摘要
为探究碱胁迫下油菜幼苗叶片离子平衡与光合特性对外源C
关键词
土壤盐分作为影响植物生长发育的主要非生物因素之一,对农业可持续发展构成严重威胁。世界上约10%的土地面积和至少20%的灌溉土地受到盐碱胁迫影
油菜(Brassica napus)作为主要油料作物之一,具有良好的经济和营养价值,在干旱和半干旱地区被广泛种植,具有一定耐盐性,但在这些区域,盐碱的积累不利于植株苗期的生长发育。苗期作为油菜生长期关键阶段,周期长、油菜幼苗抗逆性较弱,易受盐碱等非生物胁
目前人们普遍认为C
以华油杂62(耐盐品种,华中农业大学选育)与湘油15(盐敏感品种,湖南农业大学选育)为供试材料,采用盆栽试验,以蛭石为培养基质,Hoagland营养液为基础培养液,NaHCO3为胁迫条件。
本试验于人工气候温室进行。选取健康饱满的油菜种子播于装有蛭石的36孔穴盘中,待幼苗长出第一片真叶时施加1/4 Hoagland营养液培养;长至3叶期,选取健壮、长势一致的幼苗移栽于含有0.8 kg蛭石的塑料盆(高27 cm,直径33 cm)中栽培,每盆3株,每隔3 d用1/2 Hoagland营养液根部均匀灌溉1次,每次浇灌量为200 mL;培养至5叶期,再次选取健壮、长势一致的油菜幼苗,用Hoagland全营养液培养3 d后进行处理,每次浇灌量为300 mL。
试验1:共设6个处理。(1)CK:营养液+叶面喷施蒸馏水;(2)T1:NaHCO3胁迫+叶面喷施蒸馏水;(3)T2:NaHCO3胁迫+0.25% CaCl2溶液;(4)T3:NaHCO3胁迫+0.5% CaCl2溶液;(5)T4:NaHCO3胁迫+1% CaCl2溶液;(6)T5:NaHCO3胁迫+2% CaCl2溶液,处理中NaHCO3浓度为100 mmol/L,每个处理5个重复。胁迫处理时NaHCO3直接添加至营养液,搅拌均匀后进行根部均匀浇灌,每隔3 d浇灌1次,每次浇灌量为蛭石持水量的2倍,以使根部溶液彻底更新,根据蒸发量,用称质量法每隔1 d补充1次去离子水。胁迫处理后,于每天19∶00后进行不同浓度CaCl2溶液叶面喷施处理,喷施标准以刚刚形成水滴滴落为宜,每隔3 d喷施1次,期间共喷施3次,处理12 d后测定相关指标。
试验2:在试验1所设NaHCO3胁迫的基础上,共设3个处理,(1)CK+叶面喷施蒸馏水;(2)NaHCO3胁迫+叶面喷施等量蒸馏水;(3)NaHCO3胁迫+叶面喷施等量适宜浓度CaCl2溶液。每个处理5个重复,NaHCO3浓度、CaCl2叶面喷施处理方式及取样时间与试验1保持一致。
植株矿质离子积累量:取样后用自来水将植株冲洗3次,再用去离子水冲洗3次, 用滤纸吸干表面水分后,将油菜幼苗叶、茎、根分开,将处理好的样品在105 ℃下杀青30 min,75 ℃下烘干至恒质量,准确称取烘干并且粉碎的幼苗叶、茎、根,均0.100 0 g,置于马福炉(550 ℃)灰化2.5 h,灰分用于离子含量的测定。采用火焰光度计法测定N
由
油菜品种 Variety | 器官 Organ | 处理 Treatment | N Content of N | Content of | C Content of C | |
---|---|---|---|---|---|---|
华油杂62 Huayouza 62 |
叶 Leaf |
CK NaHCO3 |
38.18±1.26b 61.80±5.28a |
63.80±4.24a 53.49±1.94b |
59.59±5.54a 29.45±0.65b |
1.72±0.02a 0.96±0.07b |
NaHCO3+CaCl2 | 40.10±1.41b | 59.41±3.00b | 69.92±6.25a | 1.46±0.01b | ||
茎 Stem |
CK NaHCO3 |
47.72±0.52b 54.82±0.88a |
49.42±1.28a 37.18±2.18b |
19.81±1.23a 14.51±0.92b |
1.03±0.02a 0.68±0.07b | |
根 Root |
CK NaHCO3 |
25.41±0.65b 29.00±2.55a |
26.03±2.03a 11.51±0.81b |
23.07±1.85b 43.48±2.07a |
1.01±0.12a 0.45±0.07b | |
湘油15 Xiangyou 15 |
叶 Leaf |
CK NaHCO3 |
51.95±0.45b 83.19±2.87a |
75.00±9.33a 57.36±1.66b |
61.35±3.65a 29.98±8.82b |
1.27±0.01a 0.71±0.01b |
NaHCO3+CaCl2 | 70.06±4.29a | 58.32±0.49b | 51.80±5.71b | 0.86±0.01b | ||
茎 Stem |
CK NaHCO3 |
63.07±1.02b 80.60±1.44a |
60.18±0.91a 47.93±1.01b |
17.20±2.50a 12.40±0.75b |
0.95±0.01a 0.57±0.04b | |
根 Root |
CK NaHCO3 |
24.26±2.07b 38.77±3.73a |
30.57±2.64a 13.06±0.46b |
13.63±1.50b 31.86±2.72a |
1.16±0.03a 0.37±0.03b |
注: 同列数据后不同字母表示在0.05水平差异显著,下同。Note:Different letters indicate significant different at the 0.05 level in the same column,the same as below.
华油杂62与湘油15茎中N
华油杂62与湘油15根中N
由

图1 不同浓度外源钙对NaHCO3胁迫下油菜幼苗叶片质膜相对透性(A)与MDA含量(B)的影响
Fig. 1 Effects of different concentrations of exogenous calcium on plasma membrane relative permeability(A) and content of MDA(B) of rapeseed seedlings under NaHCO3 stress
NaHCO3胁迫下喷施0.25% CaCl2(T2)后,华油杂62 质膜相对透性较NaHCO3胁迫降低了17.44%,而湘油15增加了21.12%,在喷施0.50%(T3处理)、1.00%.(T4处理)、2.00% CaCl2(T5),华油杂62分别较NaHCO3胁迫降低了29.19%、27.71%与10.16%,T3处理降低最为显著,湘油15分别降低了15.15%、15.41%、17.54%,各处理之间无显著差异。华油杂62处理T3与T4的叶片质膜相对透性的降低量均大于湘油15,华油杂62在处理T5下叶片质膜相对透性的降低量小于湘油15(
华油杂62在处理T4下较NaHCO3胁迫MDA含量下降了41.29%,而湘油15增加了9.45%,在喷施CaCl2 0.25%(T2)、0.50%(T3)与2.00%(T5)后,华油杂62 MDA含量别较NaHCO3胁迫下降了7.8%、35.99%、35.51%,其T4处理降低量最为显著,与T3和T5无显著差异,湘油15 MDA含量分别下降了20.76%、48.17%、13.93%,其T3处理降低量最为显著。华油杂62 T2、T3处理下叶片MDA含量的降低量均小于湘油15,T5处理下华油杂62的降低量大于湘油15(
由
如
油菜品种 Variety | 处理 Treatment | 叶绿素a含量/(μg/g)Content of chl a | 叶绿素b含量/(μg/g) Content of chl b | 叶绿素总含量/(μg/g) Content of total chl | 潜在光化学效率Fv/Fo | 最大光化学效率Fv/Fm |
---|---|---|---|---|---|---|
华油杂62 Huayouza 62 | CK | 755.98±15.59a | 407.96±0.97a | 1168.79±91.75a | 3.53±0.57a | 0.779±0.013a |
NaHCO3 | 544.11±5.48b | 286.29±9.89b | 849.99±109.11b | 2.84±0.21b | 0.739±0.014b | |
NaHCO3+CaCl2 | 757.66±98.01a | 410.78±54.14a | 1157.41±51.14a | 3.36±0.10a | 0.773±0.004a | |
湘油15 Xiangyou 15 | CK | 628.02±94.10a | 327.87±20.33a | 970.44±159.49a | 4.55±0.21b | 0.809±0.019b |
NaHCO3 | 442.12±1.49c | 218.46±32.15c | 660.58±30.65b | 4.08±0.12c | 0.808±0.01b | |
NaHCO3+CaCl2 | 565.89±35.49b | 253.15±21.42b | 819.08±53.08b | 4.79±0.16a | 0.827±0.009a |
叶面喷施CaCl2后,华油杂62与湘油15叶绿素a含量较NaHCO3胁迫分别增加了39.25%、27.99%,叶绿素b分别增加了43.48%与15.88%,叶绿素总量分别增加了36.16%与23.99%;Fv/Fo分别增加了18.31%与17.4%,Fv/Fm分别增加了4.6%与2.35%;其中华油杂62叶绿素a、叶绿素b、叶绿素总含量、Fv/Fo与Fv/Fm的增加量均大于湘油15。
如

图2 外源钙对NaHCO3胁迫下油菜净光合速率(A)、气孔导度(B)、胞间CO2浓度(C)和蒸腾速率(D)的影响
Fig. 2 Effects of exogenous calcium on net photosynthetic rate(A), stomatal conductance(B), intercellular CO2 concentration (C), and transpiration rate(D) of rapeseed seedlings under NaHCO3 stress
图中柱子上不同字母表示同一品种不同处理间在0.05水平上差异显著,下同。Different letters in the collums indicate significant different between different treatments of the same variety at the 0.05 level ,the same as below.
叶面喷施CaCl2溶液后,华油杂62与湘油15净光合速率分别较NaHCO3胁迫上升了18%与7.76%(
由

图3 外源钙对NaHCO3胁迫下油菜幼苗株高(A)和茎叶鲜质量(B)的影响
Fig. 3 Effect of exogenous calcium on plant height(A) and fresh weight of stems and leaves(B)of rapeseed seedings under NaHCO3 stress
本研究探讨了NaHCO3胁迫下不同耐盐性油菜幼苗体内离子平衡、光合特性对外源C
离子毒害作为盐碱胁迫下影响植株膜系统完整性的主要因素之一,探究盐碱胁迫下离子的迁移规律,对维护植株膜系统的完整尤为重
有研究证实,盐胁迫会提高植株体内信号分子C
光合特性对植株的生长与逆境的适应起重要作用,盐碱胁迫下,植物体内N
参考文献References
MUNNS R,TESTER M.Mechanisms of salinity tolerance[J].Annual review of plant biology,2008,59:651-681. [百度学术]
RUAN C J,DA SILVA J A T,MOPPER S,et al.Halophyte improvement for a salinized world[J].Critical reviews in plant sciences,2010,29(6):329-359. [百度学术]
FLÖRKE M,BÄRLUND I,VAN VLIET M T,et al.Analysing trade-offs between SDGs related to water quality using salinity as a marker[J].Current opinion in environmental sustainability,2019,36:96-104. [百度学术]
YANG J Y,ZHENG W,TIAN Y,et al.Effects of various mixed salt-alkaline stresses on growth,photosynthesis,and photosynthetic pigment concentrations of Medicago ruthenica seedlings[J].Photosynthetica,2011,49(2):275-284. [百度学术]
YANG Y Q,GUO Y.Elucidating the molecular mechanisms mediating plant salt-stress responses[J].New phytologist,2018,217(2):523-539. [百度学术]
TANG X Q,ZHANG H L,SHABALA S,et al.Tissue tolerance mechanisms conferring salinity tolerance in a halophytic perennial species Nitraria sibirica Pall[J].Tree physiology,2021,41(7):1264-1277. [百度学术]
冯国艺,张谦,祁虹,等.滨海地区不同棉花品种植株与光合性状及产量对盐碱胁迫的响应[J].山西农业大学学报(自然科学版),2018,38(4):23-29.FENG G Y,ZHANG Q,QI H,et al.Response of the yield,photosynthesis physiology and plant trait of the different breediness cotton to saline-alkali stress in coastal area[J].Journal of Shanxi Agricultural University (natural science edition),2018,38(4):23-29 (in Chinese with English abstract). [百度学术]
SHAH N,ANWAR S,XU J J,et al.The response of transgenic Brassica species to salt stress:a review[J].Biotechnology letters,2018,40(8):1159-1165. [百度学术]
WANG W C,ZHANG F H,SUN L P,et al.Alkaline salt inhibits seed germination and seedling growth of canola more than neutral salt[J/OL].Frontiers in plant science,2022,13:814755[2022-11-14].https://doi.org/10.3389/fpls.2022.814755. [百度学术]
SHABALA S,SHABALA L,VOLKENBURGH E V.Effect of calcium on root development and root ion fluxes in salinised barley seedlings[J].Functional plant biology,2003,30(5):507-514. [百度学术]
ROY P R,TAHJIB-UL-ARIF M,POLASH M A S,et al.Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza sativa L.)[J].Physiology and molecular biology of plants:an international journal of functional plant biology,2019,25(3):611-624. [百度学术]
GUO Y,LIU Y,ZHANG Y,et al.Effects of exogenous calcium on adaptive growth,photosynthesis,ion homeostasis and phenolics of Gleditsia sinensis Lam.plants under salt stress[J/OL].Agriculture,2021,11(10):978[2022-11-14].https://doi.org/10.3390/agriculture11100978. [百度学术]
HUANG L Y,LI Z Z,PAN S B,et al.Ameliorating effects of exogenous calcium on the photosynthetic physiology of honeysuckle (Lonicera japonica) under salt stress[J].Functional plant biology,2019,46(12):1103-1113. [百度学术]
LUTTS S,KINET J M,BOUHARMONT J.NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance[J].Annals of botany,1996,78(3):389-398. [百度学术]
李小方,张志良.植物生理学实验指导[M].5版.北京:高等教育出版社,2016.LI X F,ZHANG Z L.Experimental instruction of plant physiology[M].5th ed.Beijing:Higher Education Press,2016(in Chinese ). [百度学术]
EL-BADRI A M,BATOOL M, IBRAHIM A,et al.Antioxidative and metabolic contribution to salinity stress responses in two rapeseed cultivars during the early seedling stage[J].Antioxidants,2021,10(8):1227[2022-11-14].https://doi.org/10.3390/antiox10081227. [百度学术]
WANG H,WU Z H,HAN J Y,et al.Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants[J/OL].PLoS One,2012,7(5):e37817[2022-11-14].https://doi.org/10.1371/journal.pone.0037817. [百度学术]
SUN J,DAI S X,WANG R G,et al.Calcium mediates root
LANG T,DENG S R,ZHAO N,et al.Salt-sensitive signaling networks in the mediation of
李雪,王胜男,程江珂.干旱胁迫对植物体内钙离子含量和分布的影响研究进展[J].种业导刊,2019(12):3-7.LI X,WANG S N,CHENG J K.Advance of effects of drought stress on content and distribution of C
DEMIDCHIK V,TESTER M.Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots[J].Plant physiology,2002,128(2):379-387. [百度学术]
TESTER M,DAVENPORT R.N
SHABALA S,DEMIDCHIK V,SHABALA L,et al.Extracellular C
张潭,唐达,李思思,等.盐碱胁迫对枸杞幼苗生物量积累和光合作用的影响[J].西北植物学报,2017,37(12):2474-2482.ZHANG T,TANG D,LI S S,et al.Responses of growth and photosynthesis of Lycium barbarum L. seedling to salt-stress and alkali-stress[J].Acta botanica boreali-Occidentalia sinica,2017,37(12):2474-2482 (in Chinese with English abstract). [百度学术]
KALAJI H M,JAJOO A,OUKARROUM A,et al.Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions[J/OL].Acta physiologiae plantarum,2016,38(4):102[2022-11-14].https://doi.org/10.1007/s11738-016-2113-y. [百度学术]
CHENG T L,CHEN J H,ZHANG J B,et al.Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance[J/OL].Frontiers in plant science,2015,6:3[2022-11-14].https://doi.org/10.3389/fpls.2015.00030. [百度学术]
唐榕,郭晨荔,梁培鑫,等.油莎豆幼苗应对盐碱胁迫的光合生理响应机制[J].中国油料作物学报,2022,44(3):632-641.TANG R,GUO C L,LIANG P X,et al.Photosynthetic physiological response mechanism of Cyperus esculentus L. seedlings under saline alkali stress[J].Chinese journal of oil crop sciences,2022,44(3):632-641 (in Chinese with English abstract). [百度学术]
李波,邬婷婷,方志坚,等.脱落酸对混合苏打盐碱胁迫苜蓿幼苗营养器官矿质元素含量的影响[J].草地学报,2019,27(6):1786-1792.LI B,WU T T,FANG Z J,et al.Effects of ABA on mineral elements in vegetative organs of alfalfa seedlings under mixed soda salt-alkaline stress[J].Acta Agrestia sinica,2019,27(6):1786-1792 (in Chinese with English abstract). [百度学术]
严蓓,孙锦,束胜,等.外源钙对NaCl胁迫下黄瓜幼苗叶片光合特性及碳水化合物代谢的影响[J].南京农业大学学报,2014,37(1):31-36.YAN B,SUN J,SHU S,et al.Effects of exogenous calcium on photosynthetic characteristics and carbohydrate metabolism in leaves of cucumber(Cucumis sativus L.) seedlings under NaCl stress[J].Journal of Nanjing Agricultural University,2014,37(1):31-36 (in Chinese with English abstract). [百度学术]
张浩,郑云普,叶嘉,等.外源钙离子对盐胁迫玉米气孔特征、光合作用和生物量的影响[J].应用生态学报,2019,30(3):923-930.ZHANG H,ZHENG Y P,YE J,et al.Effects of exogenous C