摘要
为了合理开发利用干旱地区微咸水资源,以加工番茄品种金番3166为试验材料,设置不同灌水矿化度1(S1)、3(S2)、5(S3) g/L和施氮量180(N1)、240(N2)、300(N3) kg/h
水资源短缺已成为限制地区社会经济发展和农业生态环境改善的主要因
众多学者研究表明,长期进行微咸水灌溉后会将盐分带入土壤,使根区土壤盐分含量增
前人针对微咸水灌溉和氮肥施用对土壤盐分含量和作物的影响进行了大量研究,但目前微咸水滴灌与氮肥协同调控及其交互作用对作物的影响相关研究较少。本研究在膜下滴灌条件下探究不同灌水矿化度和施氮量对加工番茄光合特性和产量的影响,揭示其交互作用对加工番茄生理生长影响机制,以期为新疆干旱区微咸水资源合理开发利用提供理论依据。
试验于2022年 5-8 月在新疆石河子市现代节水灌溉兵团重点实验室/石河子大学节水灌溉试验站(86°03′47″E,44°18′28″N,海拔450 m)进行。该地区属于典型温带大陆性气候,年均日照时数 2 950 h,年平均降水量 220 mm,年平均蒸发量 1 700 mm。试验田地下水埋深 8 m以下,土壤质地为中壤土,小于 0.01 mm粒径的土壤物理黏粒含量大于 23%,0~60 cm土壤容重为 1.45 g/c
土层/cm Soil layer | 田间持水率/(g/g) Field moisture capacity | 全氮/(g/kg) Total N | 全磷/(g/kg) Total P | 全钾/(g/kg) Total K | 速效磷/(mg/kg) Available P | 速效钾/(mg/kg) Available K | pH |
---|---|---|---|---|---|---|---|
0~20 | 18.7 | 0.85 | 0.86 | 8.1 | 30.73 | 407.55 | 7.54 |
20~40 | 18.9 | 0.87 | 0.84 | 8.3 | 29.16 | 403.25 | 7.71 |
40~60 | 19.1 | 0.92 | 0.87 | 8.1 | 30.21 | 410.65 | 7.68 |
试验加工番茄品种为金番3166,于2022年5月5日移苗定植,8月28日进入成熟期收获,全生育期 115 d。种植模式为1膜2管4行,行距 30 cm,株距 35 cm。覆膜为宽145 cm的普通塑料地膜。试验小区内滴灌带间距0.70 m,滴头设计流量 1.3 L/h,直径 16 mm,滴头间距0.3 m。
参考当地生产实践及其他学
不同矿化度的微咸水由工业盐(NaCl含量> 96%)配制而成。施肥采用尿素(N:46.4%)和磷酸二氢钾(K:28.72%,P:22.75%),磷酸二氢钾施用量为188 kg/h
生育期 Growth period | 日期(月/日) Date(Month/day) | 持续时间/d Length of time | 灌水、施肥周期/d Irrigation and fertilization cycle | 灌水、施肥比例/% Ratio of irrigation and fertilization | 灌水、施肥次数 Frequency of irrigation and fertilization |
---|---|---|---|---|---|
苗期 Seedling stage | 05/05-05/31 | 26 | 30 | 14.3 | 1 |
花期 Flowerin stage | 06/01-06/20 | 20 | 20 | 14.3 | 1 |
果实膨大一期 Fruit enlargement stageⅠ | 06/21-07/15 | 25 | 12 | 14.3 | 2 |
果实膨大二期 Fruit enlargement stage Ⅱ | 07/16-08/04 | 20 | 10 | 14.3 | 2 |
成熟期 Maturity stage | 08/05-08/28 | 24 | 11 | 14.3 | 1 |
全生育期 Whole growth stage | 115 | 100 | 7 |
1)叶片SPAD值。在加工番茄的花期、果实膨大期和成熟期,每个处理选取3 株长势均匀的植株,每个植株选取3片完全舒展的叶片进行测定,并取平均值。使用便携式叶绿素仪SPAD-502 PLUS(Konica Minolta, Japan)测定SPAD(soil-plant analysis and development)值。
2) 光合特性。在加工番茄的花期、果实膨大期和成熟期晴朗天气中选择某天,每个处理选取3 株长势均匀的植株,对加工番茄的第4层向阳叶片进行红线标记。使用Li-6800型(Li-Cor)便携式光合测定仪测定加工番茄第4层向阳叶片的净光合速率Pn、蒸腾速率Tr、气孔导度Gs、胞间CO2浓度Ci等参数。测定时开放气路, CO2流速为500 µmol/s,观测时间均为上午11:00-13:00。计算叶片水分利用效率(leaf water use efficiency, LWUE = Pn/Tr
3)产量。在加工番茄成熟后,每个小区选择6株长势均匀的植株进行测定,以单株计,包括单果质量、单株果数和单株产量。
不同矿化度微咸水与施氮量对加工番茄不同生育期SPAD值的影响见

图1 不同矿化度微咸水与施氮量对加工番茄不同生育期SPAD值的影响
Fig.1 Effects of brackish water with different salinity and nitrogen application rateon SPAD values of processing tomato at different growth stages
A、B、C分别表示加工番茄的花期、果实膨大期和成熟期。不同小写字母表示同一生育期不同处理间差异显著(P<0.05)。A, B and C represent the flowering stage, fruit expansion stage and maturity stage of processing tomato, respectively. Different lowercase letters indicated significant differences among different treatments at the same growth period (P<0.05).
因子 Factors | 花期 Flowering stage | 果实膨大期 Fruit expansion stage | 成熟期 Maturity stage |
---|---|---|---|
S |
30.86 |
33.9 |
49.47 |
N |
6.71 | 0.897 | 0.903 |
S×N | 1.955 | 0.252 | 0.294 |
注: **表示0.01水平上差异显著,下同。 Note:** indicate significant at 0.01 level.The same as below.
由
处理Treatment | 蒸腾速率/ [mmol/( | 净光合速率/ [μmol/( Net photosynthetic rate (Pn) | 气孔导度/[mmol/( Stomatal conductance(Gs) | 胞间CO2浓度/ (μmo/mol)Intercellular CO2 concentration(Ci ) | 叶片水分利用效率/(μmol/mmol)Leaf water use efficiency(LWUE) |
---|---|---|---|---|---|
S1N1 | 6.7±0.61ab | 18.66±1.08ab | 191.64±40.86bc | 224.49±15.46a | 2.79±0.15a |
S1N2 | 7.35±1.20ab | 19.53±2.10a | 234.91±29.1ab | 222.01±6.30ab | 2.73±0.68a |
S1N3 | 7.87±0.46a | 20.07±0.46a | 245.98±30.44a | 204.23±8.69b | 2.56±0.2a |
S2N1 | 6.27±0.64abc | 17.45±0.89abc | 147.19±35.55cd | 217.00±6.95ab | 2.81±0.41a |
S2N2 | 6.99±1.25ab | 17.60±2.04abc | 178.08±12.80c | 225.84±12.33a | 2.54±0.20a |
S2N3 | 7.17±0.80ab | 18.70±0.93ab | 191.25±1.99bc | 220.88±6.51ab | 2.62±0.24a |
S3N1 | 4.58±0.57c | 15.03±0.70c | 122.59±13.46d | 223.35±4.13ab | 3.32±0.52a |
S3N2 | 5.87±1.63abc | 16.18±1.87bc | 145.54±18.38cd | 216.99±12.05ab | 2.93±0.93a |
S3N3 | 5.57±1.01bc | 15.79±2.34c | 144.97±19.43cd | 234.29±14.47a | 2.86±0.21a |
方差分析 Analysis of variance | |||||
S |
9.84 |
15.47 |
26.59 | 1.329 | 1.78 |
N | 2.882 | 1.44 |
6.38 | 0.092 | 1.03 |
S×N | 0.164 | 0.229 | 0.332 |
2.99 | 0.155 |
注: 同列数据后不同小写字母表示处理间差异显著(P<0.05),S 为不同灌水矿化度处理,N 为不同施氮量处理,*和**分别代表在0.05和0.01水平上差异显著。下同。Note: After data in the same column, different lowercase letters indicate significant differences between treatments(P<0.05), S refers to treatments with different irrigation salinity, N refers to treatments with different nitrogen application rates, * and ** represent significant differences at 0.05 and 0.01 levels respectively. The same as below.
由
处理 Treatment | 蒸腾速率/[mmol/( | 净光合速率/[μmol/( Net photosynthetic rate(Pn) | 气孔导度/[mmol/( Stomatal conductance(Gs) | 胞间CO2浓度/ (μmol/mol) Intercellular CO2concentration(Ci ) | 叶片水分利用效率/(μmol/mmol) Leaf water use efficiency(LWUE) |
---|---|---|---|---|---|
S1N1 | 8.29±1.29bc | 21.03±2.55bcd | 385.13±51.14ab | 148.89±22.53bc | 2.55±0.10a |
S1N2 | 9.61±0.83ab | 24.20±1.86ab | 386.13±50.73ab | 101.93±19.90e | 2.52±0.08a |
S1N3 | 10.28±0.27a | 25.58±0.47a | 438.12±24.28a | 95.00±12.29e | 2.49±0.07a |
S2N1 | 7.25±1.04c | 20.13±1.27bcd | 355.02±45.00bc | 172.54±14.09ab | 2.80±0.25a |
S2N2 | 8.75±0.37b | 22.99±3.47abc | 357.39±45.65bc | 149.32±3.36bc | 2.62±0.31a |
S2N3 | 9.41±0.8ab | 23.47±3.97abc | 380.27±32.48abc | 110.69±19.93de | 2.49±0.27a |
S3N1 | 5.82±0.25d | 16.69±2.30d | 327.09±35.39bc | 161.37±19.03abc | 2.87±0.35a |
S3N2 | 7.18±0.32c | 19.49±0.80cd | 354.31±29.08bc | 133.22±20.73cd | 2.72±0.24a |
S3N3 | 6.97±0.87cd | 18.03±1.47d | 305.32±41.03c | 183.8±14.33a | 2.61±0.35a |
方差分析 Analysis of variance | |||||
S |
30.3 |
14.07 |
7.58 |
15.3 | 1.71 |
N |
13.5 |
5.13 | 0.49 |
10.3 | 1.65 |
S×N | 0.49 | 0.45 | 1.33 |
7.3 | 0.23 |
由
处理 Treatment | 蒸腾速率/[mmol/( Transpiration rate (Tr) | 净光合速率/ [μmol/( Net photosynthetic rate(Pn) | 气孔导度/[mmol/( Stomatal conductance(Gs) | 胞间CO2浓度/(μmo/mol) Intercellular CO2concentration(Ci ) | 叶片水分利用效率/ (μmol/mmol) Leaf water use efficiency(LWUE) |
---|---|---|---|---|---|
S1N1 | 5.07±0.07b | 21.07±0.73b | 433.26±16.77a | 261.3±13.48ab | 4.15±0.20d |
S1N2 | 5.28±0.04a | 22.25±0.58a | 436.82±24.02a | 256.09±10.88ab | 4.22±0.08d |
S1N3 | 5.42±0.04a | 23.20±0.93a | 465.06±55.18a | 205.48±21.15c | 4.28±0.16d |
S2N1 | 3.63±0.15c | 17.52±0.32de | 244.45±15.81bc | 267.27±1.33ab | 4.83±0.17c |
S2N2 | 3.82±0.07c | 18.47±0.34d | 273.43±29.77b | 250.56±18.34ab | 4.84±0.02c |
S2N3 | 3.40±0.01d | 19.59±1.13c | 259.17±38.88bc | 209.22±0.85c | 5.76±0.34b |
S3N1 | 3.02±0.01e | 15.57±0.45f | 215.83±43.13bc | 272.92±7.07a | 5.16±0.14c |
S3N2 | 2.57±0.28f | 16.76±0.18e | 240.13±35.61bc | 255.27±7.14ab | 6.57±0.77a |
S3N3 | 2.45±0.04f | 15.39±0.28f | 204.92±3.44c | 244.88±16.29b | 6.28±0.04ab |
方差分析 Analysis of variance | |||||
S |
1 215.97 |
227.16 |
120.66 |
4.80 |
77.81 |
N |
4.67 |
11.75 | 0.766 |
33.23 |
13.38 |
S×N |
17.01 |
4.67 | 0.785 | 2.389 | 7.092** |
综上,随着生育进程的推进,加工番茄的蒸腾速率和净光合速率呈先增大后减小的趋势,胞间CO2浓度则呈先减小后增大的趋势,在成熟期叶片水分利用效率显著升高,施氮量和矿化度与施氮量的交互作用对蒸腾速率、净光合速率和叶片水分利用效率也达到极显著影响。矿化度为S3水平时,对加工番茄光合特性产生的抑制作用最大,此时适宜的施氮量(N2)能够改善高矿化度灌水带来的负作用。
由
处理 Treatment | 单株果数 Fruit number per plant | 单果质量/g Weight of single fruit | 产量/(t/h Yield |
---|---|---|---|
S1N1 | 48.67±2.08abcd | 41.21±0.98abcd | 160.53±9.94abc |
S1N2 | 50.00±2.65ab | 43.16±1.26ab | 172.80±13.95ab |
S1N3 | 50.33±2.52ab | 44.44±1.54a | 178.93±10.86a |
S2N1 | 49.67±2.08abc | 39.45±2.56bcd | 156.53±7.26bc |
S2N2 | 51.33±1.15a | 41.03±2.62abcd | 168.53±12.04ab |
S2N3 | 50.67±2.52ab | 41.92±1.88abc | 170.13±15.14ab |
S3N1 | 45.33±2.08d | 37.77±2.12d | 136.80±5.6d |
S3N2 | 47.00±1.00abc | 38.71±0.67cd | 145.60±5.6cd |
S3N3 | 46.00±2.00cd | 39.44±3.43bcd | 144.80±6.93cd |
方差分析 Analysis of variance | |||
S |
11.48 |
9.67 |
19.20 |
N | 1.333 | 3.211 |
4.33 |
S×N | 0.09 | 0.108 | 0.205 |
植物的光合特性对于其整个生长发育过程来说至关重要,微咸水灌溉后,土壤中可溶性盐积累,会出现土壤水分有效性降低、植物叶绿体受到破坏、叶绿素酶活性改变等不良影
叶绿素是影响光合特性的重要生理指标,叶片SPAD值可以反映叶绿素的相对含
本研究中,在1 g/L和3 g/L微咸水处理下,随着施氮量的增加,加工番茄叶Tr和Pn随之增大,并使其保持在较高的水平;而在5 g/L微咸水处理下,随着施氮量的增加,对加工番茄叶片Tr和Pn的促进作用先增大后减小,且Tr和Pn仍然会显著减小。这表明氮肥在一定范围内能够调节和改善非气孔因素对Pn带来的不良影
随着灌水矿化度的增加,加工番茄的产量整体上呈现逐渐下降的趋
本研究结果表明,在灌水矿化度为3 g/L、施氮量为300 kg/h
参考文献 References
张振龙,孙慧,苏洋.新疆干旱区水资源生态足迹与承载力的动态特征与预测[J].环境科学研究,2017,30(12):1880-1888.ZHANG Z L,SUN H,SU Y.Dynamic characteristics and prediction of ecological footprint and carrying capacity of water resources in arid areas of Xinjiang[J].Research of environmental sciences,2017,30(12):1880-1888 (in Chinese with English abstract). [百度学术]
李倩文,左其亭,李东林,等.新疆水资源开发利用的空间均衡分析[J].水资源保护,2021,37(2):28-33.LI Q W,ZUO Q T,LI D L,et al.Spatial equilibrium analysis of water resources development and utilization in Xinjiang[J].Water resources protection,2021,37(2):28-33 (in Chinese with English abstract). [百度学术]
王琼,尹飞虎,何帅,等.新疆咸水资源现状及其利用分析[J].绿洲农业科学与工程,2018(3):55-60.WANG Q,YIN F H,HE S,et al.Analysis of present situation and utilization of saline water resource in Xinjiang[J]. Oasis agriculture science and engineering,2018(3):55-60 (in Chinese with English abstract). [百度学术]
王全九,单鱼洋.微咸水灌溉与土壤水盐调控研究进展[J].农业机械学报,2015,46(12):117-126.WANG Q J,SHAN Y Y.Review of research development on water and soil regulation with brackish water irrigation[J].Transactions of the CSAM,2015,46(12):117-126 (in Chinese with English abstract). [百度学术]
陈兵.中国新疆番茄产业发展现状分析[J].新疆财经大学学报,2011(3):16-20.CHEN B.An analysis on current status of tomato industry in Xinjiang[J].Journal of Xinjiang University of Finance & Economics,2011(3):16-20 (in Chinese with English abstract). [百度学术]
马中昇,谭军利,魏童.中国微咸水利用的地区和作物适应性研究进展[J].灌溉排水学报,2019,38(3):70-75.MA Z S,TAN J L,WEI T.The variation of salt-tolerance of crops in different regions irrigated with brackish water in China[J].Journal of irrigation and drainage,2019,38(3):70-75 (in Chinese with English abstract). [百度学术]
田富强,温洁,胡宏昌,等.滴灌条件下干旱区农田水盐运移及调控研究进展与展望[J].水利学报,2018,49(1):126-135.TIAN F Q,WEN J,HU H C,et al.Review on water and salt transport and regulation in drip irrigated fields in arid regions[J].Journal of hydraulic engineering,2018,49(1):126-135 (in Chinese with English abstract). [百度学术]
杨文杰,王振华,任作利,等.微咸水膜下滴灌对土壤水盐分布及加工番茄产量的影响[J].干旱地区农业研究,2019,37(6):117-123,131.YANG W J,WANG Z H,REN Z L,et al.Effects of drip irrigation under brackish water mulch on soil water and salt distribution and processing tomato yield[J].Agricultural research in the arid areas,2019,37(6):117-123,131 (in Chinese with English abstract). [百度学术]
BEN-ASHER J,TSUYUKI I,BRAVDO B A,et al.Irrigation of grapevines with saline water[J].Agricultural water management,2006,83(1/2):13-21. [百度学术]
庞桂斌,徐征和,王海霞,等.微咸水灌溉对冬小麦光合特征及产量的影响[J].灌溉排水学报,2018,37(1):35-41.PANG G B,XU Z H,WANG H X,et al.Effect of irrigation with slight saline water on photosynthesis characteristics and yield of winter wheat[J].Journal of irrigation and drainage,2018,37(1):35-41 (in Chinese with English abstract). [百度学术]
杨凤军,李天来,臧忠婧,等.等渗NaCl、干旱胁迫对番茄幼苗光合特性及叶绿体超微结构的影响[J].应用生态学报,2017,28(8):2588-2596.YANG F J,LI T L,ZANG Z J,et al.Effects of isotonic NaCl and drought stress on photosynthetic characteristics and chloroplast ultrastructure of tomato seedlings[J].Chinese journal of applied ecology,2017,28(8):2588-2596 (in Chinese with English abstract). [百度学术]
ALBASSAM B A.Effect of nitrate nutrition on growth and nitrogen assimilation of pearl millet exposed to sodium chloride stress[J].Journal of plant nutrition,2001,24(9):1325-1335. [百度学术]
FLORES P,CARVAJAL M,CERDÁ A,et al.Salinity and ammonium/nitrate interactions on tomato plant development,nutrition,and metabolites[J].Journal of plant nutrition,2001,24(10):1561-1573. [百度学术]
马韬,曾文治,伍靖伟,等.不同施氮量下盐渍农田向日葵冠层生长与辐射利用规律[J].农业机械学报,2020,51(12):292-303.MA T,ZENG W Z,WU J W,et al.Sunflower canopy development,radiation absorption and use efficiency at different nitrogen application rates in saline fields[J].Transactions of the CSAM,2020,51(12):292-303 (in Chinese with English abstract). [百度学术]
CHEN W P,HOU Z N,WU L S,et al.Effects of salinity and nitrogen on cotton growth in arid environment[J].Plant and soil,2010,326(1):61-73. [百度学术]
侯森, 侯振安, 冶军, 等. 咸水滴灌条件下棉花生长和氮素吸收对水氮的响应[J]. 新疆农业科学, 2010, 47(9): 1882-1887. HOU S, HOU Z A, YE J, et al. Cotton growth and nitrogen uptake in response to rates of water and nitrogen under drip irrigation with saline water[J]. Xinjiang Agricultural Sciences, 2010, 47(9):1882-1887(in Chinese with English abstract). [百度学术]
窦允清,王振华,侯裕生,等.模糊数学综合评判分析北疆加工番茄水氮耦合效应[J].核农学报,2020,34(9):2059-2070.DOU Y Q,WANG Z H,HOU Y S,et al.Analysis of water-nitrogen coupling effect of processing tomatoes in Northern Xinjiang by fuzzy mathematics comprehensive evaluation[J].Journal of nuclear agricultural sciences,2020,34(9):2059-2070 (in Chinese with English abstract). [百度学术]
于文颖,纪瑞鹏,冯锐,等.不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应[J].生态学报,2015,35(9):2902-2909.YU W Y,JI R P,FENG R,et al.Response of water stress on photosynthetic characteristics and water use efficiency of maize leaves in different growth stage[J].Acta ecologica sinica,2015,35(9):2902-2909 (in Chinese with English abstract). [百度学术]
杨劲松.作物对不同盐胁迫和调控条件的响应特征与抗盐性调控研究[D].南京:南京农业大学,2006.YANG J S.Characteristics of crop response on different salt tress/management and the regulation of crop salt resistance[D].Nanjing:Nanjing Agricultural University,2006 (in Chinese with English abstract). [百度学术]
杨晓慧,蒋卫杰,魏珉,等.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业大学学报(自然科学版),2006,37(2):302-305,308.YANG X H,JIANG W J,WEI M,et al.Review on plant response and resistance mechanism to salt stress[J].Journal of Shandong Agricultural University(natural science edition),2006,37(2):302-305,308 (in Chinese). [百度学术]
王加真,夏更寿,李建龙,等.高盐胁迫对沟叶结缕草叶片光合色素含量的影响[J].上海交通大学学报(农业科学版),2007,25(6):583-586.WANG J Z,XIA G S,LI J L,et al.Effects of NaCl stress on the content of photosynthetic pigments in the leaves of zoysiagrass[J].Journal of Shanghai Jiao Tong University (agricultural science),2007,25(6):583-586 (in Chinese with English abstract). [百度学术]
庞桂斌,张立志,王通,等.微咸水灌溉作物生理生态响应与调节机制研究进展[J].济南大学学报(自然科学版),2016,30(4):250-255.PANG G B,ZHANG L Z,WANG T,et al.Review on plant physiological and growth responses and regulation mechanisms under slight saline water irrigation[J].Journal of University of Jinan (science and technology),2016,30(4):250-255 (in Chinese with English abstract). [百度学术]
LIN F F,QIU L F,DENG J S,et al.Investigation of SPAD meter-based indices for estimating rice nitrogen status[J].Computers and electronics in agriculture,2010,71:S60-S65. [百度学术]
范方,张玉霞,姜健,等.盐胁迫对紫花苜蓿生长及光合生理特性的影响[J].中国农学通报,2013,29(17):14-18.FAN F,ZHANG Y X,JIANG J,et al.Effects of salt stress on the growth and photosynthetic physiological characteristics of alfalfa[J].Chinese agricultural science bulletin,2013,29(17):14-18 (in Chinese with English abstract). [百度学术]
侯鹏浩,杨万明,杜维俊,等.不同程度盐胁迫对大豆苗期生物量及生理指标的影响[J].大豆科学,2020,39(3):422-430.HOU P H,YANG W M,DU W J,et al.Effects of different degree salt stress on biomass and physiological indexes of soybean seedling[J].Soybean science,2020,39(3):422-430 (in Chinese with English abstract). [百度学术]
张潭,唐达,李思思,等.盐碱胁迫对枸杞幼苗生物量积累和光合作用的影响[J].西北植物学报,2017,37(12):2474-2482.ZHANG T,TANG D,LI S S,et al.Responses of growth and photosynthesis of Lycium barbarum L.seedling to salt-stress and alkali-stress[J].Acta botanica boreali-occidentalia sinica,2017,37(12):2474-2482 (in Chinese with English abstract). [百度学术]
马巧利,孙彦,杨青川,等.NaCl和等渗PEG4000胁迫对紫花苜蓿种子发芽及生理活性的影响[J].草地学报,2012,20(3):547-552.MA Q L,SUN Y,YANG Q C,et al.Influence of NaCl and osmotic PEG4000 stress on seed germination of Medicago sativa[J].Acta agrestia sinica,2012,20(3):547-552 (in Chinese with English abstract). [百度学术]
王罕博,张栓堂,焦艳平,等.不同氮肥与矿化度水平微咸水喷灌对冬小麦光合特征及产量的影响[J].农业资源与环境学报,2022,39(1):99-106.WANG H B,ZHANG S T,JIAO Y P,et al.Effect of brackish water sprinkling irrigation with different nitrogen and salinity levels on photosynthesis characteristics and yield of winter wheat[J].Journal of agricultural resources and environment,2022,39(1):99-106 (in Chinese with English abstract). [百度学术]
徐俊增,彭世彰,魏征,等.节水灌溉水稻叶片胞间CO2浓度及气孔与非气孔限制[J].农业工程学报,2010,26(7):76-80.XU J Z,PENG S Z,WEI Z,et al.Intercellular CO2 concentration and stomatal or non-stomatal limitation of rice under water saving irrigation[J].Transactions of the CSAE,2010,26(7):76-80 (in Chinese with English abstract). [百度学术]
FARQUHAR G D,SHARKEY T D.Stomatal conductance and photosynthesis[J].Annual review of plant physiology,1982,33:317-345. [百度学术]
吴家富,杨博文,向珣朝,等.不同水稻种质在不同生育期耐盐鉴定的差异[J].植物学报,2017,52(1):77-88.WU J F,YANG B W,XIANG X C,et al.Identification of salt tolerance in different rice germplasm at different growth stages[J].Chinese bulletin of botany,2017,52(1):77-88 (in Chinese with English abstract). [百度学术]
HNILIČKOVÁ H,HNILIČKA F,MARTINKOVÁ J,et al.Effects of salt stress on water status,photosynthesis and chlorophyll fluorescence of rocket[J].Plant,soil and environment,2017,63(8):362-367. [百度学术]
田德龙,史海滨,闫建文,等.盐分胁迫下水、肥对向日葵光合特性的影响[J].灌溉排水学报,2012,31(5):73-77.TIAN D L,SHI H B,YAN J W,et al.Effects of water and fertilizer on sunflower photosynthetic characteristics under the salt stress[J].Journal of irrigation and drainage,2012,31(5):73-77 (in Chinese with English abstract). [百度学术]
姚玉涛,张国新,孙叶烁,等.微咸水灌溉对设施番茄生长以及产量和品质的影响[J].河北农业科学,2021,25(1):48-53.YAO Y T,ZHANG G X,SUN Y S,et al.Effects of brackish water irrigation on growth,yield and quality of tomato in facility[J].Journal of Hebei agricultural sciences,2021,25(1):48-53 (in Chinese with English abstract). [百度学术]
张继峯,王振华,张金珠,等.滴灌下氮盐交互对加工番茄荧光特性及产量品质的影响[J].中国农业科学,2020,53(5):990-1003.ZHANG J F,WANG Z H,ZHANG J Z,et al.The influences of different nitrogen and salt levels interactions on fluorescence characteristics,yield and quality of processed tomato under drip irrigation[J].Scientia agricultura sinica,2020,53(5):990-1003 (in Chinese with English abstract). [百度学术]