网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

钼提高植物抗逆性研究进展  PDF

  • 秦晓明
  • 赵优优
  • 武松伟
  • 胡承孝
  • 孙学成
华中农业大学新型肥料湖北省工程实验室/微量元素研究中心,武汉430070

中图分类号: S143.7+1

最近更新:2023-12-12

DOI:10.13300/j.cnki.hnlkxb.2023.06.008

  • 全文
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

钼(Mo)作为植物必需的微量元素,在促进植物生长发育和增强植物抗逆性方面发挥着关键作用。植物对钼的吸收转运主要受到钼酸盐转运蛋白基因MOT1MOT2调控,钼进入植物体内以含钼酶形式参与植物生长代谢,其中对植物抗逆性方面的调控主要表现为:钼通过含钼酶硝酸还原酶、醛氧化酶、黄嘌呤脱氢酶影响植物体内的光合碳氮代谢、激素合成和活性氧代谢进而调控植物抗寒性;钼通过硝酸还原酶和醛氧化酶介导的信号转导过程调控根系发育、养分水分利用及抗旱基因表达,进一步影响脂质合成与代谢调控植物抗旱性;最新研究还发现钼在植物适应盐胁迫、缓解重金属胁迫方面也具有重要作用。这些研究结果为通过钼营养调控提升植物的抗逆性提供了新思路。

农业生产会受到多种环境胁迫(如寒冷、干旱、盐碱、重金属等)的影响,如何通过营养调控提高植物的抗胁迫能力一直是科学家们关注的热

1。大量元素磷、钾提高作物抗逆性的效应及机制较为明确,而微量元素与作物抗逆性的关系报道较少。钼是植物体必需的微量元素,它在植物体的生理功能主要通过含钼酶来实现。较早的研究发现低温处理下施钼增加了硝酸还原酶和黄嘌呤脱氢酶的活性,进而提高植物的低温耐受2。近年来,越来越多的研究证实钼不仅可提高植物抗寒性,还能提高植物抗旱、抗盐胁迫及抗重金属胁迫的能力。本文以钼的吸收和转运、含钼酶调控的代谢过程为主线综述钼提高植物抗逆性的生理及分子机制,旨在为通过钼营养调控提升植物的抗逆性提供理论依据。

1 植物对钼的吸收和转运

钼在土壤中含量相对较低(0.2~36 mg/kg),其中有效钼含量低于0.15 mg/kg的土壤则被认为处于缺钼水

3。据报道世界范围内缺钼现象普遍存在,我国缺钼耕地面积更是达4 467万hm2[4。在pH>4.3的土壤溶液中,钼主要以钼酸根阴离子(MoO42-)形式存在,而pH<4.3的土壤溶液中,则主要为HMoO4-或Mo3(H2O)3形态的5。土壤钼以MoO42-形态进入植物根系,并通过影响含钼酶的活性而影响植物体内的碳代谢、氮代谢、谷胱甘肽循环、次生代谢和活性氧代谢等过5。钼作为植物必需营养元素之一,其吸收方式一直存在着争6。部分学者认为植物吸收钼是被动吸收,然而大多数学者认为植物吸收钼可能是一个主动吸收的过程。真核生物中第一个高亲和钼转运蛋白基因MOT1首先在绿藻中被克7,随后在拟南芥上也鉴定出高亲和钼酸盐转运蛋白MOT1,发现其在根和茎中均有表达并被定位在质膜8。Minner-Meinen9进一步利用mot1.1mot1.2拟南芥双敲除突变体研究了MOT1.1MOT1.2的功能,发现AtMOT1.1不参与叶肉细胞中钼酸盐的输入,与钼辅因子合成蛋白没有相互作用,而AtMOT1.2则通过与钼插入酶Cnx1的直接相互作用调控钼辅因子合成。最近,研究人员采用全基因组关联分析及QTL定位方法鉴定出水稻OsMOT1;1并发现该基因主要在根中表达,敲除后根和茎秆中钼含量降低,推测OsMOT1;1为控制秸秆和籽粒中钼浓度的关键基10-11。在豆科作物中,定位于百脉根质膜上的钼酸盐转运蛋白LjMOT1可能参与了钼的运12,而在苜蓿中发现的质膜钼转运蛋白MtMOT1.3负责将钼酸盐转运至根瘤细胞内,参与固氮酶的生物合13

相比于MOT1家族,对钼转运蛋白MOT2家族基因功能研究尚少,Gasber

14在拟南芥中发现了1个钼酸盐转运蛋白AtMOT2,将它定位于液泡膜上,负责液泡中钼酸盐的向外转运和钼在植物器官内的再分配,对提高拟南芥籽粒中钼含量至关重要。最近有研究发现水稻OsMOT2;1/OsCd1参与其根系对镉(Cd)的吸收和转运过程,敲除OsMOT2会降低水稻根、茎和籽粒中镉的积累,但AtMOT2是否具有钼转运功能尚未进一步证15。Hibara16在水稻中发现了1个衣藻钼转运基因CrMOT2的同源基因OsASY,也被认为是OsMOT2;2,在水稻早期发芽过程中发挥着重要作用,推测它参与水稻中钼的转5。拟南芥钼酸盐转运AtMOT2家族蛋白参与植物叶片和繁殖器官钼的转运,最近被证实具有高尔基S-腺苷甲硫氨酸的转运功能;同时在液泡中检测到谷胱甘肽-钼酸盐复合物,为MOT2家族蛋白调节植物体内钼稳态提供了直接证17

2 植物钼辅因子与含钼酶

钼辅因子是真核生物钼酶的重要组分,在小麦、大麦、烟草、拟南芥等植物中都确证有钼辅因子的存

18。钼辅因子合成后进一步形成含钼酶,目前能确定存在于植物中的含钼酶有5种:硝酸还原酶(nitrate reductase,NR)、黄嘌呤脱氢酶(xanthine dehydrogenase,XDH)、醛氧化酶(aldehyde oxidase,AO)、亚硫酸盐氧化酶(sulfite oxidase,SO)和线粒体氨肟还原蛋白(mitochondrial oxime reducing protein,mARC),这些含钼酶都直接或间接参与植物抗逆性的调控。

NR是植物氮同化的关键酶之一,对植物氮代谢和碳代谢具有重要影

19。最近研究发现,NR除了影响氮同化外,还参与信号传导过程,进而影响植物的抗逆性。NR突变的拟南芥(nia1/nia2)可以诱导一氧化氮的产生,并增加脯氨酸的积累从而增强植物耐寒20,硝酸还原酶基因NIA1/NIA2还参与拟南芥生长素生物合成和信号传导的正向调21。水稻中的OsNR1.2基因可以编码1种NADH依赖性硝酸还原酶,这种酶通过抑制硝酸盐同化过程而提高其抗旱22。此外,NR诱导产生的NO还可以通过增强抗坏血酸-谷胱甘肽(AsA-GSH)循环和抗氧化酶活性来增强植物耐盐性和耐重金属胁迫能23-24

黄嘌呤脱氢酶(XDH)主要参与细胞分裂素代谢产物的氧化分解以及脱落酸(ABA)和吲哚乙酸(IAA)的间接合

25。黄嘌呤脱氢酶RNA干扰使拟南芥转基因植株的生物量降低、过氧化氢(H2O2)含量增加,抗旱能力减26。水稻XDH失活突变体ESL1中H2O2、丙二醛(MDA)含量和过氧化物酶(POD)活性显著高于野生型,内源ABA和叶绿素含量明显降低,在分蘖起始阶段表现出生长迟缓和叶片衰老的表27。大豆缺失GmXDH突变体表现出黄化等氮缺乏症和根瘤早期衰老,根瘤中固氮酶活性降低,根瘤内部呈现绿白色且豆血红蛋白减28,说明XDH可能介导了植物活性氧的清除、生长素的合成调控及生物固氮过程。

醛氧化酶(AO)参与植物体内激素合成,并以脱落醛、吲哚-3-醛、吲哚-3-乙醛和苯甲醛为底物催化合成ABA和IAA,因此,AO与植物抗逆性关系密切。冬小麦通过AO影响ABA合成进而调控植物抗寒

29;干旱条件下,水稻OsAO3过表达时,植株体内ABA含量升高,水分损失减少,提高植株耐旱30;拟南芥AtAO3基因功能缺失会导致植株ABA水平的降低且对干旱胁迫更敏31

亚硫酸盐氧化酶(SO)能够氧化亚硫酸盐转化为硫酸盐,在半胱氨酸和蛋氨酸的分解代谢及亚硫酸盐和二氧化硫的解毒中起重要作用。Sharma

32使用亚硫酸盐处理番茄果实和叶片,SO活性受损的植株生长受抑制,而SO过表达植株具有良好抗性。最近有报道指出玉米ZmSO启动子能够诱导植株ABA合成而使作物表现出较强抗旱性,SO在增强植物耐旱性中的作用有待进一步研33

线粒体氨肟还原蛋白(mARC)是较晚发现的1种含钼酶,它附着在线粒体外膜上,与Moco硫化酶(HMCS)的C-末端结构域具有高度的序列同源性,属于钼酶SO家

34。在动物中发现mARC蛋白能够催化硝态氮形成NO,衣藻中mARC蛋白也能够与NR形成NR-mARC系统诱导硝态氮还原为NO35。拟南芥ARC1和ARC2都能还原N-羟基化合物,2种ARC酶都通过细胞色素b5还原酶和细胞色素b5接受来自NADH的电子,但只有ARC2能够接受来自硝酸盐还原酶的电36。关于ARC生理学功能的研究报道仍十分有限,其结构与功能揭示还需进一步的研究。

3 钼提高植物抗寒性的生理与分子机制

1988年,德国科学家报道在酸性土壤上施钼可提高冬小麦的抗寒

2。1989年王运华等在湖北省武汉市新洲区发现冬小麦缺钼黄化死苗现象,观察了小麦缺钼症状发生发展过程,提出了越冬期低温是冬小麦施钼有效的4个条件之一,进一步明确了施钼可提高冬小麦抗寒37-39。随后,在杨40、拟南41和花椰42等植物上都观察到施钼可提高植物的抗寒性。施钼引起的植株抗寒性增强主要表现在以下几个方面:一是植株叶绿素含量增加及光合能力增强。缺钼影响冬小麦叶片中δ-氨基酮戊酸(ALA)向尿卟啉原Ⅲ(UroⅢ)的转化,导致叶绿素合成受阻含量下降,施钼则显著提高低温胁迫下2个冬小麦品系叶片的净光合速率和气孔限制值,显著降低叶片气孔导度、胞间CO2浓度和蒸腾速43- 44,而施钼可显著提高冬小麦叶绿素含45-46。二是增强了植株抗氧化能力。低温胁迫下施钼显著降低超氧阴离子产生速率,提高了超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)活性,说明钼通过调控活性氧代谢过程来影响冬小麦的抗寒性。三是植物膜系统稳定性强。脂质是细胞膜的关键结构成分,在维持膜完整性以及在介导植物对胁迫反应的细胞信号传导中起着至关重要的作47。施钼后冬小麦叶片膜脂肪酸组成以亚麻酸为主,膜脂不饱和度增大,细胞器和膜结构比缺钼完48,低温胁迫下,类囊体膜中亚麻酸(C18∶3)含量和总不饱和脂肪酸(TUSFA)含量升高,从而提高了冬小麦抗寒49

从调控机制上看,钼主要通过含钼酶来调控植物的抗寒性,可能途径主要包括:(1)钼通过硝酸还原酶(NR)影响植物光合碳氮代谢及其耦联过程。NR被认为是光合氮与光合碳代谢耦联关系的重要结

50-51。在酸性土壤上施钼可以大幅提高低温胁迫下冬小麦硝酸还原酶(NR)、亚硝酸盐还原酶(nitrite reductase,NiR)和谷氨酰胺合成酶(glutamine synthetase,GS)的活52。钼通过硝酸还原酶影响冬小麦体内的氮的吸53、无机氮组54、氨基酸和蛋白质组55-56。低温胁迫下缺钼引起冬小麦最大硝酸还原酶活性(NRAmax)、实际硝酸还原酶活性(NRAact)及平均硝酸还原酶活性(NRA)显著下降,进而引发植株光合氮、碳代谢的失衡。蛋白质组学分析表明,低温胁迫下钼主要通过影响光合作用光反应过程和暗反应过程相关蛋白的表达影响冬小麦光合碳代谢,低温胁迫缺钼诱导了核糖-1,5-二磷酸羧化酶大亚基、磷酸甘油酸激酶、cp31BHv、叶绿素a/b结合蛋白、核糖-1,5-二磷酸羧化酶小亚基、核糖体蛋白P1等6种蛋白的差异表达。施钼显著提高了冬小麦光合速率、最大净光合速率、表观量子产率和羧化效57]。这些结果表明低温胁迫下施钼通过增强冬小麦光合作用为抗寒性的形成提供了物质基础。(2)钼通过醛氧化酶(AO)调控ABA合成,进而影响植物抗寒基因表达。在醛氧化酶催化ABA合成的最后一步,LOS5/ABA3基因编码1种钼辅因子(MoCo)磺化酶,它催化磺化钼辅因子的产生,而磺化钼辅因子是植物ABA合成的最后一步中AO所必需的。LOS5/ABA3基因在植物的不同部位表达,其表达水平影响ABA的含量,进一步的研究表明LOS5/ABA3基因调控ABA合成和胁迫应答基因,拟南芥LOS5突变体的抗寒力、抗旱力和对盐胁迫的抵抗力受损,和另外一种ABA缺失突变体ABA1相比,LOS5突变体对低温应答基因的调控更具有专一41。低温胁迫下施钼显著增加了AO活性、ABA含量以及bZIP转录因子基因(Wlip19Wabi5)和ABA依赖性COR基因(Wrab15Wrab17Wrab18Wrab19)的表达,通过基因表达的时序性分析推测钼可能通过以下途径调节ABA依赖性COR基因的表达:Mo→ AO→ ABA→ bZIP→ 冬小麦ABA依赖性COR29。也有报道指出,钼也可能通过介导低温信号传递,激活CBF/DREB1(dehydration responsive element binding,冷诱导的结合因子)转录因子,进而影响下游COR基因(Wcs120Wcs19Wcor14Wcor15)的表4258(3)钼通过XDH调控嘌呤代谢和活性氧代谢,影响基因表达及信号传导。XDH与嘌呤代谢、活性氧代谢和衰老过程关系密59。在豌豆叶片中,随着超氧化物歧化酶含量的升高,黄嘌呤脱氢酶含量也急剧升高,其他与活性氧代谢相关的酶活性也同时升60。通过对水稻中含钼酶XDH的编码基因esl1进行克隆,发现esl1突变体水稻对非生物胁迫的敏感性增加,说明钼可以通过提高XDH活性而增强植物抗寒27

4 钼提高植物抗旱性的生理与分子机制

钼与植物抗旱性之间的关系密切,施用钼肥能够增加干旱胁迫下冬小麦的光合速率、光合产物的积累、冬小麦的千粒重、穗粒数和产

61- 62。在模拟干旱胁迫条件下,施用钼显著提高了钼低效和钼高效小麦品种的SOD、CAT、POD、APX等抗氧化酶的活性,以及抗坏血酸、还原型谷胱甘肽、类胡萝卜素等非酶抗氧化剂的含量,并降低了丙二醛含63,表明钼的施用增强了植物清除活性氧的能力。喷施纳米钼肥也能显著提高豌64、油65等作物的抗旱性。

钼调控植物抗旱性的途径主要包括:(1)钼通过NO介导的信号转导过程调控根系发育及养分水分利用。NR不仅介导NO3-还原为NO2-,而且还将NO2-还原为NO,这是高等植物产生NO的重要途径。Wu

66研究表明,NO信号参与了钼对干旱胁迫下小麦根系生长的调控。主要表现在施钼和NO供体通过增加NO的产生进而提高了侧根长度和根尖数量。Imran67进一步证明施钼通过促进NO积累和硝酸盐转运蛋白基因NRT的表达促进了冬小麦根系生长。施钼改善了水通道蛋白AQPs的表达,特别是TaPIP的表达。施钼降低了小麦叶片蒸腾速率,但增加了根系渗透调节离子K+、Ca2+和Mg2+的浓度,表明离子浓度增加引起的根系渗透压是钼增加小麦水分吸收的动力,而不是蒸腾作用引起的蒸腾拉66。(2)钼通过ABA介导的信号转导过程调控抗旱基因表达。Shi30在水稻上发现醛氧化酶OsAO3基因的突变和过表达分别降低/增加了水稻幼苗地上部/根部的ABA水平,ABA在缺水条件下激活干旱反应基因的表达,进一步参与调控水稻的生长、产量和抗旱68。Wu69通过添加AO抑制剂、ABA合成抑制剂等互补试验证明施钼提高了小麦的AO活性进而调控了ABA合成。干旱胁迫下施钼显著提高了2个冬小麦品种97003和97014依赖ABA型转录因子基因 Wabi5的表达量,以及抗旱基因Wrab17W55aWrab19的表达量,表明钼可能主要通过ABA介导的信号转导过程调控抗旱基因的表70。(3)钼通过脂质代谢调控植物抗旱性。脂类物质是细胞膜、叶绿体膜、线粒体膜的关键组分,在维持膜结构稳定并通过信号传导调控植物干旱胁迫响应过程中起着非常重要的作71。Wu72采用脂质组学和转录组学相结合的方法研究了施钼对干旱胁迫条件下冬小麦脂质合成及代谢的影响,发现施钼增加了脂肪酸合成、甘油酯合成与去饱和化相关基因转录水平,而抑制了脂质氧化相关基因的表达,提高了叶片双半乳糖甘油二脂(DGDG)、单半乳糖甘油二脂(MGDG)、磷脂甘油(PG)和磷脂酰乙醇胺(PE)水平及不饱和度,增加了C36∶6、C34∶4和C34∶3等甘油脂类物质的积累,脂质组成的变化将有助于维持细胞膜的完整性和保护光合系统的稳定性,从而协同调控植物耐旱性。

5 植物钼营养与其他抗逆性

1)植物钼营养与抗盐性。施钼可提高小白

73、冠毛麦74和盐角75等植物的耐盐性,其调控机制主要与施钼提高了盐胁迫下植物体内含钼酶(NR、AO和XDH)活性有关。NR是受盐胁迫影响较大的钼酶之一,拟南芥Ler和Col-0生态型在抗盐胁迫上的差异主要取决于两者体内硝酸盐含量和硝酸还原酶基因NIA2表达上的差76。近期的研究还发现,植物中的AtMOT1;3等位基因和AtMOT1;1弱等位基因在宿主适应盐碱生境的过程中发挥着关键作用,AtMOT1;1弱等位基因通过增强COPT6的表达以调控钼辅因子(Moco)和ABA的生物合成,在植物适应局部盐胁迫环境中发挥作用,然而,目前关于AtMOT1;1促进Moco和ABA的生物合成的机制尚不清5

2)植物钼营养与重金属抗性。外源钼添加能增强油菜、水稻和蓖麻等植物对镉胁迫的抗性,促进植物生长,其原因多与诱导抗氧化防御系统减轻作物氧化损伤有

77。Qu78最近研究表明,施钼可促进铬(Cr)胁迫下烟草的生长,降低其活性氧含量和铬迁移系数,硒和钼的联合施用可增加烟草谷胱甘肽(GSH)和植物螯合蛋白(phytochelatin,PC)的水平,提高细胞壁和细胞器中铬分配比例以缓解铬毒害,推测硒和钼的联合施用上调了PCS1基因表达,促进更多PC与铬离子螯合,并将铬离子固定在根细胞壁和液泡中,从而降低铬的毒性。砷(As)胁迫下钼添加可提高蚕豆幼苗的氮代谢速率,硝酸还原酶、亚硝酸盐还原酶和谷氨酰胺合成酶活性,进一步的研究发现钼主要通过硝酸还原酶诱导内源性NO的产生,提高作物叶绿素代谢、渗透调节物质的积累和抗氧化系统共同增强对砷的抗性作79。这些结果说明钼能在一定程度上提高植株对重金属的抗性,缓解重金属的毒害,但这些研究多在缺钼条件下开展,因此,推测其抗性作用机制多与植物体内钼营养失调有关,而钼能否作为重金属吸收的阻隔剂以降低植物体内尤其是可食用部位重金属含量有待进一步的研究确证。

6 展望

钼作为植物必需的微量元素,越来越多的证据表明,钼能提高植物的抗逆性(抗寒、抗旱、抗盐胁迫、抗重金属胁迫等),其调控机制与含钼酶的生理功能关系密切,含钼酶多通过影响植物碳氮代谢、抗性基因表达、活性氧清除能力以提高作物的抗逆性。未来应进一步围绕钼在植物体内的吸收同化过程、含钼酶调控的信号转导过程开展研究,重点关注:(1)植物体内新的钼转运蛋白基因的克隆鉴定及其与植物抗逆性的关系;(2)钼辅因子合成关键基因、关键酶或蛋白与植物抗逆性的关系;(3)新的含钼酶的发现及其对植物抗逆性的调控作用;(4)钼调控植物抗逆性(抗寒、抗旱、抗盐及抗重金属胁迫等)的共性机制与差异机制。

参考文献 References

1

NIE Z J,HU C X,SUN X C,et al.Effects of molybdenum on ascorbate-glutathione cycle metabolism in Chinese cabbage (Brassica campestris L.ssp.pekinensis)[J].Plant and soil,2007,295(1):13-21. [百度学术] 

2

VUNKOVA-RADEVA R,SCHIEMANN J,MENDEL R R,et al.Stress and activity of molybdenum-containing complex (molybdenum cofactor) in winter wheat seeds[J].Plant physiology,1988,87(2):533-535. [百度学术] 

3

LIU Z,ZHU Q Q,TANG L H.Microelements in the main soils of China[J].Soil science,1983,135(1):40-46. [百度学术] 

4

ZOU C Q,GAO X P,SHI R L,et al.Micronutrient deficiencies in crop production in China[M]//ALLOWAY B J.Micronutrient deficiencies in global crop production.Dordrecht:Springer,2008:127-148. [百度学术] 

5

HUANG X Y,HU D W,ZHAO F J.Molybdenum:more than an essential element[J].Journal of experimental botany,2022,73(6):1766-1774. [百度学术] 

6

KAISER B N,GRIDLEY K L,NGAIRE BRADY J,et al.The role of molybdenum in agricultural plant production[J].Annals of botany,2005,96(5):745-754. [百度学术] 

7

TEJADA-JIMÉNEZ M,LLAMAS A,SANZ-LUQUE E,et al.A high-affinity molybdate transporter in eukaryotes[J].PNAS,2007,104(50):20126-20130. [百度学术] 

8

TOMATSU H,TAKANO J,TAKAHASHI H,et al.An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil[J].PNAS,2007,104(47):18807-18812. [百度学术] 

9

MINNER-MEINEN R,WEBER J N,KISTNER S,et al.Physiological importance of molybdate transporter family 1 in feeding the molybdenum cofactor biosynthesis pathway in Arabidopsis thaliana[J/OL].Molecules,2022,27(10):3158[2023-10-10]. https://doi.org/10.3390/molecules27103158. [百度学术] 

10

HUANG X Y,LIU H,ZHU Y F,et al.Natural variation in a molybdate transporter controls grain molybdenum concentration in rice[J].New phytologist,2019,221(4):1983-1997. [百度学术] 

11

WANG C C,TANG Z,ZHUANG J Y,et al.Genetic mapping of ionomic quantitative trait loci in rice grain and straw reveals OsMOT1;1 as the putative causal gene for a molybdenum QTL qMo8[J].Molecular genetics and genomics,2020,295(2):391-407. [百度学术] 

12

GAO J S,WU F F,SHEN Z L,et al.A putative molybdate transporter LjMOT1 is required for molybdenum transport in Lotus japonicus[J].Physiologia plantarum,2016,158(3):331-340. [百度学术] 

13

TEJADA-JIMÉNEZ M,GIL-DÍEZ P,LEÓN-MEDIAVILLA J,et al.Medicago truncatula molybdate transporter type 1 (MtMOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency[J].New phytologist,2017,216(4):1223-1235. [百度学术] 

14

GASBER A,KLAUMANN S,TRENTMANN O,et al.Identification of an Arabidopsis solute carrier critical for intracellular transport and inter-organ allocation of molybdate[J].Plant biology,2011,13(5):710-718. [百度学术] 

15

YAN H L,XU W X,XIE J Y,et al.Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies[J/OL]. Nature communications,2019,10(1):2562[2023-10-10].https://doi.org/10.1038/s41467-019-10544-y. [百度学术] 

16

HIBARA K I,HOSOKI W,HAKOYAMA T,et al.ABNORMAL SHOOT IN YOUTH,a homolog of molybdate transporter gene,regulates early shoot development in rice[J].American journal of plant sciences,2013,4(5):1-9. [百度学术] 

17

WEBER J N,MINNER-MEINEN R,BEHNECKE M,et al. Moonlighting Arabidopsis molybdate transporter 2 family and GSH-complex formation facilitate molybdenum homeostasis[J/OL]. Communications biology,2023,6(1):801[2023-10-10].https://doi.org/10.1038/s42003-023-05161-x. [百度学术] 

18

MENDEL R R,BITTNER F.Cell biology of molybdenum[J].Biochimica et biophysica acta (BBA)-molecular cell research,2006,1763(7):621-635. [百度学术] 

19

KOVÁCS B,PUSKÁS-PRESZNER A,HUZSVAI L,et al.Effect of molybdenum treatment on molybdenum concentration and nitrate reduction in maize seedlings[J].Plant physiology and biochemistry,2015,96:38-44. [百度学术] 

20

ZHAO M G,CHEN L,ZHANG L L,et al.Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis[J].Plant physiology,2009,151(2):755-767. [百度学术] 

21

FU Y F,ZHANG Z W,YANG X Y,et al.Nitrate reductase is a key enzyme responsible for nitrogen-regulated auxin accumulation in Arabidopsis roots[J].Biochemical and biophysical research communications,2020,532(4):633-639. [百度学术] 

22

HAN M L,LV Q Y,ZHANG J,et al.Decreasing nitrogen assimilation under drought stress by suppressing DST-mediated activation of nitrate reductase 1.2 in rice[J].Molecular plant,2022,15(1):167-178. [百度学术] 

23

KATARIA S,JAIN M,TRIPATHI D K,et al.Involvement of nitrate reductase-dependent nitric oxide production in magnetopriming-induced salt tolerance in soybean[J].Physiologia plantarum,2020,168(2):422-436. [百度学术] 

24

KAYA C,ASHRAF M,ALYEMENI M N,et al.The role of nitrate reductase in brassinosteroid-induced endogenous nitric oxide generation to improve cadmium stress tolerance of pepper plants by upregulating the ascorbate-glutathione cycle[J/OL].Ecotoxicology and environmental safety,2020,196:110483[2023-10-10].https://doi.org/10.1016/j.ecoenv.2020.110483. [百度学术] 

25

TAYLOR N,COWAN K.Plant hormone homeostasis and the control of avocado fruit size[J].Plant growth regulation,2001,35(3):247-255. [百度学术] 

26

WATANABE S,NAKAGAWA A,IZUMI S,et al.RNA interference-mediated suppression of xanthine dehydrogenase reveals the role of purine metabolism in drought tolerance in Arabidopsis[J].FEBS letters,2010,584(6):1181-1186. [百度学术] 

27

XU J M,PAN C Y,LIN H,et al.A rice XANTHINE DEHYDROGENASE gene regulates leaf senescence and response to abiotic stresses[J].The crop journal,2022,10(2):310-322. [百度学术] 

28

NGUYEN C X,DOHNALKOVA A,HANCOCK C N,et al.Critical role for uricase and xanthine dehydrogenase in soybean nitrogen fixation and nodule development[J/OL].The plant genome,2023,16(2):e20171[2023-10-10].https://doi.org/10.1002/tpg2.20172. [百度学术] 

29

SUN X C,HU C X,TAN Q L,et al.Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress[J].Annals of botany,2009,104(2):345-356. [百度学术] 

30

SHI X Y,TIAN Q X,DENG P,et al.The rice aldehyde oxidase OsAO3 gene regulates plant growth,grain yield,and drought tolerance by participating in ABA biosynthesis[J].Biochemical and biophysical research communications,2021,548:189-195. [百度学术] 

31

KHAN M,IMRAN Q M,SHAHID M,et al.Nitric oxide- induced AtAO3 differentially regulates plant defense and drought tolerance in Arabidopsis thaliana[J/OL].BMC plant biology,2019,19(1):602[2023-10-10].https://doi.org/10.1186/s12870-019-2210-3. [百度学术] 

32

SHARMA U,BEKTUROVA A,VENTURA Y,et al.Sulfite oxidase activity level determines the sulfite toxicity effect in leaves and fruits of tomato plants[J/OL].Agronomy,2020,10(5):694[2023-10-10].https://doi.org/10.3390/agronomy10050694. [百度学术] 

33

XU Z W,WANG M P,GUO Z T,et al.Identification of a 119-bp promoter of the maize sulfite oxidase gene (ZmSO) that confers high-level gene expression and ABA or drought inducibility in transgenic plants[J/OL].International journal of molecular sciences,2019,20(13):3326[2023-10-10].https://doi.org/10.3390/ijms20133326. [百度学术] 

34

MENDEL R R.Cell biology of molybdenum[J].BioFactors,2009,35(5):429-434. [百度学术] 

35

CHAMIZO-AMPUDIA A,SANZ-LUQUE E,LLAMAS Á,et al.A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas[J].Plant,cell & environment,2016,39(10):2097-2107. [百度学术] 

36

MAIBER L,KOPRIVOVA A,BENDER D,et al.Characterization of the amidoxime reducing components ARC1 and ARC2 from Arabidopsis thaliana[J].The FEBS journal,2022,289(18):5656-5669. [百度学术] 

37

王运华,魏文学,胡承孝,等.钼肥对冬小麦的增产效果[J].土壤肥料,1997 (3):11.WANG Y H,WEI W X,HU C X,et al.The effect of molybdenum fertilizer on yield increase of winter wheat[J].Soil and fertilizers,1997(3):11(in Chinese). [百度学术] 

38

王运华,魏文学,谭启玲,等.湖北省黄棕壤冬小麦缺钼和施钼研究[J].土壤肥料,1995(3):24-28.WANG Y H,WEI W X,TAN Q L,et al.Study on molybdenum deficiency and molybdenum application of winter wheat in yellow brown soil of Hubei Province[J].Soils and fertilizers,1995(3):24-28(in Chinese). [百度学术] 

39

王治荣,王运华,闵志忠,等.钼肥对小麦增产作用的初步研究[J].土壤肥料,1991(3):29-31.WANG Z R,WANG Y H,MIN Z Z,et al.Preliminary study on the effect of molybdenum fertilizer on wheat yield increase[J].Soils and fertilizers,1991(3):29-31(in Chinese). [百度学术] 

40

VOGEL C S,DAWSON J O.Nitrate reductase activity,nitrogenase activity and photosynthesis of black alder exposed to chilling temperatures[J].Physiologia plantarum,1991,82(4):551-558. [百度学术] 

41

XIONG L,ISHITANI M,LEE H,et al.The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression[J].The plant cell,2001,13(9):2063-2083. [百度学术] 

42

RIHAN H Z,AL-ISSAWI M,AL SHAMARI M,et al.The effect of molybdenum on the molecular control of cold tolerance in cauliflower (Brassica oleracea var.botrytis) artificial seeds[J].Plant cell,tissue and organ culture (PCTOC),2014,118(2):215-228. [百度学术] 

43

孙学成,胡承孝,谭启玲,等.低温胁迫下钼对冬小麦光合作用特性的影响[J].作物学报,2006,32(9):1418-1422.SUN X C,HU C X,TAN Q L,et al.Effects of molybdenum on photosynthetic characteristics in winter wheat under low temperature stress[J].Acta agronomica sinica,2006,32(9):1418-1422 (in Chinese with English abstract). [百度学术] 

44

喻敏,胡承孝,王运华.低温条件下钼对冬小麦叶绿素合成前体的影响[J].中国农业科学,2006,39(4):702-708.YU M,HU C X,WANG Y H.Effects of molybdenum on the precursors of chlorophyll biosynthesis in winter wheat cultivars under low temperature[J].Scientia agricultura sinica,2006,39(4):702-708 (in Chinese with English abstract). [百度学术] 

45

喻敏,胡承孝,王运华.钼对冬小麦叶绿素含量变化的影响[J].麦类作物学报,2006,26(2):113-116.YU M,HU C X,WANG Y H.Effect of molybdenum on the catabolism of chlorophyll in winter wheat cultivars[J].Journal of triticeae crops,2006,26(2):113-116 (in Chinese with English abstract). [百度学术] 

46

胡承孝,王运华,魏文学,等.黄棕壤有效钼水平对冬小麦产量结构及叶绿素、可溶性糖的影响[J].土壤肥料,1998(1):19-22.HU C X,WANG Y H,WEI W X,et al.Effects of available molybdenum level in yellow brown soil on yield structure,chlorophyll and soluble sugar of winter wheat[J].Soils and fertilizers,1998(1):19-22(in Chinese). [百度学术] 

47

ZHANG H,DONG J L,ZHAO X H,et al.Research progress in membrane lipid metabolism and molecular mechanism in peanut cold tolerance[J/OL].Frontiers in plant science,2019,10:838[2023-10-10].https://doi.org/10.3389/fpls.2019.00838. [百度学术] 

48

柳勇,胡承孝,谭启玲.施用钼肥对酸性黄棕壤上冬小麦叶片膜脂肪酸及叶细胞超微结构的影响[J].植物营养与肥料学报,2004,10(1):86-90.LIU Y,HU C X,TAN Q L.Effects of molybdenum application on fatty acids and mesophyll cell ultrastructure of winter wheat leaves[J].Plant nutrition and fertilizing science,2004,10(1):86-90 (in Chinese with English abstract). [百度学术] 

49

WU S W,WEI S Q,HU C X,et al.Molybdenum-induced alteration of fatty acids of thylakoid membranes contributed to low temperature tolerance in wheat[J/OL].Acta physiologiae plantarum,2017,39(10):237[2023-10-10].https://doi.org/10.1007/s11738-017-2534-2. [百度学术] 

50

CHAMPIGNY M L.Integration of photosynthetic carbon and nitrogen metabolism in higher plants[J].Photosynthesis research,1995,46(1):117-127. [百度学术] 

51

HUPPE H C,TURPIN D H.Integration of carbon and nitrogen metabolism in plant and algal cells[J].Annual review of plant physiology and plant molecular biology,1994,45:577-607. [百度学术] 

52

YANEVA I,MÄCK G,VUNKOVA-RADEVA R,et al.Changes in nitrate reductase activity and the protective effect of molybdenum during cold stress in winter wheat grown on acid soil[J].Journal of plant physiology,1996,149(1/2):211-216. [百度学术] 

53

喻敏,王运华,胡承孝.种子钼对冬小麦硝酸还原酶活性、干物质重及产量的影响[J].植物营养与肥料学报,2000,6(2):220-226.YU M,WANG Y H,HU C X.Influence of seed molybdenum on nitrate reductase activity,shoot dry matter and grain yield of winter wheat cultivars[J].Plant natrition and fertilizen science,2000,6(2):220-226 (in Chinese with English abstract). [百度学术] 

54

胡承孝,王运华,谭启玲,等.钼营养对冬小麦无机氮组分的影响[J].华中农业大学学报,2001,20(2):125-129.HU C X,WANG Y H,TAN Q L,et al.Effect of molybdenum nutrition on inorganic nitrogen compounds of winter wheat[J].Journal of Huazhong Agricultural University,2001,20(2):125-129 (in Chinese with English abstract). [百度学术] 

55

HU C X,WANG Y H,WEI W X.Effect of molybdenum applications on concentrations of free amino acids in winter wheat at different growth stages[J].Journal of plant nutrition,2002,25(7):1487-1499. [百度学术] 

56

胡承孝,王运华,谭启玲,等.钼、氮肥配合施用对冬小麦子粒蛋白质及其氨基酸组成的影响[J].植物营养与肥料学报,2002,8(2):224-228.HU C X,WANG Y H,TAN Q L,et al.Effect of molybdenum and nitrogen fertilizers on free amino acid,protein and its amino acid composition of winter wheat grains[J].Plant nutrition and fertilizers,2002,8(2):224-228 (in Chinese with English abstract). [百度学术] 

57

SUN X C,TAN Q L,NIE Z J,et al.Differential expression of proteins in response to molybdenum deficiency in winter wheat leaves under low-temperature stress[J].Plant molecular biology reporter,2014,32(5):1057-1069. [百度学术] 

58

AL-ISSAWI M,RIHAN H Z,WOLDIE W A,et al.Exogenous application of molybdenum affects the expression of CBF14 and the development of frost tolerance in wheat[J].Plant physiology and biochemistry,2013,63:77-81. [百度学术] 

59

AGUEY-ZINSOU K F,BERNHARDT P V,LEIMKÜHLER S.Protein film voltammetry of Rhodobacter capsulatus xanthine dehydrogenase[J].Journal of the American Chemical Society,2003,125(50):15352-15358. [百度学术] 

60

SAUER P,FRÉBORTOVÁ J,ŠEBELA M,et al.Xanthine dehydrogenase of pea seedlings:a member of the plant molybdenum oxidoreductase family[J].Plant physiology and biochemistry,2002,40(5):393-400. [百度学术] 

61

ZAKHURUL I,VERNICHENKO I,OBUKHOVSKAYA L.Influence of nitrogen,molybdenum,and zinc on the drought resistance of spring wheat[J].Russian agricultural sciences,2000(4):1-5. [百度学术] 

62

GHAFARIAN M,MOHEBBI-KALHORI D,SADEGI J.Analysis of heat transfer in oscillating flow through a channel filled with metal foam using computational fluid dynamics[J].International journal of thermal sciences,2013,66:42-50. [百度学术] 

63

WU S W,HU C X,TAN Q L,et al.Effects of molybdenum on water utilization,antioxidative defense system and osmotic-adjustment ability in winter wheat (Triticum aestivum) under drought stress[J].Plant physiology and biochemistry,2014,83:365-374. [百度学术] 

64

SUTULIENĖ R,BRAZAITYTĖ A,MAŁEK S,et al.Biochemical responses of pea plants to drought stress and in the presence of molybdenum trioxide nanoparticles[J].Plant and soil,2023,492:381-397. [百度学术] 

65

ROSTAMI H M,SHEIKHZADEH P,KHOMARI S,et al.Evaluation of photosynthetic and biochemical characteristics of oilseed rape under drought stress and MoO3 nanoparticles application[J].Environmental stresses in crop sciences,2023,16(2):349-367. [百度学术] 

66

WU S W,SUN X C,TAN Q L,et al.Molybdenum improves water uptake via extensive root morphology,aquaporin expressions and increased ionic concentrations in wheat under drought stress[J].Environmental and experimental botany,2019,157:241-249. [百度学术] 

67

IMRAN M,SUN X C,HUSSAIN S,et al.Molybdenum supply increases root system growth of winter wheat by enhancing nitric oxide accumulation and expression of NRT genes[J].Plant and soil,2021,459(1):235-248. [百度学术] 

68

MOLINARI M D C,FUGANTI-PAGLIARINI R,MARIN S R R,et al.Overexpression of AtNCED3 gene improved drought tolerance in soybean in greenhouse and field conditions[J/OL].Genetics and molecular biology,2020,43(3):e20190292[2023-10-10].https://doi.org/ 10.1590/1678-4685-GMB-2019-0292. [百度学术] 

69

WU S W,HU C X,TAN Q L,et al.Nitric oxide acts downstream of abscisic acid in molybdenum-induced oxidative tolerance in wheat[J].Plant cell reports,2018,37(4):599-610. [百度学术] 

70

武松伟.钼对冬小麦抗旱能力及其抗旱信号转导的调控[D].武汉:华中农业大学,2018.WU S W.Drought resistance and its signal transduction were regulated by molybdenum in winter wheat[D].Wuhan:Huazhong Agricultural University,2018 (in Chinese with English abstract). [百度学术] 

71

PERLIKOWSKI D,KIERSZNIOWSKA S,SAWIKOWSKA A,et al.Remodeling of leaf cellular glycerolipid composition under drought and re-hydration conditions in grasses from the Lolium-Festuca complex[J/OL].Frontiers in plant science,2016,7:1027[2023-10-10].https://doi.org/10.3389/fpls.2016.01027. [百度学术] 

72

WU S W,HU C X,YANG X Z,et al.Molybdenum induces alterations in the glycerolipidome that confer drought tolerance in wheat[J].Journal of experimental botany,2020,71(16):5074-5086. [百度学术] 

73

ZHANG M,HU C X,ZHAO X H,et al.Molybdenum improves antioxidant and osmotic-adjustment ability against salt stress in Chinese cabbage (Brassica campestris L. ssp. pekinensis)[J].Plant and soil,2012,355(1):375-383. [百度学术] 

74

BABENKO O N,BRYCHKOVA G,SAGI M,et al.Molybdenum application enhances adaptation of crested wheatgrass to salinity stress[J/OL].Acta physiologiae plantarum,2015,37(2):14[2023-10-10].https://doi.org/10.1007/s11738-014-1757-8. [百度学术] 

75

VENTURA Y,WUDDINEH W A,EPHRATH Y,et al.Molybdenum as an essential element for improving total yield in seawater-grown Salicornia europaea L.[J].Scientia horticulturae,2010,126(3):395-401. [百度学术] 

76

LEE S,CHOI J H,TRUONG H A,et al.Enhanced nitrate reductase activity offers Arabidopsis ecotype Landsberg erecta better salt stress resistance than Col-0[J].Plant biology,2022,24(5):854-862. [百度学术] 

77

HAN Z,WEI X,WAN D,et al.Effect of molybdenum on plant physiology and cadmium uptake and translocation in rape (Brassica napus L.) under different levels of cadmium stress[J/OL].International journal of environmental research and public health,2020,17(7):2355[2023-10-10].https://doi.org/10.3390/ijerph17072355. [百度学术] 

78

QU L,JIA W,DAI Z,et al.Selenium and molybdenum synergistically alleviate chromium toxicity by modulating Cr uptake and subcellular distribution in Nicotiana tabacum L[J/OL].Ecotoxicology and environmental safety,2022,248:114312[2023-10-10].https://doi.org/10.1016/j.ecoenv.2022.114312. [百度学术] 

79

ALAMRI S,SIDDIQUI M H,MUKHERJEE S,et al.Molybdenum-induced endogenous nitric oxide (NO) signaling coordinately enhances resilience through chlorophyll metabolism,osmolyte accumulation and antioxidant system in arsenate stressed-wheat (Triticum aestivum L.) seedlings[J/OL].Environmental pollution,2022,292:118268[2023-10-10].https://doi.org/10.1016/j.envpol.2021.118268. [百度学术]