摘要
为探究长期不同水肥管理模式下露地菜田土壤灌水渗漏和氮素淋溶损失特征,利用新疆平原露地菜田国控监测点2014-2017年监测数据,分析常规生产模式、关键减排模式、综合减排模式下土层深度0~90 cm处的产流量、氮素淋溶量。结果显示,常规生产模式下,平均年产流量285.2
近年来,我国露地蔬菜产业不断壮大,正朝着规模化、集约化的方向发
我国北方露地蔬菜氮元素损失以淋溶为主,平均淋失量为51.7 kg/h
本研究以农业农村部新疆农田氮磷淋溶国控监测点数据(2014-2017年)为基础,利用田间原位淋溶水采集器法,以洋葱和花椰菜为例,监测了露地菜田土层深度0~90 cm处土壤氮素淋洗动态,分析在不同水肥管理模式下土壤的产流量和氮素淋溶量,旨在探究水肥运筹对露地蔬菜田氮素淋溶的影响,为防控干旱区露地菜田面源污染提供依据。
试验点位于新疆乌鲁木齐市以北22 km的新疆农业科学院安宁渠综合试验场(87°46´45″E、43°94´26″N)。海拔高度600 m,年均气温5 ~7 ℃,常年降水量310 mm,年蒸发量1 600~2 200 mm,年均日照时数2 594 h,无霜期156 d,属于温带大陆性干旱气候。试验土壤是北疆普遍分布的中度熟化灰漠土,壤土,前茬种植洋葱。试验前耕层土壤基础养分含量为有机质9.1 g/kg、全氮0.42 g/kg、硝态氮2.65 mg/kg、铵态氮0.96 mg/kg、速效磷7.3 mg/kg、速效钾109.4 mg/kg,土壤pH 8.0。
试验数据来自农业农村部新疆农田氮磷淋溶国控监测点(650104L2)。试验于2014-2017年进行,每年种植一季露地蔬菜。试验共设3个处理:常规水肥管理模式(CON)、关键减排模式(KF)、综合减排模式(BMP)。CON是当地大多数农民种植高产蔬菜的施肥灌溉模式;KF针对氮淋溶的源头即施氮量,是按照肥效试验结果和目标产量对施肥量和施肥方法进行优化,农民高产种植的灌溉量和方式不变;BMP针对氮淋溶的源头和驱动力,即施氮量和灌溉量,根据肥效试验和灌溉制度试验的结果,结合目标产量对施肥、灌溉制度均进行优化(
生育期 Growth stage | 频次 Times | 灌溉时间Irrigation time | 因素 Factors | 洋葱 Onion | 花椰菜 Cauliflower | ||||
---|---|---|---|---|---|---|---|---|---|
CON | KF | BMP | CON | KF | BMP | ||||
冬闲+定苗期Fallowing +Emergence stage | 第1次 1st | 5月下旬 Late May |
灌水量/( | 300 | 300 | 225 | 375 | 375 | 300 |
幼苗期 Seedling stage | 第2次 2nd | 6月下旬 Late June |
灌水量/( | 300 | 300 | 225 | 375 | 375 | 300 |
N/(kg/h | 206 | 69 | 83 | 84 | 30 | 30 | |||
P2O5/(kg/h | 0 | 0 | 34 | 0 | 0 | 0 | |||
第3次 3rd | 7月上旬 Early July |
灌水量/( | 300 | 300 | 225 | 375 | 375 | 300 | |
发育期Developmental stage | 第4次 4th | 7月中旬 Mid-July |
灌水量/( | 300 | 300 | 225 | 375 | 375 | 300 |
N/(kg/h | 0 | 0 | 0 | 0 | 30 | 30 | |||
第5次 5th | 7月下旬 Late July |
灌水量/( | 300 | 300 | 225 | 375 | 375 | 300 | |
膨大期Expansion stage | 第6次6th | 8月上旬 Early August |
灌水量/( | 300 | 300 | 225 | 375 | 375 | 300 |
第7次 7th | 8月中旬 Mid-August |
灌水量/( | 300 | 300 | 225 | 375 | 375 | 300 | |
第8次 8th |
8月下旬 Late August |
灌水量/( | 300 | 300 | 225 | 375 | 375 | 300 | |
N/(kg/h | 206 | 104 | 118 | 84 | 30 | 30 | |||
P2O5/(kg/h | 0 | 0 | 34 | 0 | 0 | 0 | |||
成熟期Mature stage | 第9次 9th |
9月上旬 Early September |
灌水量/( | 300 | 300 | 225 | 375 | 375 | 300 |
第10次 10th |
9月中旬 Mid-September |
灌水量/( | 300 | 300 | 225 | 375 | 375 | 300 | |
总计 Total |
N/(kg/h | 412 | 277 | 277 | 280 | 150 | 150 | ||
P2O5/(kg/h | 345 | 173 | 173 | 0 | 80 | 80 | |||
K2O/(kg/h | 300 | 120 | 120 | 0 | 75 | 75 | |||
灌溉定额/( Irrigation quota | 3 000 | 3 000 | 2 250 | 3 750 | 3 750 | 3 000 |
注: CON:常规水肥;KF:关键减排; BMP:综合减排;不同小写字母表示处理间差异显著(P<0.05)。下同。Note:CON:Conventional production mode;KF:Key factor mode to reduce leaching;BMP:Best management practice mode;different lowercase letters indicate significant differences among treatments(P<0.05). The same as below.
供试作物2014-2015年为新疆白皮洋葱,每年5月下旬沟播,畦灌,定植行距为15~18 cm,株距为10~13 cm,种植密度40万株/h
淋溶液是土壤深度90 cm处的水下渗溶液,通过原位采集装置(

图1 田间渗漏池示意图
Fig. 1 Schematic diagram of field seepage pond
产流量是每次灌溉后收集到的单位面积的淋溶液体积。产流系数是单位面积的产流量与灌水量的比值,按下式计算:
α=R/P×100% | (1) |
式中:α为产流系数;R为产流量,
作物某生育期氮淋溶量是指该时期内若干次淋溶量的和,其中定苗期收集的淋溶液包括整个冬季融雪水入渗形成的淋溶液。淋溶流失的氮素分年度进行统计,为1 a内每次淋溶液中氮素浓度与体积乘积的总和,计算如下:
(2) |
采用Excel 2019和Origin 2019进行数据处理和图表制作,利用SPSS 26.0进行统计分析,采用LSD法进行多重比较。
各处理组的蔬菜产量有显著差异(

图2 不同水肥运筹下的蔬菜产量
Fig.2 Vegetable yield under different water and fertilizer operations
同一作物年际间的产流特征相似,洋葱(2014-2015年)和花椰菜(2016-2017年)同一处理的产流量在不同年度有显著差异,但产流系数差异不大,全年灌溉量均呈现CON=KF>BMP,年均产流量为CON>KF>BMP,而产流系数是CON≥BMP>KF(
年份 Year | CON | KF | BMP | |||
---|---|---|---|---|---|---|
产流量/( Production flow | 产流系数/% Flow coefficient | 产流量/( Production flow | 产流系数/% Flow coefficient | 产流量/( Production flow | 产流系数/% Flow coefficient | |
2014 | 282.8a | 9.4a | 247.2a | 8.2a | 181.8a | 8.1a |
2015 | 287.5b | 9.6a | 249.0a | 8.3a | 223.7b | 9.9a |
2016 | 295.5c | 7.9b | 262.8b | 7.0b | 235.1c | 7.8b |
2017 | 275.3d | 7.3b | 252.0b | 6.7c | 211.4d | 7.0b |
由

图3 2014(A)、2015(B)、2016(C)和2017年(D)不同水肥运筹下的产流量
Fig. 3 Yield flow under different water and fertilizer operations in 2014 (A), 2015 (B), 2016 (C) and 2017 (D)
1)总氮。全年总氮淋溶量是CON>KF>BMP,并且有显著差异。2014-2015年(洋葱)CON、KF和BMP的年均总氮淋溶量分别为15.7、12.4、10.0 kg/h
整个生长期内各处理在“冬闲期+定苗期”的总氮淋溶量最大,4 a 间CON、KF与BMP处理年均总氮淋溶量为18.9~29.4 kg/h

图4 2014(A)、2015(B)、2016(C)和2017年(D)蔬菜各生育期总氮淋溶量
Fig.4 Total N leaching from vegetables at each reproductive stage in 2014 (A), 2015 (B), 2016 (C) and 2017 (D)
2)硝态氮。硝态氮淋溶量的变化类似于总氮的情况。全年淋溶量是CON>KF>BMP,并且有显著差异。2014-2015年(洋葱)CON、KF和BMP年均硝态氮淋溶量分别为12.1、8.4、6.2 kg/h

图5 2014(A)、2015(B)、2016(C)和2017年(D)蔬菜各生育期硝态氮淋溶量
Fig. 5 The leaching amount of nitrate nitrogen in each growth stage of vegetables in 2014 (A), 2015 (B), 2016 (C) and 2017(D)
硝态氮是淋溶氮的主体,4 a间不同处理硝态氮总淋失占总氮淋失的70%左右。2014-2015年(洋葱)CON、KF和BMP全年硝态氮淋溶量分别占总氮淋溶量的77.1%、67.7%、62.0%,2016-2017年(花椰菜)CON、KF和BMP全年硝态氮淋溶量分别占总氮淋溶量的67.2%、66.0%、65.9%。
3)铵态氮。铵态氮淋溶量变化与硝态氮类似。由

图6 2014(A)、2015(B)、2016(C)和2017年(D)蔬菜各生育期的铵态氮淋溶量
Fig.6 Leaching amount of ammonium nitrogen in vegetables at different growth stages in 2014(A), 2015(B), 2016(C) and 2017(D)
淋溶产流是由灌溉或降水引
相对于蔬菜的常规水肥管理模式,仅是减少施氮量、改进施肥方式的关键减排模式,以及降低灌溉量且减少施氮量的综合减排模式,二者都能减少总氮、硝态氮、铵态氮和有机氮淋溶量,这种氮淋溶量减少的情况在南方和北方的灌溉量和施肥量较大的菜田都存
连续4 a在2种蔬菜上的试验结果都是“冬季休闲期+定苗期”的总氮、硝态氮和铵态氮淋溶量分别占整个生长期淋溶量的42.4%~49.6%、38.3%~44.2%、32.4%~43.2%,而其他4个时期的淋溶量大小相近、差异不显著。蔬菜田的氮淋溶关键时期为“冬季休闲期+定苗期”,主要原因是前一个生长期残留在土壤中的氮被冬季降雪融水淋溶,以及蔬菜苗移栽前施入的基肥被定苗期灌水淋
参考文献References
郭凤领,吴金平,黄科,等.我国主要露地蔬菜轻简高效生产现状与展望[J].中国蔬菜, 2021(9):1-6.GUO F L,WU J P,HUANG K,et al.Present situation and prospect of light,simple and efficient production of main open-field vegetables in China[J].China vegetables,2021(9):1-6 (in Chinese). [百度学术]
黄绍文,唐继伟,李春花,等.我国蔬菜化肥减施潜力与科学施用对策[J].植物营养与肥料学报,2017,23(6):1480-1493.HUANG S W,TANG J W,LI C H,et al.Reducing potential of chemical fertilizers and scientific fertilization countermeasure in vegetable production in China[J].Journal of plant nutrition and fertilizer,2017,23(6):1480-1493(in Chinese with English abstract). [百度学术]
徐运清,秦红灵,全智,等.长期蔬菜种植对菜地土壤剖面硝酸盐分布和地下水硝态氮含量的影响[J].农业现代化研究, 2015, 36(6):1080-1085.XU Y Q,QIN H L,QUAN Z,et al.Effects of long-term vegetable cultivation on the NO
王洪媛,李俊改,樊秉乾,等.中国北方主要农区农田氮磷淋溶特征与时空规律[J].中国生态农业学报,2021,29(1):11-18.WANG H Y,LI J G,FAN B Q,et al.Nitrogen and phosphorus leaching characteristics and temporal and spatial distribution patterns in northern China farmlands[J].Chinese journal of eco-agriculture,2021,29(1):11-18 (in Chinese with English abstract). [百度学术]
高伟,陈岩,严长安,等.长江经济带氮淋溶流失空间格局及其水环境影响评估[J].环境科学学报,2020,40(1):325-333.GAO W, CHEN Y, YAN C A, et al.Spatial pattern of nitrogen leaching loss in the Yangtze River Economic Belt and its water environment impact assessment [J].Acta scientiae circumstantiae,2020,40(1):325-333(in Chinese with English abstract). [百度学术]
滕艳敏,韩卉,郝梓依,等.不同蔬菜种植模式对土壤淋溶水总氮、总磷和COD的影响[J].中国生态农业学报, 2017, 25(5):759-768.TENG Y M,HAN H,HAO Z Y,et al.Effect of vegetable cropping system on total nitrogen,phosphorus and COD in farmland leachate[J].Chinese journal of eco-agriculture,2017,25(5):759-768(in Chinese with English abstract). [百度学术]
谷佳林,边秀举,刘梦星,等.不同缓控释氮肥对高羊茅草坪生长及硝态氮土壤残留与淋失的影响[J].水土保持学报,2013,27(5):173-177.GU J L,BIAN X J,LIU M X,et al.Effects of different slow-controlled release nitrogen fertilizer on Festuca arundinacea growth,nitrate nitrogen residual and leaching loss[J].Journal of soil and water conservation,2013,27(5):173-177(in Chinese with English abstract). [百度学术]
高德才,张蕾,刘强,等.不同施肥模式对旱地土壤氮素径流流失的影响[J].水土保持学报,2014,28(3):209-213.GAO D C,ZHANG L,LIU Q,et al.Effects of different fertilization modes on soil nitrogen runoff in dryland field[J].Journal of soil and water conservation,2014,28(3):209-213 (in Chinese with English abstract). [百度学术]
廖上强,陈延华,李艳梅,等.减量灌溉条件下缓释肥料对番茄产量、品质及硝态氮淋溶的影响[J].中国土壤与肥料,2015(6):70-75.LIAO S Q,CHEN Y H,LI Y M,et al.Effect of slow release fertilizer on yield and quality of tomato and NO
杨荣全,谢立勇,郑益旻,等.不同水肥措施下华北露地菜地氮淋溶特征[J].中国生态农业学报,2021,29(1):176-186.YANG R Q,XIE L Y,ZHENG Y M,et al.The effects of water and fertilizer practices on nitrogen leaching in open-field vegetable soil in North China[J].Chinese journal of eco-agriculture,2021,29(1):176-186 (in Chinese with English abstract). [百度学术]
寇长林,骆晓声,巨晓棠.优化施氮对设施番茄土壤硝态氮残留及土壤氮平衡的影响[J].植物营养与肥料学报,2021,27(5):837-848.KOU C L,LUO X S,JU X T.Effects of optimal nitrogen application on nitrate nitrogen residue and soil nitrogen balance in plant tomato[J].Plant nutrition and fertilizer science, 2021,27(5):837-848(in Chinese with English abstract). [百度学术]
雷豪杰,李贵春,丁武汉,等.设施菜地土壤氮素运移及淋溶损失模拟评价[J].中国生态农业学报,2021,29(1):38-52.LEI H J,LI G C,DING W H,et al.Simulation evaluation of soil nitrogen transport and leaching loss in protected vegetable plots[J].Chinese journal of eco-agriculture,2021,29(1):38-52(in Chinese with English abstract). [百度学术]
殷冠羿,胡克林,李品芳,等.不同水肥管理对京郊设施菜地氮素损失及氮素利用效率的影响[J].农业环境科学学报, 2013, 32(12):2403-2412.YIN G Y, HU K L, LI P F, et al.Effects of different water and fertilizer management on nitrogen loss and nitrogen use efficiency of vegetable plots in Beijing suburbs[J].Journal of agro-environment science,2013,32(12):2403-2412(in Chinese with English abstract). [百度学术]
郭智,刘红江,张岳芳,等.不同施肥模式对菜地氮素径流损失与表观平衡的影响[J].水土保持学报,2018,32(4):37-42,50.GUO Z, LIU H J, ZHANG Y F,et al.Effects of different fertilization modes on nitrogen runoff loss and apparent balance in vegetable fields[J].Journal of soil and water conservation,2018,32(4):37-42,50(in Chinese with English abstract). [百度学术]
黄东风,王果,李卫华,等.不同施肥模式对小白菜生长、营养累积及菜地氮、磷流失的影响[J].中国生态农业学报,2009,17(4):619-624.HUANG D F,WANG G,LI W H,et al.Effect of fertilization mode on growth and nutrition accumulation in vegetables,and loss of nitrogen and phosphorus in vegetable fields[J].Chinese journal of eco-agriculture,2009,17(4):619-624(in Chinese with English abstract). [百度学术]
马群,贾骕,刘静,等.不同灌溉模式对设施番茄产量与土壤养分运移的影响[J].黑龙江农业科学,2013(10):65-68.MA Q,JIA S,LIU J,et al.Effect of different irrigation conditions on yield and soil nutrients movement of greenhouse tomato[J].Heilongjiang agricultural sciences,2013(10):65-68(in Chinese with English abstract). [百度学术]
杨荣全,曹飞,李迎春,等.不同施肥处理对华北露天菜地氮素淋溶的影响[J].中国土壤与肥料,2020(6):130-137.YANG R Q,CAO F,LI Y C,et al.Effect of different fertilization on nitrogen leaching in an open field used for vegetable planting on North China[J].Soil and fertilizer sciences in China,2020(6):130-137(in Chinese with English abstract). [百度学术]
赵营.宁夏引黄灌区不同类型农田氮素累积与淋洗特征研究[D].北京:中国农业科学院, 2012.ZHAO Y.Study on the characteristics of N accumulation and leaching in different farmlands in the yellow river irrigation region of Ningxia[D].Beijing:Chinese Academy of Agricultural Sciences,2013(in Chinese with English abstract). [百度学术]
卢新玉,陈仁升,刘艳,等.我国新疆北部地区雪面雨日数时空变化特征分析[J].冰川冻土,2021, 43(5):1446-1457.LU X Y,CHEN R S,LIU Y,et al.Spatiotemporal variation of rain-on-snow days in Northern Xinjiang[J].Journal of glaciology and geocryology,2021,43(5):1446-1457(in Chinese with English abstract). [百度学术]
黄东风,王果,李卫华,等.不同施肥模式对蔬菜生长、氮肥利用及菜地氮流失的影响[C]//中国农业生态环境保护协会.农村污水处理及资源化利用学术研讨会论文集.天津:中国农业生态环境保护协会,2008:98-106.HUANG D F, WANG G, LI W H, et al.Effects of different fertilization modes on vegetable growth, nitrogen utilization and nitrogen loss in vegetable fields[C]//China Agricultural Ecological and Environmental Protection Association.Proceedings of the symposium on rural sewage treatment and resource utilization.Tianjin: China Agricultural Ecological and Environmental Protection Association, 2008:98-106(in Chinese). [百度学术]
ZHANG J J,HE W T,SMITH W N,et al.Exploring management strategies to improve yield and mitigate nitrate leaching in a typical radish field in Northern China[J/OL].Journal of environmental management,2021,290:112640[2022-11-19].https://doi.org/10.1016/j.jenvman.2021.112640. [百度学术]
XU X P,HE P,WEI J L,et al.Use of controlled-release urea to improve yield,nitrogen utilization,and economic return and reduce nitrogen loss in wheat-maize crop rotations[J/OL].Agronomy,2021,11(4):723[2022-11-19].https://doi.org/10.3390/agronomy11040723. [百度学术]
刘发波,马笑,张芬,等.硝化抑制剂对我国蔬菜生产产量、氮肥利用率和氧化亚氮减排效应的影响:Meta分析[J].环境科学,2022,43(11):5140-5148.LIU F B,MA X,ZHANG F,et al.Impact of nitrification inhibitors on vegetable production yield,nitrogen fertilizer use efficiency and nitrous oxide emission reduction in China:Meta analysis[J].Environmental science,2022,43(11):5140-5148 (in Chinese with English abstract). [百度学术]
李若楠,武雪萍,张彦才,等.节水减氮对温室土壤硝态氮与氮素平衡的影响[J].中国农业科学,2016,49(4):695-704.LI R N,WU X P,ZHANG Y C,et al.Effects of reduced application of nitrogen and irrigation on soil nitrate nitrogen content and nitrogen balance in greenhouse production[J].Scientia agricultura sinica,2016,49(4):695-704(in Chinese with English abstract). [百度学术]