(从顶部向下舒张开的第3片)进行光合测定,其光合参数为:光强1 200 μmol/(
2)叶面积测定。油菜种植30 d后,使用叶面积仪(Yaxin-1241,雅欣理仪)测定油菜完全展开的新叶面积。
3)叶绿素和类胡萝卜含量的测定。取油菜完全展开的新叶,剪碎后加入95%乙醇于黑暗中萃取,分别测定665、649和470 nm处的吸光度值,计算叶绿素和类胡萝卜含量,色素含量以叶片的鲜质量计。
4)石蜡切片。将油菜完全展开的新叶固定于甲醛-乙酸-乙醇固定液(FAA),经浸蜡包埋、切片、制片、脱蜡、番红固绿染色、封片后,于植物荧光显微镜(ECLIPSE CI,NIKON)下观察,拍照。
5)干物质质量。将收获的植物样品冲洗干净,分为根系、地上部2部分,于105 ℃的烘箱中杀青30 min,75 ℃下烘干至恒质量。
6)硼元素的测定。粉碎样品灰化后使用0.1 mol/L的HCl溶液浸提,取滤液用姜黄素比色法测定硼含量。
由

图1 不同类型硼肥施用下油菜苗期的生长情况
Fig.1 The growth and development of rapeseed seedlings under different types of boron fertilizers
与对照(CK)相比,施用无机硼和有机硼后油菜生物量均显著增加(
处理 Treatment | 地上部质量/(g/株) Shoot | 根质量/(g/株) Root | 总干质量/(g/株) Total dry weight | 根冠比 R/S |
---|---|---|---|---|
CK | 0.51±0.04c | 0.03±0.00c | 0.54±0.04c | 0.06c |
0.25 μmol/L OB | 1.09±0.02b | 0.10±0.00a | 1.20±0.02b | 0.09a |
0.25 μmol/L IB | 1.23±0.03a | 0.09±0.01b | 1.32±0.03a | 0.07b |
CK | 0.51±0.04b | 0.03±0.00c | 0.54±0.04b | 0.06c |
25 μmol/L OB | 1.19±0.01a | 0.11±0.00a | 1.31±0.02a | 0.10a |
25 μmol/L IB | 1.19±0.02a | 0.10±0.01b | 1.29±0.02a | 0.08b |
ANOVA | ||||
C | NS | ** | * | NS |
B | ** | ** | ** | ** |
C×B | ** | NS | ** | NS |
注: 同列数值后不同小写字母代表处理间差异显著(P<0.05),* 和**分别代表0.05和0.01水平上差异显著,NS代表没有显著差异,下同。Note:Different lowercase letters indicate significant difference between treatments (P<0.05). * and ** represent significant differences at 0.05 and 0.01 levels. NS indicates no significant difference. The same as below.
对幼苗期油菜的功能叶面积和单株叶面积测定结果显示(
处理 Treatment | 功能叶面积/c Functional leaf area | 单株叶面积/c Plant leaf area | 叶绿素a/(mg/kg) Chlorophyll a | 叶绿素b/(mg/kg) Chlorophyll b | 类胡萝卜素/(mg/kg)Carotenoids |
---|---|---|---|---|---|
CK | 29.24±1.37c | 146.53±3.91c | 842.22±49.33c | 365.39±13.61c | 130.33±7.133c |
0.25 μmol/L OB | 68.08±2.04b | 300.84±5.47b | 1 773.92±51.37a | 654.82±20.67a | 392.58±5.30a |
0.25 μmol/L IB | 71.21±2.54a | 333.70±9.52a | 1 478.37±61.14b | 568.87±27.82b | 295.89±16.60b |
CK | 29.24±1.37b | 146.53±3.91b | 842.22±49.33c | 365.39±13.61c | 130.33±7.133c |
25 μmol/L OB | 73.38±3.98a | 309.47±4.91a | 1 809.33±74.03a | 678.96±37.39a | 375.38±5.43a |
25 μmol/L IB | 70.94±2.72a | 310.48±11.39a | 1 599.63±48.86b | 587.69±37.23b | 329.07±34.05b |
ANOVA | |||||
C | NS | NS | * | NS | NS |
B | ** | ** | ** | ** | ** |
C×B | * | ** | NS | NS | * |
光合色素含量测定结果显示(
光合指标的测定结果显示(
处理 | 光合速率/ [μmol/( | 气孔导度/ [mol/( | 胞间CO2浓度/ (μmol/mol) | 蒸腾速率/ [mmol/( |
---|---|---|---|---|
Treatment | Photosynthetic rate | Stomatal conductance | Intercellular CO2 concentration | Transpiration rate |
CK | 30.59±1.96c | 0.40±0.07b | 296.56±16.30a | 5.43±0.87c |
0.25 μmol/L OB | 80.05±4.23a | 1.16±0.10a | 310.95±10.55a | 14.00±0.71a |
0.25 μmol/L IB | 56.23±3.86b | 0.49±0.08b | 249.84±17.47b | 7.54±0.92b |
CK | 30.59±1.96c | 0.40±0.07c | 296.56±16.30c | 5.43±0.87c |
25 μmol/L OB | 86.03±3.43a | 1.36±0.11a | 316.59±12.43b | 18.02±0.88a |
25 μmol/L IB | 66.73±4.26b | 0.83±0.06b | 343.94±12.60a | 11.34±0.59b |
ANOVA | ||||
C | ** | ** | ** | ** |
B | ** | ** | ** | ** |
C×B | ** | ** | ** | ** |
由
处理 Treatment | 硼含量/(mg/kg)Boron concentration | 硼吸收量/(μg/株)Boron accumulation | 硼分配/%Boron distribution | ||||
---|---|---|---|---|---|---|---|
地上部 Shoot | 根部 Root | 地上部 Shoot | 根部Root | 单株 Total | 地上部 Shoot | 根部 Root | |
CK | 6.62±0.96b | 13.88±1.05b | 3.42±0.69b | 0.40±0.01b | 3.81±0.70b | 89.37±1.62a | 10.63±1.62a |
0.25 μmol/L OB | 11.78±1.72a | 14.59±1.56b | 12.86±1.72a | 1.51±0.19a | 14.37±1.75a | 89.40±1.60a | 10.60±1.60a |
0.25 μmol/L IB | 9.78±1.76a | 16.65±0.36a | 12.05±2.34a | 1.46±0.11a | 13.51±2.29a | 88.89±2.34a | 11.11±2.34a |
CK | 6.62±0.96c | 13.88±1.05c | 3.42±0.69c | 0.40±0.01c | 3.81±0.70c | 89.37±1.62b | 10.63±1.62a |
25 μmol/L OB | 27.69±2.83a | 23.04±1.53b | 33.05±3.55a | 2.63±0.23b | 35.68±3.68a | 92.60±0.63a | 7.40±0.63b |
25 μmol/L IB | 24.23±2.28b | 31.41±0.72a | 28.83±2.53b | 3.11±0.18a | 31.94±2.48b | 90.21±1.07b | 9.79±1.07a |
ANOVA | |||||||
C | ** | ** | ** | ** | ** | * | * |
B | ** | ** | ** | ** | ** | * | NS |
C×B | ** | ** | ** | ** | ** | NS | NS |
硼是植物生长必需的微量营养元素,大量研究表明缺硼抑制植物根的伸长,幼叶的膨胀、茎开裂、花朵的形成和种子的萌发
缺硼导致光合效率的降低已在柑
低硼环境下,大多数植物的新生幼叶容易表现出明显的缺硼症状,主要原因在于硼主要以稳定单酯或双酯复合物的形式存在于细胞壁,在植物体内的移动性较
参考文献 References
SHORROCKS V M.The occurrence and correction of boron deficiency[J].Plant and soil,1997,193(1):121-148. [百度学术]
RERKASEM B,JAMJOD S,PUSADEE T.Productivity limiting impacts of boron deficiency,a review[J].Plant and soil,2020,455(1/2):23-40. [百度学术]
POMMERRENIG B,JUNKER A,ABREU I,et al.Identification of rapeseed (Brassica napus) cultivars with a high tolerance to boron-deficient conditions[J/OL].Frontiers in plant science,2018,9:1142[2023-07-18].https://doi.org/10.3389/fpls.2018.01142. [百度学术]
邹娟,鲁剑巍,廖志文,等.湖北省油菜施硼效果及土壤有效硼临界值研究[J].中国农业科学,2008,41(3):752-759.ZOU J,LU J W,LIAO Z W,et al.Study on response of rapeseed to boron application and critical level of soil available B in Hubei Province[J].Scientia agricultura sinica,2008,41(3):752-759 (in Chinese with English abstract). [百度学术]
HUA Y P,ZHOU T,DING G D,et al.Physiological,genomic and transcriptional diversity in responses to boron deficiency in rapeseed genotypes[J].Journal of experimental botany,2016,67(19):5769-5784. [百度学术]
WANG Y Q,ZHAO Z,WANG S L,et al.Genotypic differences in the synergistic effect of nitrogen and boron on the seed yield and nitrogen use efficiency of Brassica napus[J]. Journal of the science of food and agriculture,2021,102(9):3563-3571. [百度学术]
CHEN Z Q,HU Z J,PENG J X,et al.Boron isotopic fractionation in Brassica napus L. plants during plant growth under hydroponic conditions[J].Plant and soil,2023,485(1/2):411-423. [百度学术]
BRDAR-JOKANOVIĆ M.Boron toxicity and deficiency in agricultural plants[J/OL].International journal of molecular sciences,2020,21(4):1424[2023-07-18].https://doi.org/10.3390/ijms21041424. [百度学术]
BROWN P H,HU H N.Phloem mobility of boron is species dependent:evidence for phloem mobility in sorbitol-rich species[J].Annals of botany,1996,77(5):497-506. [百度学术]
HU H,PENN S G,LEBRILLA C B,et al.Isolation and characterization of soluble boron complexes in higher plants (the mechanism of phloem mobility of boron)[J].Plant physiology,1997,113(2):649-655. [百度学术]
国家市场监督管理总局,国家标准化管理委员会.微量元素叶面肥料:GB/T 17420—2020[S].北京:中国标准出版社,2020.State Administration for Marker Regulation of the People’s Republic of China,Standardization Administration of the People’s Republic of China.Foliar microelement fertilizer:GB/T 17420—2020[S].Beijing:Standards Press of China,2020 (in Chinese). [百度学术]
TANG Y P,LUO L,THONG Z,et al.Recent advances in membrane materials and technologies for boron removal[J].Journal of membrane science,2017,541:434-446. [百度学术]
闫磊,姜存仓,董肖昌,等.多元醇络合硼对油菜苗期生长及生理特性的影响[J].华中农业大学学报,2017,36(2):38-44.YAN L,JIANG C C,DONG X C,et al.Effects of polyol-chelated boron fertilizers on physiological characteristics of rapeseed seedlings[J].Journal of Huazhong Agricultural University,2017,36(2):38-44 (in Chinese with English abstract). [百度学术]
李腾升,魏倩倩,黄明丽,等.糖醇螯合肥在农业上的应用研究进展[J].土壤学报,2021,58(6):1393-1403.LI T S,WEI Q Q,HUANG M L,et al.Research progresses on the application of sugar alcohol chelated fertilizers in agriculture[J].Acta pedologica sinica,2021,58(6):1393-1403 (in Chinese with English abstract). [百度学术]
SOTTA N,BIAN B,PENG D H,et al.Local boron concentrations in tuberous roots of Japanese radish (Raphanus sativus L.) negatively correlate with distribution of brown heart[J].Plant physiology and biochemistry,2019,136:58-66. [百度学术]
DO CARMO MILAGRES C,MAIA J T L S,VENTRELLA M C,et al.Anatomical changes in cherry tomato plants caused by boron deficiency[J].Brazilian journal of botany,2019,42(2):319-328. [百度学术]
MATTHES M S,ROBIL J M,MCSTEEN P.From element to development:the power of the essential micronutrient boron to shape morphological processes in plants[J].Journal of experimental botany,2020,71(5):1681-1693. [百度学术]
MARSCHNER H. Mineral nutrition of higher plants[M].London:Academic Press,2012. [百度学术]
ONUH A F,MIWA K.Regulation,diversity and evolution of boron transporters in plants[J].Plant and cell physiology,2021,62(4):590-599. [百度学术]
李鸣凤,彭文勇,何华,等.外施不同形态硼对棉花吸收利用硼及其他矿质元素的影响[J].棉花学报,2021,33(5):385-392.LI M F,PENG W Y,HE H,et al.Effects of different forms of boron on absorption and utilization of boron and other mineral elements in cotton[J].Cotton science,2021,33(5):385-392 (in Chinese with English abstract). [百度学术]
张林,刘磊超,王宇函,等.有机态和无机态硼对柑橘枳橙砧木生长及生理的影响[J].园艺学报,2019,46(1):135-142.ZHANG L,LIU L C,WANG Y H,et al.Different influences of organic and inorganic boron fertilizers on citrange rootstock growth and physiology characters[J].Acta horticulturae sinica,2019,46(1):135-142 (in Chinese with English abstract). [百度学术]
曹先梅,刘立云,李佳.缺硼槟榔幼苗的生理反应和根系发育特征[J].植物营养与肥料学报,2020,26(2):386-392.CAO X M,LIU L Y,LI J.Physiological response and root development of areca-nut seedlings under boron deficiency[J].Journal of plant nutrition and fertilizers,2020,26(2):386-392 (in Chinese with English abstract). [百度学术]
张晓文,谭苏娜,孟哲,等.外源硼通过调节叶面积和气孔导度影响甜菜生长[J].植物生理学报,2019,55(12):1777-1784.ZHANG X W,TAN S N,MENG Z,et al.Exogenous boron affects the growth of beet by regulation of leaf area and stomatal conductance[J].Plant physiology journal,2019,55(12):1777-1784 (in Chinese with English abstract). [百度学术]
BOGIANI J C,SAMPAIO T F,ABREU-JUNIOR C H,et al.Boron uptake and translocation in some cotton cultivars[J].Plant and soil,2014,375(1):241-253. [百度学术]