摘要
铁是所有生物正常发育所必需的微量元素之一,尤其是通过生物强化培育富含铁营养的农产品是解决人类铁营养“隐性饥饿”的重要技术途径,而螯合态铁肥由于见效快被广泛应用。因此,创制和研发新型微量元素螯合剂始终是国内外研究的竞争热点。麦根酸类植物铁载体和微生物铁载体等,能够高效螯合难溶铁并被植物高效吸收利用,是潜在的新型生物源螯合剂。该类新型铁肥在改善植物铁营养的同时不需要外源铁的投入,而是发挥菌株自身活性物质较强的螯合特性高效活化土壤中丰富的铁资源,为植物提供足够的生物有效铁。为进一步挖掘和研发新型生物源的绿色、高效且稳定的螯合剂,并为绿色智能肥料研发、实现绿色农业的可持续发展提供新途径和技术突破,本文基于近年来植物和微生物对铁营养吸收利用的分子生理机制的不断深入研究,从植物缺铁现状及诱因、改善铁营养的途径,到机理Ⅱ植物根系分泌物吸收利用铁的分子生态优势以及微生物铁载体改善植物铁营养的潜力,对生物源新型铁螯合剂研究进展及其应用进行了系统综述。期望通过进一步的研究和开发,能够更深入地了解这些新型生物源螯合剂的作用机制以提高植物的铁营养吸收效率,为实现绿色农业的可持续发展提供新的解决方案。
铁(Fe)是所有生物生长发育所必需的微量元素,参与调节多种细胞过程。作为酶的重要辅因子,铁在调节光合作用、线粒体呼吸、DNA的合成与修复以及蛋白质结构稳定等方面发挥着重要作
全世界有超过8.2亿人患有慢性营养不良,20亿人缺乏微量元素(隐性饥饿
铁是植物生长发育所必需的微量元素,参与维护和调节细胞多个生理功能和代谢途径,如在呼吸和光合作用中介导的电子传递系统发挥作用;铁还参与多种酶活性的调控过程,如过氧化物酶、细胞色素酶等功能的发
随着绿色革命的到来,培育的高产谷类作物虽然有效缓解了由人口增长引起的粮食危机,但微量元素摄取不足引发的“隐性饥饿”成为又一重大挑
研究表明,通过土壤施用、叶面喷施、种子包衣等农艺措施,可提高作物籽粒中铁的含
铁肥名称 Name of ironfertilizer | 施用量 Application amount | 作物 Crop | 施用方式 Application pattern | 对铁营养的影响 Effects on iron nutrition | 对产量的影响 Effects on production | 文献 References |
---|---|---|---|---|---|---|
硫酸亚铁 Ferrous sulfate | 1 g/L | 甘薯 | 叶面喷施 | 温室种植的3个品种甘薯块茎铁浓度平均提高了43.7% | 略微提高了产量 |
[ |
硫酸亚铁 Ferrous sulfate | 20 mg/kg | 小麦 | 土壤施用 | 高盐胁迫促进籽粒积累铁 | - |
[ |
EDTA-Fe | 4.09 mmol/L | 马铃薯 | 叶面喷施 | 块茎铁含量提高54.98% | 2年块茎产量平均提高52.61% |
[ |
EDTA-Fe | 6 mg/L | 马铃薯 | 叶面喷施 | - | 块茎产量增加34.68% |
[ |
EDDHA-Fe | 30 g/株 | 梨树 | 土壤施用 | 叶片总叶绿素含量和活性铁含量分别增加542.0%和251.4% | 单果质量和可溶性固形物含量增加22.1%和15.3% |
[ |
纳米氧化铁 Nano-iron oxide | 1.5 g/L | 小麦 | 叶面喷施 | 显著提高了叶绿素含量 | 50 mmol/L盐胁迫下增产2.17% |
[ |
纳米氧化铁 Nano-iron oxide | 200 mg/L | 大豆 | 叶面喷施 | 干旱和水份充足下总叶绿素含量提高29.91%和15.69% | 干旱和水份充足下产量分别提高40.12%和32.6% |
[ |
木质素磺酸铁 Iron lignosulfonate | 37.87 mg/kg | 花生 | 土壤施用 | 第一茬鲁花11地上部铁含量显著升高68.0% | - |
[ |
- |
0.33 kg/h | 水稻 | 土壤施用 | 籽粒铁含量增加(5.32±4.34) mg/kg | - |
[ |
- |
0.33 kg/h | 水稻 | 叶面喷施 | 籽粒铁含量增加(9.62±4.18) mg/kg | - |
[ |
- |
0.33 kg/h | 水稻 | 土施+喷施 | 籽粒铁含量增加(5.37±4.32) mg/kg | - |
[ |
注: “-”代表文献中未提及。下同。Note:“-” represents not mentioned in the literature.The same as below.
目前,铁肥产品主要包括硫酸亚铁为主的无机铁肥、螯合铁肥、有机复合铁肥和纳米铁
铁肥种类 Type of iron fertilizer | 功能特点 Functional characteristics |
---|---|
硫酸亚铁Ferrous sulfate | 在石灰性土壤中不稳定,常作为叶面肥,成本低 |
EDTA-Fe | 在石灰性土壤中不稳定,常作为叶面肥,降解产物污染环境 |
EDDHA-Fe | 在石灰性土壤中高度稳定,肥效快,成本高 |
HBED-Fe | 在石灰性土壤中高度稳定,和EDDHA-Fe一样肥效高,比EDDHA-Fe长效 |
IDHA-Fe | IDHA-Fe和EDTA-Fe结构类似,容易降解,稳定性低,更适于叶面肥 |
[S,S]-EDDS-Fe | 环保,生物可降解,稳定性低,土壤中Zn和Cu的生物利用效率低 |
铁胶体粒子/铁氧化物纳米粒子 Iron colloidal particles / iron oxide nanoparticles | 肥料利用率高,长效,拥有良好的应用前景,但对生物和环境有潜在毒性风险,还需要更多的毒理学证据和相关风险评估 |
木质素磺酸铁Iron lignosulfonate | 天然螯合物,成本低,在石灰性土壤上不稳定,铁含量低 |
有机复合铁肥一般是由天然有机物与铁复合形成的铁肥,包括木质素磺酸铁、葡萄糖酸铁、腐殖酸铁
纳米颗粒的粒径小于100 nm,具有小尺寸效应、表面效应,增强了肥料的吸附性能,在土壤中可减少肥料的流失和淋
综上所述,传统无机铁肥虽然成本低,但性质不稳定,在中性及石灰性土壤生物可利用度低;有机复合铁肥铁含量低,易降解,效果不稳定,不利于市场推广应用;新型纳米铁肥高效,但具有潜在环境和生物毒性风险,缺乏相应的毒理及环境风险研究,还未规模化市场应用(
植物生长过程中根系向生长介质分泌或释放到根际周围的初生和次生代谢物质统称为根系分泌
通常来说,根据植物获取铁的策略可分为机理Ⅰ植物和机理Ⅱ植物。在缺铁条件下,机理Ⅰ植物如拟南

图1 植物吸收铁的生理分子机制
Fig. 1 Physiological and molecular mechanisms of iron uptake in plants
而主要通过螯合吸收铁的机理Ⅱ禾本科植物受环境pH的影响较小,在中性及高pH环境中依然保持铁高效吸收效率(
在中性及石灰性土壤上,基于铁螯合吸收途径代表着植物在进化过程中形成高效且广谱性的适应策略。在缺铁胁迫下,植物根系分泌物中的木瓜酸可与土壤中铁离子络合,提高铁的溶解
作物 Crop | 栽培方式 Cultivation pattern | PDMA浓度/(μmol/L) Concentration of PDMA | 对铁营养的影响 Effects on iron nutrition | 对产量的影响 Effects on production | 文献 References |
---|---|---|---|---|---|
水稻 Rice |
盆栽试验 Pot experiment | 30 | 新叶SPAD值持续提高,新叶活性铁含量显著增加 | - |
[ |
田间试验 Field experiment | 30 | 新叶SPAD值持续提高 | - | ||
黄瓜 Cucumber |
盆栽试验 Pot experiment | 30 | 新叶SPAD值提高,新叶活性铁浓度增加2倍多 | - |
[ |
水培试验 Hydroponic experiment | 0.5 | 新叶SPAD值提高,新叶活性铁浓度增加,CsFRO1与CsIRT1的表达量显著降低 | - | ||
花生 Peanut |
盆栽试验 Pot experiment | 40 | 新叶SPAD值提高,新叶活性铁含量增长48.7%,铁还原酶活性和AhIRT1表达降低,AhYSL1表达上调 | - |
[ |
田间试验 Field experiment | 40 | 新叶SPAD值提高,新叶活性铁含量增长50.3% | 花生产量提高33.4%,籽粒产量提高38.2% |
植物根际是一个特殊的生态环境,富集了大量功能多样的微生物,这些微生物作为一个整体被统称为根际微生物
微生物 Microorganism | 铁载体名称 Name of siderophore | 植物 Plant | 对改善植物铁营养的效应与机制 Effects and mechanisms on improvement of plant iron nutrition | 文献 References |
---|---|---|---|---|
Pseudomonas fluorescens C7R12,Pseudomonas sp. B4214,Pseudomonas sp. D426 | Pyoverdine | 豌豆 | 豌豆良好的铁源,促进了豌豆生长 |
[ |
Pseudomonas fluorescens C7R12 | Pyoverdine | 拟南芥 | 促进根际(包括质外体)铁的活化,影响激素信号的调节 |
[ |
Pseudomonas fluorescens ATCC13525 | Pyoverdine | 番茄 | SlFRO2和SlIRT1表达降低,叶绿素合成增强,叶片和根系铁含量增加 |
[ |
Pseudomonas fluorescens C7R12 | Pyoverdine | 拟南芥、烟草、大麦、小麦、苇状羊茅和黑麦草 | 植物直接吸收利用pyoverdine-Fe,所有植物的铁浓度均提高 |
[ |
Pseudomonas fluorescens C7R12 | Pyoverdine | 拟南芥 | pyoverdine-Fe提高了拟南芥铁含量,拟南芥通过非还原途径从中获取铁 |
[ |
Pseudomonas putida WCS358 | Pyoverdine和pseudobactin | 大麦 | 大麦良好的铁源 |
[ |
Pseudomonas chlororaphis ATCC15926 | Pyoverdine和pseudobactin | 豌豆和玉米 | 竞争性抑制了豌豆和玉米对三价铁的吸收,减少叶绿素合成 |
[ |
Streptomyces spp. | Ferrioxamine B | 洋葱 | ferrioxamine B-Fe提高了洋葱铁含量,洋葱通过非还原途径从中获取铁 |
[ |
Streptomyces spp. | Ferrioxamine B | 黄瓜 | 根系吸收了ferrioxamine B-Fe的复合物,黄瓜可能通过蒸腾流将复合物转运到地上部 |
[ |
Streptomyces spp. | Ferrioxamine B | 棉花和玉米 | 棉花和玉米良好的铁源 |
[ |
Ustilago sphaerogena ATCC 12421 | Ferrioxamine B和ferrichrome A | 燕麦 | 缺铁胁迫促进燕麦吸收ferrioxamine B-Fe |
[ |
Rhizopus arrhizus | Rhizoferrin | 番茄、黄瓜、大麦和玉米 | 促进了大麦和玉米的生长,提高了番茄、大麦和玉米叶绿素的叶绿素浓度 |
[ |
Rhizopus arrhizus | Rhizoferrin | 番茄 | rhizoferrin-Fe矫正番茄缺铁黄化的效果与EDDHA-Fe相似 |
[ |
Streptomyces | Desferrioxamine B | 小麦 | 小麦通过麦根酸吸收铁的途径受到抑制 |
[ |
Azotobacter vinelandii | Azotochelin | 大豆 | SPAD值和新叶铁含量增加 |
[ |
Paraburkholderia graminis | Gramibactin | 玉米 | 总叶绿素和铁含量显著增加 |
[ |
Citrobacter diversus | Aerobactin | 大豆 | 大豆良好的铁源,促进了大豆生长 |
[ |
Penicillium chrysogenum | - | 黄瓜和玉米 | 铁载体混合物显著提高了植物叶绿素浓度 |
[ |
Agrobacterium tumefaciens B6 | Agrobactin | 豌豆和蚕豆 | 促进了对铁的吸收与叶绿素合成 |
[ |
注: “-”代表文献中未描述铁载体详细名称。Note:“-” represents that the name of the siderophore was not described in the literature.
微生物铁载体是微生物分泌的一类大小为400~1 500 u的金属螯合剂,对F
功能物质螯合剂 Functional chelator | 稳定常数 Stability constants (lg KFe(Ⅲ)) | 铁载体类型 Type of siderophore | 来源 Origin |
---|---|---|---|
DMA | 18.4 | 植物铁载体 Phytosiderophore | Maize |
PDMA | 17.1 | 植物铁载体衍生物 Derivative of phytosiderophore | - |
Ferrioxamine B | 31 | 异羟肟酸型铁载体 Hydroxamate | E. coli |
Ferrichrome | 29 | 异羟肟酸型铁载体 Hydroxamate | Streptomyces |
Enterobactin | 52 | 儿茶酚型铁载体 Catecholate | Enterobacter |
Rhizobactin | 19 | 羧酸盐型铁载体 Carboxylate | Rhizobium |
Pyoverdine | 24 | 混合型铁载体 Mixed | Pseudomonas |
EDTA | 30 | 氨基多羧酸 Aminopolycarboxylic acid | - |
EDDHA | 40 | 氨基多羧酸 Aminopolycarboxylic acid | - |
注: “-”代表螯合剂来源于人工合成途径。Note:“-” represents that the chelator originates from the synthetic pathway.
微生物铁载体通常由非核糖体肽合成酶(nonribosomal peptide synthetases,NRPS)或聚酮合成酶(polyketide synthase,PKS)结构域与NRPS系统协同合成。部分铁载体也由不依赖于NRPS和聚酮合成酶的途径产
Fur(ferric uptake regulator)作为一种铁载体合成的转录抑制因子和蛋白质的调节激活因子,精准调控着铁载体的合成、分泌和吸收过程,确保了细胞内的铁稳
微生物铁载体能够高效螯合环境中的铁,一般利用带有负电荷的氧或氮原子作为电子供体,与外界三价铁形成强配合
微生物铁载体不仅可作为生物螯合剂有效改善植物铁营养,同时也是一种潜在的生物防治剂。根际微生物群落丰富多样,与植物共生或互惠物种的铁载体通过与病原体的铁载体竞争土壤中的稀缺资源——铁,从而抑制病原体的生长以维护植物的健康发
因此,鉴于微生物铁载体可以直接利用土壤中丰富的难溶性铁源并兼具生防功能,在生物环境友好和降低成本方面具有极大的优势和潜力(
关键性能 Key performance | 传统铁肥 Traditional fertilizers FeSO4 / EDTA-Fe / EDDHA-Fe | 植物铁载体类似物 Analog of phytosiderophore PDMA | 微生物铁载体 Microbial siderophore |
---|---|---|---|
矫治植物缺铁及增产效果 Correction of iron deficiency in plants and its effect on yields | FeSO4容易被固定,EDTA-Fe在石灰性土壤上不稳定,需要大量外源铁的投入,且改善铁营养及增产有限。EDDHA-Fe矫治植物缺铁及增产效果最佳 | 可利用土壤中充足的难溶铁,减少外源铁的添加,改善铁营养及增产效果优于传统铁肥 | 可利用土壤中充足的难溶铁,减少外源铁的添加,改善铁营养及增产效果等于或优于传统铁肥 |
成本 Costs | FeSO4成本较低,EDTA-Fe次之,EDDHA-Fe较高,多用于经济作物 | 原料易得,可通过优化工艺降低成本,且减少外源铁的投入成本 | 生物工程技术可降低原料及合成成本,且减少外源铁的投入成本 |
稳定性 Stability | FeSO4极不稳定,易被氧化和固定;EDTA-Fe在石灰性土壤上不稳定;EDDHA-Fe稳定性高 | 在土壤中可稳定存在一段时间 | 在土壤中可稳定存在一段时间满足植物需求 |
环境代价 Environmental impacts | EDTA-Fe降解产物容易造成环境污染 | 生物可降解,不会造成环境污染 | 生物可降解,不会造成环境污染 |
多功能性 Versatility | 无 | 无 | 可诱导植物系统抗性,并可杀灭多种农业害虫及致病菌 |
通过生物强化培育富含铁营养的食物是解决全球铁素“隐性饥饿”的重要技术途径,施用铁肥,特别是螯合态铁肥,则是当前应用最广泛的生物强化途径之一。但传统的铁螯合剂主要以EDTA、EDDHA、DTPA等人工合成螯合剂为主,成本高且不容易降解而存在污染环境的风险。因此,环境友好的铁螯合剂是铁肥发展的必然需求。植物分泌的麦根酸类和微生物的铁载体等新型铁肥在改善植物铁营养的同时可不需要外部铁的投入,借助菌株自身活性物质较强的螯合特性即可高效活化土壤中丰富的铁资源,为植物提供足够的生物有效铁,这为绿色智能肥料研发、实现绿色农业的可持续发展提供了新的途径和技术突破。这也将成为世界各国科学家针对农作物微生物组中功能微生物知识产权、理论创新和应用创新的主要竞争热点,同时,也是解决我国农业生产中微量元素缺乏进而提质增效和实现绿色农业的重要技术保障。
参考文献 References
ZHANG X X,ZHANG D,SUN W,et al.The adaptive mechanism of plants to iron deficiency via iron uptake,transport,and homeostasis[J/OL].International journal of molecular sciences,2019,20(10):2424[2023-11-10].https://doi.org/10.3390/ijms20102424. [百度学术]
GUERINOT M L,YI Y.Iron:nutritious,noxious,and not readily available[J].Plant physiology,1994,104(3):815-820. [百度学术]
黄俊,张育维,汪洪.铁肥施用、生物强化与人体铁素营养[J].肥料与健康,2023,50(2):11-23.HUANG J,ZHANG Y W,WANG H.Iron fertilizer application,bio-fortification and human iron nutrition[J].Fertilizer & health,2023,50(2):11-23 (in Chinese with English abstract). [百度学术]
ZUO Y M,ZHANG F S.Effect of peanut mixed cropping with gramineous species on micronutrient concentrations and iron chlorosis of peanut plants grown in a calcareous soil[J].Plant and soil,2008,306(1):23-36. [百度学术]
FERREIRA C M H,SOUSA C A,SANCHIS-PÉREZ I,et al.Calcareous soil interactions of the iron(III) chelates of DPH and Azotochelin and its application on amending iron chlorosis in soybean (Glycine max)[J].Science of the total environment,2019,647:1586-1593. [百度学术]
LURTHY T,PIVATO B,LEMANCEAU P,et al.Importance of the rhizosphere microbiota in iron biofortification of plants[J/OL].Frontiers in plant science,2021,12:744445[2023-11-10].https://doi.org/10.3389/fpls.2021.744445. [百度学术]
BAILEY R L,WEST K P,BLACK R E.The epidemiology of global micronutrient deficiencies[J].Annals of nutrition and metabolism,2015,66(Suppl. 2):22-33. [百度学术]
MCLEAN E,COGSWELL M,EGLI I,et al.Worldwide prevalence of anaemia,WHO vitamin and mineral nutrition information system,1993-2005[J].Public health nutrition,2009,12(4):444-454. [百度学术]
TRIPATHI D K,SINGH S,GAUR S,et al.Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance[J/OL].Frontiers in environmental science,2018,5:86[2023-11-10].https://doi.org/10.3389/fenvs.2017.00086. [百度学术]
SCHWERTMANN U.Solubility and dissolution of iron oxides[J].Plant and soil,1991,130(1):1-25. [百度学术]
SULLIVAN T S,GADD G M.Metal bioavailability and the soil microbiome[M]//SPARKS D L. Advances in agronomy.Amsterdam:Elsevier,2019:79-120. [百度学术]
褚宏欣,党海燕,王涛,等.我国主要麦区土壤有效铁锰铜锌丰缺状况评价及影响因素[J/OL].土壤学报,2023:1-10[2023-11-10].http://kns.cnki.net/kcms/detail/32.1119.P.20230324.1008.002.html.CHU H X,DANG H Y,WANG T,et al.Evaluations and influencing factors of soil available Fe,Mn,Cu and Zn concentrations in major wheat production regions of China[J/OL].Acta pedologica sinica,2023:1-10[2023-11-10].http://kns.cnki.net/kcms/detail/32.1119.P.20230324.1008.002.html(in Chinese with English abstract). [百度学术]
WELCH R M,GRAHAM R D.Breeding for micronutrients in staple food crops from a human nutrition perspective[J].Journal of experimental botany,2004,55(396):353-364. [百度学术]
MURPHY K M,REEVES P G,JONES S S.Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars[J].Euphytica,2008,163(3):381-390. [百度学术]
PALCHOUDHURY S,JUNGJOHANN K L,WEERASENA L,et al.Enhanced legume root growth with pre-soaking in α-Fe2O3 nanoparticle fertilizer[J].RSC advances,2018,8(43):24075-24083. [百度学术]
LIU L,CONG W F,SUTER B,et al.How much can Zn or Fe fertilization contribute to Zn and Fe mass concentration in rice grain? A global meta-analysis[J/OL].Field crops research,2023,301:109033[2023-11-10].https://doi.org/10.1016/j.fcr.2023.109033. [百度学术]
ZHANG R Y,ZHANG W N,KANG Y C,et al.Application of different foliar iron fertilizers for improving the photosynthesis and tuber quality of potato (Solanum tuberosum L.) and enhancing iron biofortification[J].Chemical and biological technologies in agriculture,2022,9:1-14. [百度学术]
SUN Y,MI W H,WU L H.Effects of foliar Fe and Zn fertilizers on storage root Fe,Zn,and beta-carotene content of sweet potato (Ipomoea batatas L.)[J].Journal of plant nutrition,2019,42(1):16-26. [百度学术]
MILASHI L R,JAVID M G,ALAHDADI I,et al.Alleviation of salt stress and improvement of Fe accumulation in wheat grain,using slow-release fertilizer enriched with Fe[J].Journal of plant nutrition,2020,43(20):2990-3001. [百度学术]
安珍,张茹艳,周春涛,等.铁肥对马铃薯生理特性、产量及品质的影响[J].江苏农业学报,2022,38(4):931-938.AN Z,ZHANG R Y,ZHOU C T,et al.Effects of iron fertilizer on physiological characteristics,yield and quality of potato[J].Jiangsu journal of agricultural sciences,2022,38(4):931-938 (in Chinese with English abstract). [百度学术]
郭献平,郭鹏,王东升,等.Fe-EDDHA矫治梨缺铁黄化病应用效果研究[J].中国果树,2022(10):7-12.GUO X P,GUO P,WANG D S,et al.Study on the application effect of Fe-EDDHA in correcting iron deficiency chlorosis of pear[J].China fruits,2022(10):7-12 (in Chinese). [百度学术]
BABAEI K,SEYED SHARIFI R,PIRZAD A,et al.Effects of bio fertilizer and nano Zn-Fe oxide on physiological traits,antioxidant enzymes activity and yield of wheat (Triticum aestivum L.) under salinity stress[J].Journal of plant interactions,2017,12(1):381-389. [百度学术]
DOLA D B,MANNAN M A,SARKER U,et al.Nano-iron oxide accelerates growth,yield,and quality of Glycine max seed in water deficits[J/OL].Frontiers in plant science,2022,13:992535[2023-11-10].https://doi.org/10.3389/fpls.2022.992535. [百度学术]
刘自飞,云鹏,王盛锋,等.木质素磺酸铁肥研制及其对花生的施用效果[J].中国农业科技导报,2016,18(3):126-133.LIU Z F,YUN P,WANG S F,et al.Preparing of iron lignosulfonate fertilizer and its effect on iron nutrition of peanut(Arachis hypogaea L.)[J].Journal of agricultural science and technology,2016,18(3):126-133 (in Chinese with English abstract). [百度学术]
刘自飞,高丽丽,王盛锋,等.常见铁肥品种及其使用效果综述[J].中国土壤与肥料,2012(6):1-9.LIU Z F,GAO L L,WANG S F,et al.Various types of iron fertilizers and their efficiency:a review[J].Soil and fertilizer sciences in China,2012(6):1-9 (in Chinese with English abstract). [百度学术]
VILLÉN M,GARCÍA-ARSUAGA A,LUCENA J J.Potential use of biodegradable chelate N-(1,2-dicarboxyethyl)-d,l-aspartic acid/F
PICCINELLI F,SEGA D,MELCHIOR A,et al.Regreening properties of the soil slow-mobile H2bpcd/F
GLUHAR S,KAURIN A,LESTAN D.Soil washing with biodegradable chelating agents and EDTA:technological feasibility,remediation efficiency and environmental sustainability[J/OL].Chemosphere,2020,257:127226[2023-11-10].https://doi.org/10.1016/j.chemosphere.2020.127226. [百度学术]
于会丽,司鹏,乔宪生,等.喷施不同铁肥对草莓铁养分吸收和品质的影响[J].中国土壤与肥料,2016(5):73-78.YU H L,SI P,QIAO X S,et al.Iron absorption and quality of strawberry affected by different forms of foliar iron fertilizer[J].Soil and fertilizer sciences in China,2016(5):73-78 (in Chinese with English abstract). [百度学术]
CUI Z W,LI Y C,ZHANG H,et al.Lighting up agricultural sustainability in the new era through nanozymology: an overview of classifications and their agricultural applications[J/OL].Journal of agricultural and food chemistry,2022:19[2023-11-10].https://doi.org/10.1021/acs.jafc.2c04882. [百度学术]
HONG Y C,ZHOU Q,HAO Y Q,et al.Crafting the plant root metabolome for improved microbe-assisted stress resilience[J].New phytologist,2022,234(6):1945-1950. [百度学术]
杜思垚,方娅婷,鲁剑巍.根系分泌物对作物养分吸收利用的影响研究进展[J].华中农业大学学报,2023,42(2):147-157.DU S Y,FANG Y T,LU J W.Research progress on the effect of root exudates on crop nutrient absorption and utilization[J].Journal of Huazhong Agricultural University,2023,42(2):147-157 (in Chinese with English abstract). [百度学术]
FOURCROY P,SISÓ-TERRAZA P,SUDRE D,et al.Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency[J].New phytologist,2014,201(1):155-167. [百度学术]
XIONG H C,KAKEI Y,KOBAYASHI T,et al.Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil[J].Plant,cell & environment,2013,36(10):1888-1902. [百度学术]
SCHMID N B,GIEHL R F H,DÖLL S,et al.Feruloyl-CoA 6’-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis[J].Plant physiology,2014,164(1):160-172. [百度学术]
TSAI H H,RODRÍGUEZ-CELMA J,LAN P,et al.Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization[J].Plant physiology,2018,177(1):194-207. [百度学术]
PATRICIA S T,RIOS JUAN J,JAVIER A,et al.Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms[J].New phytologist,2016,209(2):733-745. [百度学术]
ROBE K,CONEJERO G,GAO F,et al.Coumarin accumulation and trafficking in Arabidopsis thaliana:a complex and dynamic process[J].New phytologist,2021,229(4):2062-2079. [百度学术]
ROBE K,STASSEN M,CHAMIEH J,et al.Uptake of Fe-fraxetin complexes,an IRT1 independent strategy for iron acquisition in Arabidopsis thaliana[DB/OL].bioRxiv,2021[2023-11-10].https://doi.org/10.1101/2021.08.03.454955. [百度学术]
CHAO Z F,CHAO D Y.Similarities and differences in iron homeostasis strategies between graminaceous and nongraminaceous plants[J].New phytologist,2022,236(5):1655-1660. [百度学术]
WANG S D,LI L,YING Y H,et al.A transcription factor OsbHLH156 regulates Strategy Ⅱ iron acquisition through localising IRO2 to the nucleus in rice[J].New phytologist,2020,225(3):1247-1260. [百度学术]
NOZOYE T,NAKANISHI H,NISHIZAWA N K.Transcriptomic analyses of maize YS1 and YS3 mutants reveal maize iron homeostasis[J].Genomics data,2015,5:97-99. [百度学术]
KOBAYASHI T,SUZUKI M,INOUE H,et al.Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements[J].Journal of experimental botany,2005,56(415):1305-1316. [百度学术]
吴清莹,林宇龙,孙一航,等.根系分泌物对植物生长和土壤养分吸收的影响研究进展[J].中国草地学报,2021,43(11):97-104.WU Q Y,LIN Y L,SUN Y H,et al.Research progress on effects of root exudates on plant growth and soil nutrient uptake[J].Chinese journal of grassland,2021,43(11):97-104 (in Chinese with English abstract). [百度学术]
GRILLET L,SCHMIDT W.Iron acquisition strategies in land plants:not so different after all[J].New phytologist,2019,224(1):11-18. [百度学术]
SUZUKI M,NOZOYE T,NAGASAKA S,et al.The detection of endogenous 2’-deoxymugineic acid in olives (Olea europaea L.) indicates the biosynthesis of mugineic acid family phytosiderophores in non-graminaceous plants[J].Soil science and plant nutrition,2016,62(5/6):481-488. [百度学术]
ASTOLFI S,PII Y,MIMMO T,et al.Single and combined Fe and S deficiency differentially modulate root exudate composition in tomato:a double strategy for Fe acquisition?[J/OL].International journal of molecular sciences,2020,21(11):4038[2023-11-10].https://doi.org/10.3390/ijms21114038. [百度学术]
VÉLEZ-BERMÚDEZ I C,SCHMIDT W.Plant strategies to mine iron from alkaline substrates[J].Plant and soil,2023,483(1/2):1-25. [百度学术]
SUZUKI M,URABE A,SASAKI S,et al.Development of a mugineic acid family phytosiderophore analog as an iron fertilizer[J/OL].Nature communications,2021,12:1558[2023-11-10].https://doi.org/10.1038/s41467-021-21837-6. [百度学术]
YAMAGATA A,MURATA Y,NAMBA K,et al.Uptake mechanism of iron-phytosiderophore from the soil based on the structure of yellow stripe transporter[J/OL].Nature communications,2022,13:7180[2023-11-10].https://doi.org/10.1038/s41467-022-34930-1. [百度学术]
UENO D,ITO Y,OHNISHI M,et al.A synthetic phytosiderophore analog,proline-2'-deoxymugineic acid,is efficiently utilized by dicots[J].Plant and soil,2021,469(1):123-134. [百度学术]
WANG T Q,WANG N Q,LU Q F,et al.The active Fe chelator proline-2’-deoxymugineic acid enhances peanut yield by improving soil Fe availability and plant Fe status[J].Plant,cell & environment,2023,46(1):239-250. [百度学术]
申建波,白洋,韦中,等.根际生命共同体:协调资源、环境和粮食安全的学术思路与交叉创新[J].土壤学报,2021,58(4):805-813.SHEN J B,BAI Y,WEI Z,et al.Rhizobiont:an interdisciplinary innovation and perspective for harmonizing resources,environment,and food security[J].Acta pedologica sinica,2021,58(4):805-813 (in Chinese with English abstract). [百度学术]
WANG N R,HANEY C H.Harnessing the genetic potential of the plant microbiome[J].The biochemist,2020,42(4):20-25. [百度学术]
SASSE J,MARTINOIA E,NORTHEN T.Feed your friends:do plant exudates shape the root microbiome?[J].Trends in plant science,2018,23(1):25-41. [百度学术]
TRIVEDI P,LEACH J E,TRINGE S G,et al.Plant-microbiome interactions:from community assembly to plant health[J].Nature reviews microbiology,2020,18(11):607-621. [百度学术]
JIN C W,HE Y F,TANG C X,et al.Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.)[J].Plant,cell & environment,2006,29(5):888-897. [百度学术]
RROÇO E,KOSEGARTEN H,HARIZAJ F,et al.The importance of soil microbial activity for the supply of iron to sorghum and rape[J].European journal of agronomy,2003,19(4):487-493. [百度学术]
TRISTAN L,CÉCILE C,CHRISTIAN J,et al.Impact of bacterial siderophores on iron status and ionome in pea[J/OL].Frontiers in plant science,2020,11:730[2023-11-10].https://doi.org/10.3389/fpls.2020.00730. [百度学术]
TRAPET P,AVOSCAN L,KLINGUER A,et al.The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions[J].Plant physiology,2016,171(1):675-693. [百度学术]
NAGATA T,OOBO T,AOZASA O.Efficacy of a bacterial siderophore,pyoverdine,to supply iron to Solanum lycopersicum plants[J].Journal of bioscience and bioengineering,2013,115(6):686-690. [百度学术]
SHIRLEY M,AVOSCAN L,BERNAUD E,et al.Comparison of iron acquisition from Fe–pyoverdine by strategy Ⅰ and strategy Ⅱ plants[J].Botany,2011,89(10):731-735. [百度学术]
VANSUYT G,ROBIN A,BRIAT J F,et al.Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana[J].Molecular plant-microbe interactions,2007,20(4):441-447. [百度学术]
DUIJFF B J,DE KOGEL W J,BAKKER P A H M,et al.Influence of pseudobactin 358 on the iron nutrition of barley[J].Soil biology and biochemistry,1994,26(12):1681-1688. [百度学术]
BECKER J O,MESSENS E,HEDGES R W.The influence of agrobactin on the uptake of ferric iron by plants[J].FEMS microbiology letters,1985,31(3):171-175. [百度学术]
MANTHEY J A,TISSERAT B,CROWLEY D E.Root responses of sterile-grown onion plants to iron deficiency 1[J].Journal of plant nutrition,1996,19(1):145-161. [百度学术]
WANG Y,BROWN H N,CROWLEY D E,et al.Evidence for direct utilization of a siderophore,ferrioxamine B,in axenically grown cucumber[J].Plant,cell & environment,1993,16(5):579-585. [百度学术]
BAR-NESS E,HADAR Y,CHEN Y,et al.Iron uptake by plants from microbial siderophores[J].Plant physiology,1992,99(4):1329-1335. [百度学术]
CROWLEY D E,REID C P,SZANISZLO P J.Utilization of microbial siderophores in iron acquisition by oat[J].Plant physiology,1988,87(3):680-685. [百度学术]
YEHUDA Z,SHENKER M,HADAR Y,et al.Remedy of chlorosis induced by iron deficiency in plants with the fungal siderophore rhizoferrin[J].Journal of plant nutrition,2000,23(11/12):1991-2006. [百度学术]
SHENKER M,CHEN Y,GHIRLANDO R,et al.Chemical structure and biological activity of a siderophore produced by Rhizopus arrhizus[J].Soil Science Society of America journal,1995,59(3):837-843. [百度学术]
SADRARHAMI A,GROVE J H,ZEINALI H.The microbial siderophore desferrioxamine B inhibits Fe and Zn uptake in three spring wheat genotypes grown in Fe-deficient nutrient solution[J/OL].Journal of plant nutrition,2021:1-11[2023-11-10].https://doi.org/10.1080/01904167.2021.1899205. [百度学术]
HERMENAU R,ISHIDA K,GAMA S,et al.Gramibactin is a bacterial siderophore with a diazeniumdiolate ligand system[J].Nature chemical biology,2018,14(9):841-843. [百度学术]
CHEN L M,DICK W A,STREETER J G.Production of aerobactin by microorganisms from a compost enrichment culture and soybean utilization[J].Journal of plant nutrition,2000,23(11/12):2047-2060. [百度学术]
HÖRDT W,RÖMHELD V,WINKELMANN G.Fusarinines and dimerum acid,mono- and dihydroxamate siderophores from Penicillium chrysogenum,improve iron utilization by strategy Ⅰ and strategy Ⅱ plants[J].Biometals,2000,13(1):37-46. [百度学术]
BECKER J O,HEDGES R W,MESSENS E.Inhibitory effect of pseudobactin on the uptake of iron by higher plants[J].Applied and environmental microbiology,1985,49(5):1090-1093. [百度学术]
DE SERRANO L O,CAMPER A K,RICHARDS A M.An overview of siderophores for iron acquisition in microorganisms living in the extreme[J].BioMetals,2016,29(4):551-571. [百度学术]
HIDER R C,KONG X L.Chemistry and biology of siderophores[J].Natural product reports,2010,27(5):637-657. [百度学术]
RAYMOND K N,ALLRED B E,SIA A K.Coordination chemistry of microbial iron transport[J].Accounts of chemical research,2015,48(9):2496-2505. [百度学术]
CROSA J H,WALSH C T.Genetics and assembly line enzymology of siderophore biosynthesis in bacteria[J].Microbiology and molecular biology reviews:MMBR,2002,66(2):223-249. [百度学术]
DONADIO S,MONCIARDINI P,SOSIO M.Polyketide synthases and nonribosomal peptide synthetases:the emerging view from bacterial genomics[J].Natural product reports,2007,24(5):1073-1109. [百度学术]
CARROLL C S,MOORE M M.Ironing out siderophore biosynthesis:a review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases[J].Critical reviews in biochemistry and molecular biology,2018,53(4):356-381. [百度学术]
MIETHKE M,MARAHIEL M A.Siderophore-based iron acquisition and pathogen control[J].Microbiology and molecular biology reviews:MMBR,2007,71(3):413-451. [百度学术]
KREWULAK K D,VOGEL H J.Structural biology of bacterial iron uptake[J].Biochimica et biophysica acta (BBA) - biomembranes,2008,1778(9):1781-1804. [百度学术]
SCHALK I J,GUILLON L.Fate of ferrisiderophores after import across bacterial outer membranes:different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways[J].Amino acids,2013,44(5):1267-1277. [百度学术]
GANNE G,BRILLET K,BASTA B,et al.Iron release from the siderophore pyoverdine in Pseudomonas aeruginosa involves three new actors:FpvC,FpvG,and FpvH[J].ACS chemical biology,2017,12(4):1056-1065. [百度学术]
KRAMER J,OZKAYA O,KUMMERLI R.Bacterial siderophores in community and host interactions[J].Nature review microbiology,2020,18(3):152-163. [百度学术]
TROXELL B,HASSAN H M.Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria[J/OL].Frontiers in cellular and infection microbiology,2013,3:59[2023-11-10].https://doi.org/10.3389/fcimb.2013.00059. [百度学术]
LEONI L,ORSI N,DE LORENZO V,et al.Functional analysis of PvdS,an iron starvation sigma factor of Pseudomonas aeruginosa[J].Journal of bacteriology,2000,182(6):1481-1491. [百度学术]
CORNELIS P.Iron uptake and metabolism in pseudomonads[J].Applied microbiology and biotechnology,2010,86(6):1637-1645. [百度学术]
SCHWYN B,NEILANDS J B.Universal chemical assay for the detection and determination of siderophores[J].Analytical biochemistry,1987,160(1):47-56. [百度学术]
NITHYAPRIYA S,LALITHA S,SAYYED R Z,et al.Production,purification,and characterization of bacillibactin siderophore of Bacillus subtilis and its application for improvement in plant growth and oil content in sesame[J/OL].Sustainability,2021,13(10):5394[2023-11-10].https://doi.org/10.3390/su13105394. [百度学术]
SARWAR S,KHALIQ A,YOUSRA M,et al.Screening of siderophore-producing PGPRs isolated from groundnut (Arachis hypogaea L.) rhizosphere and their influence on iron release in soil[J].Communications in soil science and plant analysis,2020,51(12):1680-1692. [百度学术]
CUI K P,XU T,CHEN J W,et al.Siderophores,a potential phosphate solubilizer from the endophyte Streptomyces sp.CoT10,improved phosphorus mobilization for host plant growth and rhizosphere modulation[J/OL].Journal of cleaner production,2022,367:133110[2023-11-10].https://doi.org/10.1016/j.jclepro.2022.133110. [百度学术]
YEHUDA Z, SHENKER M, ROMHELD V,et al.The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants[J].Plant physiology,1996,112(3):1273-1280. [百度学术]
CRUMBLISS A L,HARRINGTON J M.Iron sequestration by small molecules:thermodynamic and kinetic studies of natural siderophores and synthetic model compounds[J].Advances in inorganic chemistry,2009,61:179-250. [百度学术]
VALVERDE S,ARCAS A,LÓPEZ-RAYO S,et al.Enantioselective separation of a novel iron chelate prototype with potential use as fertilizer by HPLC-DAD[J].ACS agricultural science & technology,2022,2(6):1166-1170. [百度学术]
GU S H,WEI Z,SHAO Z Y,et al.Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J].Nature microbiology,2020,5(8):1002-1010. [百度学术]
SASIREKHA B,SRIVIDYA S.Siderophore production by Pseudomonas aeruginosa FP6,a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli[J].Agriculture and natural resources,2016,50(4):250-256. [百度学术]
梁静盈,梁俊峰,陈言柳,等.撕裂蜡孔菌(Emmia lacerata)SR5抑菌特性及生防潜力评价[J].微生物学通报,2023,50(7):2923-2936.LIANG J Y,LIANG J F,CHEN Y L,et al.Antifungal characteristics and biocontrol potential of Emmia lacerata SR5[J].Microbiology China,2023,50(7):2923-2936 (in Chinese with English abstract). [百度学术]
YU S M,TENG C Y,LIANG J S,et al.Characterization of siderophore produced by Pseudomonas syringae BAF.1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum[J].Journal of microbiology,2017,55(11):877-884. [百度学术]
WENSING A,BRAUN S D,BÜTTNER P,et al.Impact of siderophore production by Pseudomonas syringae pv.syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96[J].Applied and environmental microbiology,2010,76(9):2704-2711. [百度学术]