摘要
为了解塔里木河下游流域内在生态输水后的水生生物资源及生态环境特征,于2019-2020年对塔里木河中下游干流、车尔臣河、台特玛湖3个区域的大型底栖动物群落结构进行了调查,并探讨其环境影响因素。调查结果显示,塔里木河下游流域中大型底栖动物共97个分类单元,隶属于3门4纲10目27科。水生昆虫为主要类群(82种),其中双翅目(47种)物种数最多,其次为鞘翅目(14种)、蜻蜓目(13种)。摇蚊科物种在不同区域均为优势种。底栖动物平均密度和生物量在5月份处于峰值,远高于8月和10月,多样性指数不具有显著的时空差异(P>0.05)。塔里木河干流和车尔臣河功能摄食群主要以收集者为主(95.89%,91.86%),而台特玛湖则以收集者(50.68%)和捕食者(34.12%)为主。Mantel相关性分析结果显示,氨氮、溶解氧和高锰酸钾是影响底栖动物多样性和功能群的主要环境因子。调查结果表明,塔里木河流域底栖动物群落组成较为单一,生态环境较为脆弱,需继续开展并深化对该地区河流的生态修复和管理工作。
塔里木河是我国最长的内陆河,发源于天山山脉、喀喇昆仑山,沿塔克拉玛干沙漠北缘自西向东前进,最终汇入台特玛湖。塔里木河全长1 321 km,流域面积达19.8万k
底栖动物是指生活史的全部或者大部分的时间都生活在水体底部的水生动物类群,它们在维持生态系统的结构和功能上发挥着重要作用。底栖动物活动范围小,对环境变化较敏感,能够对多种类型的污染做出反
研究区域位于塔里木河中下游,包括干流、车尔臣河和台特玛湖。塔里木河干流地区气候极其干燥,年均降水量为50~80 mm,而蒸发量可达2 100~3 000 mm,其下游在生态治理之前有着近30 a干涸的历
台特玛湖是塔里木河与车尔臣河的尾闾湖泊,位于塔里木盆地东南缘的冲击平原上。1970年以来,塔里木河开始长期断流,台特玛湖逐渐被沙漠覆盖,周边植被大量枯死。自2020年,第21次生态输水完成后,台特玛湖水域面积和周围湿地面积逐渐扩
根据塔里木河地形特征,利用卫星地图,采取网络格局结合历史调查进行站位布设,样点分布见
站位名称 Site name | 经度 Longitude | 纬度 Latitude | 海拔/m Altitude |
---|---|---|---|
塔河源 Headwaters | 81°17′54″ | 40°32′1″ | 999 |
英巴扎 Yingbazha | 84°13′47″ | 41°10′51″ | 919 |
恰拉 Qiala | 86°36′40″ | 41°3′40″ | 867 |
且末水电站 Qiemo | 85°41′43″ | 37°43′59" | 1 750 |
龙口 Longkou | 85°35′56.27" | 38°1′36.74" | 1 342 |
第二分水枢纽Second water distribution hub | 85°30′49.93" | 38°12′51.44" | 1 209 |
环境检测站Environmental monitoring station | 85°46′30.77" | 38°28′3.65" | 1 125 |
五苇场 Wuweichang | 86°31′1.16" | 38°40′34.13" | 1 015 |
瓦石峡乡 Washixia | 86°40′7.58" | 38°45′47.37" | 989 |
台特玛湖 Taitema Lake | 88°18′8″ | 39°29′38″ | 797 |
使用1/16
使用水质分析仪测定水体的水温(water temperature,WT)、溶解氧(dissolved oxygen,DO)、酸碱度(pH)、电导率(conductivity,Cond)、盐度(salinity,Sal)、总溶解性固体(total dissolved solids,TDS)、氧化还原电位(oxidation-reduction potential,ORP)。使用GPS定位工具记录采样位点的经纬度等信息。另采取1 L水样4 ℃下保存,将其带回实验室后对总氮(total nitrogen,TN)、总磷(total phosphorus,TP)、氨氮(NH
1) 多样性指数计算。采用物种优势度指数(Y)、Shannon-Wiener多样性指数(H′)、Margalef丰富度指数(dM)、Pielou均匀度指数(J)以及Simpson(D)多样性指数对底栖动物群落结构进行分析。计算公式如下:
(1)物种优势度指数(Y
公式中N表示各采样点所有物种个体总数,Ni代表第i种个体总数,fi表示该物种在各采样点出现的频率,当Y>0.02时,该物种为群落中的优势种。
(2)Shannon-Wiener多样性指数(H′):
式中,S为总物种数;Ni为物种i的个体数;N为总个体数。
(3)Margalef物种丰富度指数:
式中,S代表了总物种数,N代表物种个体总数。
(4)Pielou指数:
式中,H′为Shannon-Wiener指数,S为物种数。
(5)Simpson多样性指数:
式中,S为物种总数,N为总个体数,Ni为第i个物种的个体数。
2) 统计分析。采用单因素方差分析方法(One-way ANOVA)分析不同月份、不同区域的环境因子、底栖动物密度、生物量和多样性指数的差异。采用Mantel检验分析底栖动物多样性指数和功能摄食群及其环境因子的关系。
底栖动物功能群指具有相近的结构特征或者生态功能的底栖生物群的组
单因素方差分析(One-way ANOVA)结果显示,塔里木河干流水温、pH、电导率、盐度、总溶解性固体、氧化还原电位、总氮、亚硝酸盐氮在3个水文期之间存在显著差异;车尔臣河水温、溶解氧、总氮、硝态氮、亚硝态氮在3个水文期中存在显著差异(
指标 Index | 塔里木河干流 Main stream of Tarim River | 车尔臣河 Qarqan River | ||||
---|---|---|---|---|---|---|
5月May | 8月Aug. | 10月Oct. | 5月May | 8月Aug. | 10月Oct. | |
水温/℃ WT | 16.57±1.60b | 25.47±1.33a | 11.81±3.40b | 22.60±4.81a | 18.87±5.23a | 7.55±3.99b |
流速/(m/s) Flow velocity | — | 0.63±0.21 | — | 1.09±0.55 | 0.70±0.72 | 0.97±0.69 |
透明度/cm Transparency | 5.21±2.16 | 6.00±4.95 | 2.80±3.22 | — | — | 2.83±1.6 |
pH | 8.08±0.13b | 8.91±0.17a | 7.24±0.13c | 8.52±0.16a | 8.48±0.05ab | 8.31±0.06b |
溶解氧/(mg/L) DO | 7.38±1.19 | 7.40±1.21 | 8.52±0.77 | 7.65±0.55b | 8.08±1.10b | 11.75±1.32a |
电导率/(μS/cm) Cond | 1 925.80±644.27a | 718.33±214.52b | 586.67±14.74b | 761.50±362.25 | 1 046.00±499.84 | 837.00±249.92 |
盐度‰ Sal | 5.26±3.52 | 0.35±0.11 | 0.25±0.01 | — | 0.58±0.24 | 0.63±0.20 |
总溶解性固体/(mg/L) TDS | 5 958.33±3 777.00 | 351.67±109.32 | 252.46±218.79 | 1 218.33±691.61 | 754.00±303.42 | 816.85±244.81 |
氧化还原电位/mV ORP | 155.63±31.64ab | 102.17±27.42b | 228.10±53.16a | — | 114.5±9.66 | 185.4±21.91 |
总磷/(mg/L) TP | 0.05±0.01 | 0.05±0.01 | 0.06±0.01 | 0.11±0.05 | 0.07±0.03 | 0.16±0.11 |
总氮/(mg/L) TN | 0.50±0.21b | 0.53±0.17b | 0.97±0.10a | 0.76±0.31ab | 1.22±0.10a | 0.74±0.18b |
可溶性磷酸盐/(mg/L) PO | 0.04±0.02 | 0.05±0.01 | — | 0.10±0.00 | 0.06±0.03 | 0.14±0.09 |
氨氮/(mg/L) NH | — | 0.31±0.21 | 0.14±0.09 | 0.24±0.31 | 0.20±0.03 | 0.13±0.20 |
硝态氮/(mg/L) NO | — | — | 0.43±0.21 | 0.54±0.03b | 0.93±0.12a | 0.18±0.08c |
亚硝态氮/(mg/L) NO | 0.01±0.01b | 0.03±0.00a | 0.01±0.00b | 0.01±0.00b | 0.02±0.00a | 0.01±0.00b |
高锰酸钾指数/(mg/L) Permanganate index | 3.50±2.40 | 1.53±0.21 | 2.17±1.33 | 1.87±1.01 | 1.20±0.56 | 1.35±0.31 |
注: 表中同一参数不同字母表示同一河流中不同月份之间显著差异(P<0.05),未标字母表示无显著差异。横线处表示当月数据缺失。Note:Different letters of the same parameter in the table indicate significant differences between different months in the same river (P<0.05);Unlabeled letters indicate no significant difference.The horizontal line indicates that data is missing in the current month.
塔里木河中下游流域共检出底栖动物97种,隶属于3门4纲10目27科。节肢动物门物种数最多,总计86种,其中82种为水生昆虫,主要为双翅目(47种)、鞘翅目(14种)、蜻蜓目(13种);环节动物门6种,软体动物门5种。
塔里木河干流采集到底栖动物36种,其中水生昆虫31种,主要由双翅目摇蚊科组成,占物种总数的75%。车尔臣河采集到底栖动物60种,其中水生昆虫50种,主要由双翅目、鞘翅目和蜻蜓目组成,分别占物种数的45.00%、15.00%和13.33%;另有寡毛纲5种,软体动物5种。台特玛湖采集到底栖动物28种,其中水生昆虫26种,主要由蜻蜓目、鞘翅目和双翅目组成,分别占物种总数的17.24%、13.79%和51.72%;此外还有寡毛纲、水生昆虫、软甲纲等物种。
塔里木河干流、车尔臣河与台特玛湖的底栖动物平均密度分别为263.15、211.16和141.52 ind./

图1 塔里木河中下游不同流域底栖动物密度(A)及生物量(B)
Fig.1 Density(A) and biomass(B) of macroinvertebrates in the middle and lower reaches of Tarim River
塔里木河中下游区域底栖动物优势种以摇蚊为主(
优势种 Dominant species | 塔里木河 Tarim River | 车尔臣河 Qarqan River | 台特玛湖 Taitema Lake |
---|---|---|---|
小划蝽 S. straiata | 0.06 | ||
水叶甲亚科1种 Donaciinae sp. | 0.04 | ||
弯铗摇蚊属1种Cryptotendipes sp. | 0.22 | ||
德永雕翅摇蚊 G. tokunagai | 0.19 | ||
浅白雕翅摇蚊 G. pallens | 0.04 | ||
鲜艳多足摇蚊 P. laetum | 0.13 | ||
溪流摇蚊 C. riparius | 0.12 | ||
梯形多足摇蚊 P. scalaenum | 0.02 | ||
斯蒂齿斑摇蚊 S. sticticus | 0.02 | ||
蠓科1种 Ceratopogonidae sp. | 0.04 |
不同区域不同月份的多样性指数计算结果如
调查区域 Survey area | 月份Month | 马格列夫指数 Margalef index | 香农威尔指数 Shannon-Wiener index | 均匀度指数 Pielou index | 辛普森指数 Simpson index |
---|---|---|---|---|---|
塔里木河干流 Tarim River | 5月 May | 1.70 | 1.43 | 0.68 | 0.67 |
8月 Aug. | 1.36 | 0.97 | 0.50 | 0.44 | |
10月 Oct. | 1.29 | 1.33 | 0.80 | 0.67 | |
车尔臣河 Qarqan River | 5月 May | 0.27 | 0.37 | 0.29 | 0.20 |
8月 Aug. | — | — | — | — | |
10月 Oct. | 1.30 | 1.31 | 0.81 | 0.67 | |
台特玛湖 Taitema Lake | 5月 May | 1.45 | 1.37 | 0.63 | 0.71 |
8月 Aug. | 1.58 | 1.57 | 0.75 | 0.73 | |
10月 Oct. | 2.22 | 1.84 | 0.77 | 0.78 |
注: 横线表示车尔臣河8月数据缺失。Note: Data for Qarqan River in August were not available.
塔里木河下游流域功能摄食群以收集者为主,不同月份之间的功能摄食群组成有较大的差异。从5月到10月,塔里木河干流的收集者占比由98.26%下降到了71.43%,呈现出下降的趋势,但其主导地位未改变。同时,塔里木河捕食者所占的比例在数次调查中有所增加,由0.52%上升到了28.57%。车尔臣河5月主要以收集者为主,占比98.04%;其他功能摄食群在10月占比有所增加,捕食者占比38.63%,刮食者占比10.23%,收集者仍为主要组成部分,占比50%。台特玛湖5月以收集者和捕食者为主,收集者占比65.23%,捕食者占比34.45%,8月则以撕食者和收集者为主,撕食者占比39.47%,收集者占比47.36%,捕食者占比下降为13.16%;10月底栖动物以撕食者和捕食者为主,撕食者占比33.33%,捕食者占比52.63%,收集者数量下降较多,仅占14.04%(

图2 底栖动物功能摄食群的相对丰度
Fig.2 The relative abundance of functional feeding groups of macroinvertebrates
本研究区域位于塔克拉玛干沙漠周边,河流含沙量较高。相比于鱼类的种群结构来说,悬浮的泥沙对大型底栖无脊椎动物群落结构的影响更加显著,尤其是蠓科和溪泥甲科等动物更加敏
3个区域底栖动物群落结构有较大的不同。车尔臣河物种数最多,并且仅在此处发现了软体动物。塔里木河干流的底栖动物密度和生物量最高,物种组成以摇蚊为主,占总物种数的75.00%。台特玛湖中采集到的物种数较少,但优势物种数量较多,且有半翅目、鞘翅目物种作为优势种群出现。在干旱区河流中,河流流动状况不均匀,导致不同区域的生境有着相当大的变
底栖动物的密度和生物量在不同月份之间存有差异。5月底栖动物的密度和生物量明显高于8月和10月,这可能是塔里木河下游流域的径流量变化所致。受高山融雪增加和降雨量增大的影响,6-9月塔里木河中下游流域的径流量占全年径流量的70%~80
在本研究中,台特玛湖功能摄食群的组成与塔里木干流间存有较大的差异。收集者为塔里木河与车尔臣河中功能摄食群的主要组成部分,这和收集者类群的物种能够更好地适应泥沙底质的环境有关,同时也表明水体有机物质含量较高,收集者的食物来源丰
从5月到10月,3个区域收集者占比均有下降,而捕食者占比有所增加。一方面,由于食物来源丰富,捕食者群落得以迅速增
在本研究中,影响功能摄食群分布的因子主要有溶解氧和高锰酸钾指数,它们与滤食者、捕食者和收集者呈显著正相关。一般来讲,在低溶氧的水体环境中,溶解氧的含量会成为影响底栖动物多样性的主要因素,过低的溶氧会影响底栖动物的生命活
氨氮和高锰酸钾指数与多样性指数之间呈较为明显的正相关,这和李丽娟
底栖动物通常对环境因子的变化较为敏感,即使有微小的人类活动干扰或是季节变化,不同的底栖动物以及功能摄食群也会对此产生不同的反
参考文献 References
邓铭江.塔里木河生态输水与生态修复研究与实践[J].中国水利,2022(19):29-32.DENG M J.Research and practice of ecological water conveyance and ecological restoration in Tarim River[J].China water resources,2022(19):29-32 (in Chinese). [百度学术]
唐芳,蒲智,李小玉.塔里木河下游土地利用转型图谱特征分析[J].湖北农业科学,2022,61(16):169-174,181.TANG F,PU Z,LI X Y.Analysis on the characteristics of land use transition atlas in the lower reaches of Tarim River[J].Hubei agricultural sciences,2022,61(16):169-174,181 (in Chinese with English abstract). [百度学术]
袁志毅,董其华,张向萍,等.塔里木河干流洪水漫溢现状及对策[J].西北水电,2022(3):8-12.YUAN Z Y,DONG Q H,ZHANG X P,et al.Status quo of flood overflow in the mainstream of Tarim River and countermeasures[J].Northwest hydropower,2022(3):8-12 (in Chinese with English abstract). [百度学术]
陈亚宁,崔旺诚,李卫红,等.塔里木河的水资源利用与生态保护[J].地理学报,2003,58(2):215-222.CHEN Y N,CUI W C,LI W H,et al.Utilization of water resources and ecological protection in the Tarim River[J].Acta geographica sinica,2003,58(2):215-222 (in Chinese with English abstract). [百度学术]
OERTLI B.Leaf litter processing and energy flow through macroinvertebrates in a woodland pond (Switzerland)[J].Oecologia,1993,96(4):466-477. [百度学术]
WALLACE J B,WEBSTER J R.The role of macroinvertebrates in stream ecosystem function[J].Annual review of entomology,1996,41:115-139. [百度学术]
SHELDON F,THOMS M C.Relationships between flow variability and macroinvertebrate assemblage composition:data from four Australian dryland rivers[J].River research and applications,2006,22(2):219-238. [百度学术]
李景远,吴巍,周孝德,等.车尔臣河流域土地利用变化及生态环境效应分析[J].环境科学学报,2015,35(10):3330-3337.LI J Y,WU W,ZHOU X D,et al.Land use change and eco-environment effect in Qarqan River Basin[J].Acta scientiae circumstantiae,2015,35(10):3330-3337 (in Chinese with English abstract). [百度学术]
王雅梅,张青青,徐海量,等.生态输水前后台特玛湖植物多样性变化特征[J].干旱区研究,2019,36(5):1186-1193.WANG Y M,ZHANG Q Q,XU H L,et al.Change of plant diversity in the taitema lake area before and after implementing the ecological water conveyance[J].Arid zone research,2019,36(5):1186-1193 (in Chinese with English abstract). [百度学术]
姜作发,霍堂斌.新疆额尔齐斯河、塔里木河、乌伦古湖水生生物物种资源调查与研究[M].北京:中国环境出版社,2014.JIANG Z F,HUO T B.Survey and study on the aquatic species resources in Lrtysh River,Tarim River and Ulungur Lake in Xinjiang Uygur Autonomous region[M].Beijing:China Environmental Science Press,2014(in Chinese). [百度学术]
YU G A,DISSE M,HUANG H Q,et al.River network evolution and fluvial process responses to human activity in a hyper-arid environment:case of the Tarim River in Northwest China[J].Catena,2016,147:96-109. [百度学术]
FENG Q,LIU W,SI J H,et al.Environmental effects of water resource development and use in the Tarim River Basin of northwestern China[J].Environmental geology,2005,48(2):202-210. [百度学术]
王旭东.新疆车尔臣河中下游地表水与地下水转化机理研究[D].乌鲁木齐:新疆大学,2020.WANG X D.Study on the conversion mechanism of surface water and groundwater in the middle and lower reaches of cherchen river in Xinjiang[D].Urumqi:Xinjiang University,2020 (in Chinese with English abstract). [百度学术]
达伟,王书峰,沈永平,等.1957—2019年昆仑山北麓车尔臣河流域水文情势及其对气候变化的响应[J].冰川冻土,2022,44(1):46-55.DA W,WANG S F,SHEN Y P,et al.Hydrological response to the climatic changes in the Qarqan River Basin at the northern slope of Kunlun Mountains during 1957—2019[J].Journal of glaciology and geocryology,2022,44(1):46-55 (in Chinese with English abstract). [百度学术]
阿布都米吉提·阿布力克木,阿里木江·卡斯木,艾里西尔·库尔班,等.新疆车尔臣河流域水域的宏观变化及其影响和驱动因素[J].冰川冻土,2015,37(2):480-492.Abdimijit·Ablekim,Alimujiang·Kasimu,Alishir·Kurban,et al.The Cherchen River watershed in Xinjiang:macroscopic spatiotemporal variation,controlling and driving effects[J].Journal of glaciology and geocryology,2015,37(2):480-492 (in Chinese with English abstract). [百度学术]
YE Z X,CHEN S F,ZHANG Q F,et al.Ecological water demand of taitema lake in the lower reaches of the Tarim River and the Cherchen River[J/OL].Remote sensing,2022,14(4):832[2022-12-06].https://www.mdpi.com/2072-4292/14/4/832. [百度学术]
国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].4版.北京:中国环境出版社,2002.Editorial Committee of Monitoring and Analysis Methods for Water and Wastewater, State Environmental Protection Administration. Methods for monitoring and analysis of water and wastewater[M].Fourth edition. Beijing:China Environmental Science Press,2002(in Chinese). [百度学术]
徐兆礼,陈亚瞿.东黄海秋季浮游动物优势种聚集强度与鲐鲹渔场的关系[J].生态学杂志,1989,8(4):13-15,19.XU Z L,CHEN Y Q.Aggregated intensity of dominant species of zooplankton in autumn in the East China Sea and Yellow Sea[J].Chinese journal of ecology,1989,8(4):13-15,19 (in Chinese with English abstract). [百度学术]
鲍毅新,胡知渊,李欢欢,等.灵昆东滩围垦区内外大型底栖动物季节变化和功能群的比较[J].动物学报,2008,54(3):416-427.BAO Y X,HU Z Y,LI H H,et al.Seasonal variation and functional groups of macrobenthic communities at diked and natural tidal flat,Lingkun Island,China[J].Acta zoologica sinica,2008,54(3):416-427 (in Chinese with English abstract). [百度学术]
HEINO J.Patterns of functional biodiversity and function-environment relationships in lake littoral macroinvertebrates[J].Limnology and oceanography,2008,53(4):1446-1455. [百度学术]
李丽娟,崇祥玉,盛楚涵,等.太子河大型底栖动物摄食功能群对河岸带土地利用类型的响应[J].生态学报,2019,39(22):8667-8674.LI L J,CHONG X Y,SHENG C H,et al.Response of riparian land-use types to functional groups of benthic macroinvertebrates in Taizi River,Liaoning Province[J].Acta ecologica sinica,2019,39(22):8667-8674 (in Chinese with English abstract). [百度学术]
CUMMINS K W,KLUG M J.Feeding ecology of stream invertebrates[J].Annual review of ecology and systematics,1979,10:147-172. [百度学术]
COUCEIRO S R M,HAMADA N,FORSBERG B R,et al.Effects of anthropogenic silt on aquatic macroinvertebrates and abiotic variables in streams in the Brazilian Amazon[J].Journal of soils and sediments,2010,10(1):89-103. [百度学术]
池仕运,王瑞,魏秘,等.金沙江上中段大型底栖无脊椎动物群落结构特征和多样性分析[J].生态学报,2022,42(21):8723-8738.CHI S Y,WANG R,WEI M,et al.Community structure and diversity of macroinvertebrates in the upper and middle reaches of Jinsha River based on the monitoring data from 2010—2019[J].Acta ecologica sinica,2022,42(21):8723-8738 (in Chinese with English abstract). [百度学术]
BLANCHETTE M L,PEARSON R G.Dynamics of habitats and macroinvertebrate assemblages in rivers of the Australian dry tropics[J].Freshwater biology,2013,58(4):742-757. [百度学术]
CHESSMAN B C,JONES H A,SEARLE N K,et al.Assessing effects of flow alteration on macroinvertebrate assemblages in Australian dryland rivers[J].Freshwater biology,2010,55(8):1780-1800. [百度学术]
LEIGH C,SHELDON F.Hydrological connectivity drives patterns of macroinvertebrate biodiversity in floodplain rivers of the Australian wet /dry tropics[J].Freshwater biology,2009,54(3):549-571. [百度学术]
LÓPEZ-LÓPEZ E,ELÍAS SEDEÑO-DÍAZ J,MENDOZA-MARTÍNEZ E,et al.Water quality and macroinvertebrate community in dryland streams:the case of the tehuacán-cuicatlán biosphere reserve (México) facing climate change[J/OL].Water,2019,11(7):1376[2022-12-06].http://dx.doi.org/10.3390/w11071376. [百度学术]
王军,周琼,谢从新,等.基于大型底栖动物完整性指数的新疆额尔齐斯河健康评价[J].环境科学研究,2015,28(6):959-966.WANG J,ZHOU Q,XIE C X,et al.Health assessment of Irtysh River in Xinjiang uygur autonomous region,northwest China,based on benthic-index of biotic integrity(B-IBI)[J].Research of environmental sciences,2015,28(6):959-966 (in Chinese with English abstract). [百度学术]
张葵,王军,葛奕豪,等.基于大型底栖动物完整性指数的伊犁河健康评价及其对时间尺度变化的响应[J].生态学报,2021,41(14):5868-5878.ZHANG K,WANG J,GE Y H,et al.Health assessment of the Ili River based on benthic index of biotic integrity (B-IBI) and the effects of different months and years[J].Acta ecologica sinica,2021,41(14):5868-5878 (in Chinese with English abstract). [百度学术]
GIAM X,CHEN W,SCHRIEVER T A,et al.Hydrology drives seasonal variation in dryland stream macroinvertebrate communities[J].Aquatic sciences,2017,79(3):705-717. [百度学术]
ZHANG Y,ZHANG J,WANG L,et al.Influences of dispersal and local environmental factors on stream macroinvertebrate communities in Qinjiang River,Guangxi,China[J].Aquatic biology,2014,20(3):185-194. [百度学术]
陈晶.干旱风沙区不同植被恢复模式生态效应研究[D].银川:宁夏大学,2015.CHEN J.Ecological benefit researeh of different vegetation restoration patterns in arid sandy area[D].Yinchuan:Ningxia University,2015 (in Chinese with English abstract). [百度学术]
任海庆,袁兴中,刘红,等.环境因子对河流底栖无脊椎动物群落结构的影响[J].生态学报,2015,35(10):3148-3156.REN H Q,YUAN X Z,LIU H,et al.The effects of environment factors on community structure of benthic invertebrate in rivers[J].Acta ecologica sinica,2015,35(10):3148-3156 (in Chinese with English abstract). [百度学术]
REZENDE R S,SANTOS A M,HENKE-OLIVEIRA C,et al.Effects of spatial and environmental factors on benthic a macroinvertebrate community[J].Zoologia,2014,31(5):426-434. [百度学术]
ADDO-BEDIAKO A.Spatiotemporal distribution patterns of benthic macroinvertebrate functional feeding groups in the blyde river,south Africa[J].Applied ecology and environmental research,2021,19(3):2241-2257. [百度学术]
王博涵,吴丹,张吉,等.济南河流大型底栖动物摄食功能群多样性及时空动态[J].生态学报,2017,37(21):7128-7139.WANG B H,WU D,ZHANG J,et al.Diversity and temporal-spatial dynamics of macroinvertebrate functional feeding groups in the rivers of the Jinan Region[J].Acta ecologica sinica,2017,37(21):7128-7139 (in Chinese with English abstract). [百度学术]
DOBSON M.Microhabitat as a determinant of diversity:stream invertebrates colonizing leaf packs[J].Freshwater biology,1994,32(3):565-572. [百度学术]
MILBRINK G.Oligochaetes and water pollution in two deep Norwegian Lakes[J].Hydrobiologia,1994,278(1):213-222. [百度学术]
SHABANI I E,LIU M H,YU H X,et al.Benthic macroinvertebrate diversity and functional feeding groups in relation to physicochemical factors in Sanjiang plain wetlands,northeast China[J].Applied ecology and environmental research,2019,17(2):3387-3402. [百度学术]
HERLIHY A T,SIFNEOS J C,HUGHES R M,et al.The relation of lotic fish and benthic macroinvertebrate condition indices to environmental factors across the conterminous USA[J/OL].Ecological indicators,2020,112:105958[2022-12-06].http://dx.doi.org/10.1016/j.ecolind.2019.105958. [百度学术]
张续同,李卫明,张坤,等.长江宜昌段桥边河大型底栖动物功能摄食类群时空分布特征[J].生态学报,2022,42(7):2559-2570.ZHANG X T,LI W M,ZHANG K,et al.Spatiotemporal distribution of macroinvertebrate functional feeding groups in Qiaobian River,a tributary of Yangtze River in Yichang[J].Acta ecologica sinica,2022,42(7):2559-2570 (in Chinese with English abstract). [百度学术]