摘要
为提高水稻产量和水分利用效率,以抗旱性不同的2个水稻品种T-43(常规早粳抗旱型水稻)和新稻1号(常规早粳旱敏型水稻)为试验材料,设置W1 (115.44 L/盆)、W2(98.12 L/盆)、W3(83.41 L/盆)3个滴水量处理,研究抽穗期和抽穗后20 d不同滴水量对水稻根系形态、分布、根冠比、产量和水分利用效率的影响。结果显示,W1处理下,抽穗后20 d各土层T-43品种根长密度(RLD)、根表面积密度(SAD)、根体积密度(RVD)较W2、W3处理分别提高了22.8%和33.1%、21.8%和37.7%、27.7%和32.8%,新稻1号则分别增加80.2%和53.2%、63.3%和88.9%、95.0%和32.3%。W2处理下,抽穗期T-43 RLD和SAD的β值较W1处理分别提高了0.4%、1.7%,新稻1号则分别增加0.3%、1.1%,其中抗旱型品种T-43在0~40 cm 根长密度(RLD)及比根长(SRL)较其他处理增加了1.2%~55.2%,1.6%~29%;在40~60 cm 根表面积密度(SAD)、根干质量 (RDW) 和平均直径(AvgDiam)分别增加了7.2%~13.8%、1.9%~3.0%、8.8%~9.4%,从而维持了T-43在滴水量比W1处理少17.32 L/盆的W2处理下,产量及其构成因子与W1差异不显著,WUE提高4.5%,而新稻1号随滴水量的减少产量及WUE分别降低了28.3%~79.8%和15.2%~71.7%。相关性分析显示,水稻0~20 cm浅层根系各形态指标与产量、产量构成因子及WUE存在显著或极显著正相关,且大于20~60 cm深层根系。综上,水稻根系形态学指标与产量、WUE间存在密切的相关性;通过适当减少滴水量 (15%左右) 调控作物浅层根系分布情况,促进抽穗后20 d根系发育,在不显著影响产量的前提下提高了水分利用效率;在生产上还应根据水稻品种对水分响应特性的不同制定合理的灌溉制度,以达到更高经济效益。
水稻是我国主要粮食作物之一,全国约有一半以上人口以稻米为主
植物根系具有吸收土壤水分、养分及固持植株等重要功能,是与外界进行物质、能量交换及合成氨基酸、有机酸、激素等生理调节物质的重要场
迄今为止,前人就传统淹灌、控制灌溉和间歇灌溉等方式调控水稻根系形态、超微结构、分泌物、活性、激素、根冠比以及可塑性等方面进行了大量研
试验于2019年在石河子大学北苑新区试验站(44°18´N,86°03´E)进行,试验地属温带大陆性干旱半干旱气候,光照充足、降雨稀少、蒸发强烈,年均降雨量115 mm、蒸发量1 942 mm、>10 ℃活动积温为3 729 ℃左右。2019年水稻全生育期降雨量103.9 mm,>5 mm有效降雨量有7次;全生育期日平均最高气温为27.78 ℃,日平均最低气温为8.17 ℃。
试验采用壁厚1 cm、直径35 cm、高60 cm的PVC管进行土柱模拟栽培,选取本地区具有代表性的灌耕灰漠土(灌淤旱耕人为土,calcaric fluvisals),过直径2 cm网筛后,按75 kg/管填入土柱内,使土表与PVC管面齐平,然后挖60 cm深的坑将土柱埋入田间,使管面与地表保持齐平并浇水沉实,以防止夏季高温及蒸发强烈对试验带来的误差。田间布设完毕后,搭设防雨设施和遮阳网,根据天气预报提前盖好遮雨薄膜,雨后收起。供试土壤pH 8.4、有机质含量11.21 g/kg、全氮0.74 g/kg、速效磷(P2O5)51.2 mg/kg、速效钾(K2O)193 mg/kg、碱解氮61 mg/kg。
试验为两因素随机区组试验设计。选用抗旱性不同的2个水稻品种T-43(常规早粳抗旱型水稻)和新稻1号(常规早粳旱敏型水稻),由新疆天业(集团)有限公司农业干旱研究中心筛选并提供。设置3个滴水量水平,分别为W1(滴灌水稻常规灌溉定额,12 000
处理 Treatments | 滴水频次/ Drip frequency | 滴水次数 Number of drips | 滴水量/[L/(盆·次)] Dripping count | 总滴水量/(L/盆) Total water consumption |
---|---|---|---|---|
W1 | 2 | 50 | 2.31 | 115.44 |
W2 | 2 | 50 | 1.96 | 98.12 |
W3 | 2 | 50 | 1.67 | 83.41 |
1) 根系形态学参数测定。在水稻生长至抽穗期(HS)和抽穗后20 d(20 DAH)分别取样,切割掉土柱外侧的PVC管破坏性取样,将水稻整株从土柱中挖出。按距地面0~20、20~40、40~60 cm划分为3层,土块置于0.85 mm网筛,流水冲洗干净附着在水稻根系上的土壤,带回实验室测定根系长度、根表面积、平均直径和根系体积等形态学指标。将根系置于有机玻璃根盒内(长28 cm×宽21 cm),保持根盒内装有2/3的水层,镊子轻轻将根系分散开,调整根系位置避免交叉重叠,使根系完全舒展开,使用Epson V800扫描仪以200 dpi分辨率数字化为图形文件,重复3次。
利用WinRHIZO Pro 2017(Canada,Regent Co.,Ltd.)根系分析软件,测定各深度水稻根系的总根长、根表面积、平均直径、根体积及根长随直径的分布。其中,根系直径按≤0.3、0.3~0.9、≥0.9 mm划分;测定完毕后收集根系80 ℃烘干至恒质量,千分之一电子天平称量各层根系干物质量,并计算根长密度、根表面积密度、根体积密度、比根长等指标。
2) 渐进方程β值计算。 渐进方程Y=1-
3) 干物质量、根干质量与根冠比测定。抽穗期和抽穗后20 d采集水稻根系样品的同时,取各处理地上部植株样品,分茎、叶、穗等器官105 ℃下杀青30 min,80 ℃下烘干至恒质量,千分之一电子天平称量各部分干物质量,重复3次,计算水稻根冠比。
4)产量测定。成熟期调查水稻有效穗数、每穗总粒数、每穗实粒数、结实率、千粒重,并按照粳稻14.5%标准含水率折算计产,重复3次。
5)水分利用效率测定。水分利用效率为水稻产量与全生育期滴水量的比,并按每盆面积与滴水量折算为kg/
如
品种(C) Cultivars | 处理(W) Treatments | 根长密度/(cm/d RLD | 根表面积密度/(c SAD | 根系平均直径/mm AvgDiam | 根体积密度/(c RVD | ||||
---|---|---|---|---|---|---|---|---|---|
抽穗期 HS | 抽穗后20 d 20 DAH | 抽穗期 HS | 抽穗后20 d 20 DAH | 抽穗期 HS | 抽穗后20 d 20 DAH | 抽穗期 HS | 抽穗后20 d 20 DAH | ||
T-43 | W1 | 2 822.5±170.4b | 4 919.5±62.2a | 413.4±53.2a | 533.3±29.5a | 1.38±0.02a | 0.92±0.03a | 6.14±0.27a | 4.33±0.22a |
W2 | 3 114.7±68.2a | 4 004.6±36.7b | 476.0±50.3a | 438.0±5.5b | 1.51±0.09a | 0.92±0.02a | 5.87±0.21a | 3.39±0.03b | |
W3 | 2 956.2±51.4ab | 3 694.9±15.4c | 346.5±22.9a | 387.2±7.7b | 1.28±0.11a | 0.92±0.05a | 4.96±0.42b | 3.26±0.13b | |
新稻1号 Xindao No.1 | W1 | 3 413.5±81.2a | 5 357.2±63.0a | 324.9±10.9b | 513.0±8.1a | 0.87±0.04a | 0.93±0.05a | 3.43±0.30a | 3.90±0.15a |
W2 | 3 109.8±21.5b | 2 973.4±53.9c | 411.5±15.3a | 314.2±17.8b | 0.94±0.01a | 0.86±0.05b | 3.21±0.16ab | 2.00±0.08c | |
W3 | 1 989.4±89.2c | 3 497.1±150.7b | 303.6±11.8b | 271.6±12.3b | 0.98±0.03a | 0.84±0.00b | 2.75±0.08b | 2.95±0.19b | |
F值 F-value | |||||||||
C | 2.056 9 |
30.501 |
11.194 |
37.601 |
68.704 | 2.742 6 |
193.270 |
95.450 | |
W |
27.707 |
205.353 |
17.992 |
84.510 | 2.539 3 | 2.572 1 |
9.007 |
118.284 | |
C×W |
34.337 |
45.619 | 0.221 3 |
4.340 | 4.131 3 | 6.351 4* | 1.052 7 |
22.431 |
注: RLD:根长密度;SAD:根表面积密度;RVD:根体积密度;HS:抽穗期;20DAH:抽穗后20 d;不同字母表示同一指标在同一品种内不同处理之间存在显著差异(P<0.05);*为0.05水平上显著相关;**为0.01水平上显著相关;下同。Note:RLD:Root length density. SAD:Surfarea density. RVD:Root volume density. HS:Heading stage. DAH:Days after heading. Different letters indicate that the same index has significant differences among different treatments within the same variety (P<0.05). *: Significant correlation at 0.05 level; **: Significant correlation at 0.01 level. The same as below.
由
根系形态指标 Root morphology characteristics. | 品种 Cultivars | 处理 Treatment | 平均直径/mm AvgDiam | |||||
---|---|---|---|---|---|---|---|---|
≤0.3 | 0.3~0.9 | ≥0.9 | ||||||
抽穗期 HS | 抽穗后20 d 20 DAH | 抽穗期 HS | 抽穗后20 d 20 DAH | 抽穗期 HS | 抽穗后20 d 20 DAH | |||
根长密度/(cm/d RLD | T-43 | W1 | 1 678.4±35.2b | 4 050.3±79a | 871.8±17.1ab | 1 194.0±41.6a | 411.0±21.7a | 407.6±32.3a |
W2 | 1 868.0±25.5a | 3 447.7±185.5b | 927.0±34.7a | 969.6±171.5ab | 390.1±17.5a | 342.2±33.1ab | ||
W3 | 1 538.4±31.5c | 3 024.8±95.7c | 712.5±77.8b | 822.9±30.2b | 337.0±3.8b | 292.4±4.6b | ||
新稻1号 Xindao No.1 | W1 | 1 389.3±20.3b | 3 719.1±44a | 604.6±20.2c | 1116.5±61.4a | 209.5±13.7b | 336.7±10.5a | |
W2 | 1 737.4±104.4a | 1 588.2±123c | 920.2±42.0a | 526.8±206.2b | 307.0±19.0a | 155.9±53.8b | ||
W3 | 1 338.0±32.6b | 2 605.8±117.9b | 782.5±50.7b | 936.1±56.7a | 213.0±15.7b | 222.0±19.9b | ||
根表面积密度/(c SAD | T-43 | W1 | 86.7±7.4ab | 141.7±4.1a | 107.4±4.1a | 124.0±4.0a | 213.7±3.0a | 218.3±5.3a |
W2 | 91.2±0.5a | 112.0±1.7b | 153.2±3.5a | 137.9±3.0a | 185.4±3.1b | 133.8±5.4b | ||
W3 | 75.8±2.8b | 105.0±5.0b | 125.2±5.1a | 133.3±3.0a | 159.3±1.5c | 123.3±0.2b | ||
新稻1号 Xindao No.1 | W1 | 72.9±2.3b | 144.3±0.8a | 92.5±1.4c | 180.3±3.1b | 95.6±2.8b | 140.3±4.4b | |
W2 | 96.1±3.1a | 82.9±1.1b | 80.8±0.8a | 54.1±1.3a | 142.9±5.8b | 115.5±1.1a | ||
W3 | 79.6±8.6ab | 79.2±0.9b | 95.4±13.4b | 77.6±3.5ab | 144.1±29.5a | 119.4±2.7c | ||
根体积密度/( c | T-43 | W1 | 0.41±0.02a | 0.58±0.02a | 2.16±0.12a | 2.67±0.11a | 9.45±0.11a | 6.52±0.10a |
W2 | 0.40±0.00a | 0.53±0.12a | 2.15±0.02a | 2.26±0.16a | 9.13±0.13a | 5.11±0.21b | ||
W3 | 0.33±0.01b | 0.42±0.03a | 1.84±0.06b | 1.92±0.03b | 7.80±0.10b | 4.91±0.13b | ||
新稻1号 Xindao No.1 | W1 | 0.25±0.01c | 0.62±0.02a | 1.46±0.07b | 2.76±0.07a | 4.20±0.11a | 5.32±0.16a | |
W2 | 0.48±0.02a | 0.44±0.02b | 2.15±0.08a | 1.56±0.02a | 4.38±0.12a | 3.10±0.03b | ||
W3 | 0.41±0.02b | 0.44±0.05b | 1.69±0.02b | 1.82±0.08b | 2.69±0.12b | 2.70±0.10c |
由
根系形态指标 Root morphology characteristics. | 品种 Cultivars | 处理 Treatment | 平均直径/mm AvgDiam | |||||
---|---|---|---|---|---|---|---|---|
≤0.3 | 0.3~0.9 | ≥0.9 | ||||||
抽穗期 HS | 抽穗后20 d 20 DAH | 抽穗期 HS | 抽穗后20 d 20 DAH | 抽穗期 HS | 抽穗后20 d 20 DAH | |||
根长密度 百分比 RLD percent | T-43 | W1 | 56.7±0.4b | 71.7±0.4a | 29.5±0.9a | 21.1±0.7a | 13.9±0.6a | 7.2±0.5a |
W2 | 58.6±0.3b | 72.6±2.0a | 29.1±0.9a | 20.2±1.9a | 12.3±0.7a | 7.2±0.3a | ||
W3 | 59.5±1.7a | 73.1±0.5a | 27.4±2.0a | 19.9±0.6a | 13.0±0.4a | 7.1±0.2a | ||
新稻1号 Xindao No.1 | W1 | 74.5±15.6a | 71.9±0.9a | 32.7±8.1a | 21.6±1.1a | 11.3±2.6a | 6.5±0.2a | |
W2 | 58.6±0.9a | 70.9±6.0a | 31.1±1.2a | 22.4±4.8a | 10.4±0.5a | 6.7±1.1a | ||
W3 | 57.4±1.1a | 69.2±1.7a | 33.5±1.0a | 24.9±1.3a | 9.1±0.6a | 5.9±0.4a | ||
根表面积密度百分比 SAD percent | T-43 | W1 | 21.2±1.1a | 29.3±0.5a | 36.8±0.2a | 37.4±0.7a | 42.0±0.9b | 33.4±0.3a |
W2 | 21.2±0.3a | 29.2±0.1a | 35.6±0.3ab | 35.9±1.0b | 43.1±0.2ab | 34.9±1.0a | ||
W3 | 21.0±0.4a | 29.0±0.7a | 34.7±0.6b | 36.9±0.1ab | 44.2±0.8a | 34.1±0.7a | ||
新稻1号 Xindao No.1 | W1 | 27.9±0.9b | 31.0±0.1ab | 35.5±0.1b | 38.8±0.8a | 36.6±0.8a | 30.2±0.8a | |
W2 | 30.0±0.3a | 32.8±0.2a | 37.5±0.7b | 33.8±0.4a | 32.5±0.6b | 33.4±0.4a | ||
W3 | 25.1±1.2b | 28.7±0.3b | 45.2±1.3a | 38.3±0.5a | 29.6±2.3b | 33.0±0.6a | ||
根体积密度 百分比 RVD percent | T-43 | W1 | 3.4±0.1ab | 6.0±0.1a | 18.0±0.8a | 27.3±0.5a | 78.6±1.0a | 67.7±0.6a |
W2 | 3.4±0.1a | 6.7±1.2a | 18.4±0.1a | 26.5±0.6a | 78.2±0.2a | 64.7±1.8a | ||
W3 | 3.3±0.1b | 5.8±0.4a | 18.5±0.6a | 28.6±0.6b | 78.2±0.7a | 66.7±1.1a | ||
新稻1号 Xindao No.1 | W1 | 4.3±0.2c | 7.1±0.3a | 24.7±0.5c | 31.7±1.0b | 71.0±0.4a | 61.2±1.2a | |
W2 | 6.8±0.4b | 8.7±0.4a | 30.7±0.3b | 30.5±0.3b | 62.5±0.2b | 60.8±0.2a | ||
W3 | 8.6±0.4a | 8.8±0.7a | 35.4±1.0a | 36.8±0.1a | 56.1±1.4c | 54.5±0.6b |
由

图1 不同土层根长密度(A)、根表面积密度(B)、根体积密度(C)、根平均直径(D)、根干质量(E)及比根长(F)分布
Fig. 1 Distribution of total root length density(A),surface area density(B),root volume density(C), average diameter(D),dry weight(E) and specific root length(F) in different soil layers
由
品种(C) Cultivars | 处理(W) Treatment | 根长密度/(cm/d RLD | 根表面积密度/(c SAD | 根体积密度/(c RVD | 根干质量/(g/ Root dry mass | ||||
---|---|---|---|---|---|---|---|---|---|
抽穗期 HS | 抽穗后20 d 20 DAH | 抽穗期 HS | 抽穗后20 d 20 DAH | 抽穗期 HS | 抽穗后20 d 20 DAH | 抽穗期 HS | 抽穗后20 d 20 DAH | ||
T-43 | W1 | 0.964±0.003a | 0.963±0.001a | 0.952±0.014a | 0.964±0.002a | 0.957±0.002a | 0.959±0.001a | 0.942±0.003a | 0.955±0.003a |
W2 | 0.968±0.001a | 0.958±0.001a | 0.968±0.006a | 0.959±0.002a | 0.960±0.002a | 0.951±0.001a | 0.956±0.003a | 0.934±0.005a | |
W3 | 0.968±0.000a | 0.966±0.000a | 0.965±0.001a | 0.965±0.001a | 0.968±0.002a | 0.960±0.002a | 0.955±0.005a | 0.951±0.004a | |
新稻1号 Xindao No.1 | W1 | 0.953±0.002ab | 0.956±0.001ab | 0.937±0.001a | 0.956±0.001a | 0.954±0.003a | 0.954±0.002a | 0.942±0.003a | 0.948±0.002a |
W2 | 0.961±0.001a | 0.952±0.002b | 0.953±0.003a | 0.940±0.005a | 0.951±0.002a | 0.939±0.005a | 0.941±0.009a | 0.921±0.002a | |
W3 | 0.940±0.004b | 0.972±0.002a | 0.942±0.007a | 0.954±0.002a | 0.954±0.002a | 0.974±0.003a | 0.941±0.013a | 0.918±0.012a | |
F值 F-value | |||||||||
C | 2.162 | 0.982 | 0.183 | 0.432 | 0.202 | 4.688 | 5.961* | 3.040 | |
W | 1.112 | 2.469 | 0.095 | 0.185 | 1.788 | 0.204 | 0.904 | 0.125 | |
C×W | 0.692 | 0.061 | 2.596 | 0.786 | 0.178 | 2.174 | 1.871 | 0.420 |
由
品种(C) Cultivars | 处理(W) Treatment | 干物质量/(g/ Dry matter mass | 根干质量/(g/ Root dry mass | 根冠比/% Root shoot ratio | |||
---|---|---|---|---|---|---|---|
抽穗期 HS | 抽穗后20 d 20 DAH | 抽穗期 HS | 抽穗后20 d 20 DAH | 抽穗期 HS | 抽穗后20 d 20 DAH | ||
T-43 | W1 | 109.79±3.27a | 189.11±4.28a | 5.81±0.68a | 11.32±0.78a | 5.58±0.01b | 5.66±0.01b |
W2 | 84.87±2.67b | 162.09±6.73b | 5.70±0.67a | 9.85±0.89b | 6.38±0.01b | 6.09±0.01b | |
W3 | 60.07±3.69c | 79.58±2.31c | 5.18±0.49a | 8.00±0.24b | 8.63±0.01a | 10.27±0.00a | |
新稻1号 Xindao No.1 | W1 | 117.32±3.22a | 173.73±6.83a | 4.70±0.26a | 10.09±0.62a | 2.29±0.01c | 5.83±0.01b |
W2 | 112.28±2.20b | 121.41±7.86b | 5.63±0.63a | 8.06±1.06b | 5.00±0.00b | 6.95±0.01b | |
W3 | 62.17±3.91c | 79.47±6.35c | 2.77±0.55b | 7.99±1.08b | 7.56±0.00a | 10.62±0.01a | |
F值 F-value | |||||||
C |
50.9 |
153.6 |
24.2 |
14.8 |
20.8 | 1.12 | |
W |
195.6 |
732.7 |
5.2 |
16.1 |
29.8 |
45.4 | |
C×W |
14.8 |
40.5 |
7.0 | 1.27 | 3.34 | 0.25 |
由
品种(C) Cultivar | 处理(W) Treatment | 有效穗数 Effective panicles per pot | 每穗粒数 Spikelets number per panicle | 结实率/% Seed setting rate | 千粒重/g 1000-grain weight | 产量/ (g/pot) Yield | 水分利用效率/ (kg/ Water use efficiency |
---|---|---|---|---|---|---|---|
T-43 | W1 | 51.3±1.25a | 93.4±3.27a | 90.4±1.23a | 23.3±1.27a | 101.5±4.62a | 0.88±0.04a |
W2 | 50.9±1.51a | 91.0±1.63a | 87.3±1.70a | 22.2±2.24a | 90.7±12.00a | 0.92±0.12a | |
W3 | 39.7±0.94b | 59.9±7.46b | 81.7±7.72a | 21.4±1.17b | 41.8±7.15b | 0.50±0.09b | |
新稻1号 Xindao No.1 | W1 | 49.3±3.09a | 106.3±3.86a | 88.7±2.49a | 22.7±0.76a | 106.6±11.99a | 0.92±0.10a |
W2 | 48.0±5.89a | 99.3±2.62a | 75.3±2.49b | 21.3±0.84a | 76.4±6.98b | 0.78±0.07a | |
W3 | 30.7±3.68b | 79.3±6.18b | 51.3±2.87c | 16.4±1.45b | 21.5±7.07c | 0.26±0.08b | |
F值 F-value | |||||||
C(品种) |
6.138 |
29.256 |
38.975 |
7.982 | 4.814 7 | 4.284 3 | |
W(滴水量) |
25.55 0 |
53.842 |
28.307 |
4.337 |
82.135 |
34.168 | |
C×W | 0.782 1 | 2.234 8 |
10.060 | 2.252 0 | 3.077 1 | 2.268 3 | |
相关性分析(
根系形态 RMC | 土壤深度/cm Soil depth | 有效穗数 Effective panicles per pot | 每穗粒数 Spikelets number per panicle | 结实率/% Seed setting rate | 千粒重/g 1000-grain weight | 产量/ (g/pot) Yield | 水分利用效率/ (kg/ Water use efficiency | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T-43 | 新稻1号 Xindao No.1 | T-43 | 新稻1号Xindao No.1 | T-43 | 新稻1号 Xindao No.1 | T-43 | 新稻1号 Xindao No.1 | T-43 | 新稻1号 Xindao No.1 | T-43 | 新稻1号 Xindao No.1 | ||
根长 RLD | 0~20 |
0.66 |
0.85 |
0.67 |
0.78 | 0.638 | 0.917 | 0.383 |
0.95 |
0.61 | 0.983 |
0.53 |
0.96 |
20~40 |
0.80 | 0.100 | 0.770 | 0.533 |
0.80 | 0.583 | 0.533 | 0.467 |
0.80 | 0.517 |
0.76 | 0.417 | |
40~60 | -0.345 | 0.383 | 0.192 | 0.500 | -0.264 | 0.583 | -0.200 | 0.517 | 0.000 | 0.617 | 0.000 | 0.550 | |
根表面积 SAD | 0~20 |
0.73 |
0.71 |
0.74 |
0.86 | 0.672 |
0.86 | 0.483 | 0.867 | 0.750 |
0.90 |
0.66 |
0.85 |
20~40 | 0.345 | 0.600 | 0.502 |
0.76 | 0.000 |
0.85 | 0.300 |
0.83 | 0.533 |
0.81 | 0.667 |
0.78 | |
40~60 | 0.546 | 0.000 | 0.736 | -0.450 | 0.485 | -0.467 | 0.567 | -0.350 | 0.700 | -0.433 | 0.733 | -0.317 | |
平均直径 ADW | 0~20 | 0.269 | 0.100 | 0.427 | 0.217 | 0.579 | 0.000 | 0.150 | 0.083 | 0.367 | 0.050 | 0.283 | 0.030 |
20~40 | 0.067 | -0.467 | 0.000 | -0.183 | -0.183 | -0.250 | 0.000 | -0.283 | 0.089 | -0.383 | 0.133 | -0.400 | |
40~60 | -0.080 |
-0.86 | 0.167 | -0.367 | -0.090 | -0.567 | 0.000 |
-0.73 | 0.112 |
-0.76 | 0.133 |
-0.81 | |
根体积 RVD | 0~20 |
0.77 |
0.71 |
0.75 |
0.86 |
0.69 |
0.86 | 0.350 |
0.86 |
0.65 | 0.900 |
0.60 |
0.85 |
20~40 | 0.000 | -0.317 | 0.092 | 0.117 | 0.621 | 0.100 | 0.400 | 0.000 | 0.167 | 0.067 | 0.067 | -0.056 | |
40~60 | 0.143 | -0.417 | 0.192 | -0.415 | 0.596 | -0.433 | 0.233 | -0.450 | 0.083 | -0.367 | 0.000 | -0.400 |
注: *为0.05水平上显著相关;**为0.01水平上显著相关。Note:*: Significant correlation at 0.05 level; **: Significant correlation at 0.01 level.
根系是植株获取水分和养分的重要器
前人研究表明,总根长主要由直径≤1.0 mm的根系决定,根总表面积由直径<1.5 mm范围的根系决定,根总体积则由0.5~1.5 mm直径范围的根系决定,并且水分调控根系最核心的区域是0.5~1.0 mm的根直径区
作物根系构型主要取决于根系的形态指标与空间分布,其可塑性与环境因子的变化密切相关,而土壤水分是调控作物根系分布最重要的因
作物合理的根冠比是协调地上、地下部生长的重要参
大量研究证实,作物根系形态、发育以及建成等过程均可通过土壤水分进行调控,进而影响作物产量形成及水分利用效率的提高。前人研究表明适度减少灌溉水量能够稳定穗数,增加穗粒数,从而增加水稻的产量,提高水分利用效
不同土层水稻根系的形态指标与产量之间存在密切的关系。陈达刚
适宜的滴水量有利于水稻构建良好的根系形态、提高水分利用效率。本研究中,当滴水量降低15%(83.41 L/盆)时,2个类型水稻品种抽穗后20 d的 RLD、SAD、AvgDiam和RVD值均有所增加。其中,T-43通过显著促进深层(20~60 cm)根系及细根(直径<0.9 mm)的生长发育来提高水分利用效率(4.5%),且产量及其及构成因子与正常灌水无显著差异;新稻1号的根系形态建成受到抑制,产量显著降低39.5%。浅层土壤(0~20 cm)根系形态指标与产量及其构成因子和水分利用效率间均存在显著或极显著正相关。鉴于此,我们建议在滴灌水稻生产实践中适当减少滴水量(15%左右),通过调控作物浅层根系分布情况,促进抽穗后20 d 的根系发育,进而在不显著影响产量的情况下提高水分利用效率。此外,在生产上还应根据水稻品种对水分响应特性的不同制定合理的灌溉制度,以达到更高经济效益。
参考文献References
徐春春,纪龙,李凤博,等.当前我国水稻产业发展形势与战略对策[J].华中农业大学学报,2022,41(1):21-27.XU C C, JI L,LI F B,et al . Situation and strategies of rice industry development in China[J].Journal of Huazhong Agricultural University,2022,41(1):21-27 (in Chinese with English abstract). [百度学术]
侯丹平,谭金松,毕庆宇,等.水分胁迫对节水抗旱稻产量形成和根系形态生理特性的影响[J].中国水稻科学,2021,35(1):27-37.HOU D P,TAN J S,BI Q Y,et al.Effects of water stress on yield formation and root morphological and physiological characteristics of water-saving and drought-resistant rice[J].Chinese journal of rice science,2021,35(1):27-37 (in Chinese with English abstract). [百度学术]
李丽,陈林,张婷婷,等.膜下滴灌对水稻根系形态及生理性状的影响[J].排灌机械工程学报,2015,33(6):536-540.LI L,CHEN L,ZHANG T T,et al.Effects of mulch drip irrigation on the form of rice root and physiological characteristics[J].Journal of drainage and irrigation machinery engineering,2015,33(6):536-540 (in Chinese with English abstract). [百度学术]
戴含,王小卉,邓莹萍,等.供氮水平对水稻抽穗期植株根系形态及养分吸收的影响[J].排灌机械工程学报,2021,39(7):727-732.DAI H,WANG X H,DENG Y P,et al.Effect of nitrogen supply levels on root morphology and nutrient absorption of rice plants at heading stage[J].Journal of drainage and irrigation machinery engineering,2021,39(7):727-732 (in Chinese with English abstract). [百度学术]
潘晓华,王永锐,傅家瑞.水稻根系生长生理的研究进展[J].植物学通报,1996,31(2):13-20.PAN X H,WANG Y R,FU J R.Research progress of rice root growth physiology[J].Chinese bulletin of botany,1996,31(2):13-20(in Chinese). [百度学术]
PADILLA F M,PUGNAIRE F I.Rooting depth and soil moisture control Mediterranean woody seedling survival during drought[J].Functional ecology,2007,21(3):489-495. [百度学术]
李森.覆膜水稻生理节水机制及水分利用效率评估[D].北京:中国农业大学,2017.LI S.Water-saving physiological mechanism and evaluation of water use efficiency for ground cover rice production systems[D].Beijing:China Agricultural University,2017 (in Chinese with English abstract). [百度学术]
ZHOU G Y,ZHOU X H,NIE Y Y,et al.Drought-induced changes in root biomass largely result from altered root morphological traits:evidence from a synthesis of global field trials[J].Plant,cell & environment,2018,41(11):2589-2599. [百度学术]
SHI J C,YASUOR H,YERMIYAHU U,et al.Dynamic responses of wheat to drought and nitrogen stresses during re-watering cycles[J].Agricultural water management,2014,146:163-172. [百度学术]
徐国伟,陆大克,王贺正,等.施氮和干湿灌溉对水稻抽穗期根系分泌有机酸的影响[J].中国生态农业学报,2018,26(4):516-525.XU G W,LU D K,WANG H Z,et al.Coupling effect of alternate wetting and drying irrigation and nitrogen rate on organic acid in rice root secretion at heading stage[J].Chinese journal of eco-agriculture,2018,26(4):516-525 (in Chinese with English abstract). [百度学术]
唐树鹏,刘洋,简超群,等.干湿交替灌溉对水稻产量、水氮利用效率和稻米品质影响的研究进展[J].华中农业大学学报,2022,41(4):184-192.TANG S P,LIU Y,JIAN C Q,et al. Progress on the effects of alternating wet and dry irrigation on the use efficiency of water and nitrogen,yield and quality of rice[J].Journal of Huazhong Agricultural University,2022,41(4):184-192 (in Chinese with English abstract). [百度学术]
陈云,刘昆,李婷婷,等.结实期干湿交替灌溉对水稻根系、产量和土壤的影响[J].中国水稻科学,2022,36(3):269-277.CHEN Y,LIU K,LI T T,et al.Effects of alternate wetting and moderate soil drying irrigation on root traits,grain yield and soil properties in rice[J].Chinese journal of rice science,2022,36(3):269-277 (in Chinese with English abstract). [百度学术]
GALE M R,GRIGAL D F.Vertical root distributions of northern tree species in relation to successional status[J].Canadian journal of forest research,1987,17(8):829-834. [百度学术]
JACKSON R B,CANADELL J,EHLERINGER J R,et al.A global analysis of root distributions for terrestrial biomes[J].Oecologia,1996,108(3):389-411. [百度学术]
李鹏,赵忠,李占斌,等.淳化县不同立地上刺槐根系的分布参数[J].南京林业大学学报(自然科学版),2002,26(5):32-36.LI P,ZHAO Z,LI Z B,et al.Research on root distribution parameters of Robinia pseudoacacia on different sites in Chunhua County[J].Journal of Nanjing Forestry University(natural sciences edition)),2002,26(5):32-36 (in Chinese with English abstract. [百度学术]
李婷婷,冯钰枫,朱安,等.主要节水灌溉方式对水稻根系形态生理的影响[J].中国水稻科学,2019,33(4):293-302.LI T T,FENG Y F,ZHU A,et al.Effects of main water-saving irrigation methods on morphological and physiological traits of rice roots[J].Chinese journal of rice science,2019,33(4):293-302 (in Chinese with English abstract). [百度学术]
李华,张玉屏,杨艳萍,等.土壤水分状况对水稻表层根系和产量的影响[J].干旱地区农业研究,2006,24(1):96-99.LI H,ZHANG Y P,YANG Y P,et al.Effects of soil moisture on superficial roots and yield of rice[J].Agricultural research in the arid areas,2006,24(1):96-99 (in Chinese with English abstract). [百度学术]
HE J,TAN C,QIN L. Root-zone heat priming effects on maximum quantum efficiency of PSII,productivity,root morphology and nutritional quality of two aeroponically grown leafy greens in a tropical greenhouse[J/OL].Plants,2022,11(13):1684[2022-08-17].https://doi.org/10.3390/plants11131684. [百度学术]
张喜英.高梁根系生长发育规律及动态模拟[J].生态学杂志,1999,18(5):65-67.ZHANG X Y.Characters and dynamic model of Sorghum root growth and development[J].Chinese journal of ecology,1999,18(5):65-67 (in Chinese with English abstract). [百度学术]
补红英,宋维周,曹凑贵,等.节水抗旱稻旱优113号的根系生长对土壤水分亏缺的响应[J].中国农业科学,2017,50(22):4277-4289.BU H Y,SONG W Z,CAO C G,et al.Root growth responses to soil water deficit for a water-saving and drought-resistant rice genotype Hanyou113[J].Scientia agricultura sinica,2017,50(22):4277-4289 (in Chinese with English abstract). [百度学术]
卞金龙,蒋玉兰,刘艳阳,等.干湿交替灌溉对抗旱性不同水稻品种产量的影响及其生理原因分析[J].中国水稻科学,2017,31(4):379-390.BIAN J L,JIANG Y L,LIU Y Y,et al.Effects of alternate wetting and drying irrigation on grain yield in rice cultivars with different drought resistance and its physiological mechanism[J].Chinese journal of rice science,2017,31(4):379-390 (in Chinese with English abstract). [百度学术]
PU L M,LI Z,JIA M Y,et al. Effects of a soil collembolan on the growth and metal uptake of a hyperaccumulator: modification of root morphology and the expression of plant defense genes[J/OL]. Environmental pollution,2022,303:119169[2022-08-17].https://doi.org/10.1016/j.envpol.2022.119169. [百度学术]
MI G H,CHEN F J,WU Q P,et al.Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems[J].Science China life sciences,2010,53(12):1369-1373. [百度学术]
DASH G,BARIK M,DEBATA A,et al. Identification of most important rice root morphological markers in response to contrasting moisture regimes under vegetative stage drought[J/OL]. Acta physiologiae plantarum,2017,39(1): 8[2022-08-17].https://doi.org/10.1007/s11738-016-2297-1. [百度学术]
ZHOU G Y,ZHOU X H,NIE Y Y,et al.Drought-induced changes in root biomass largely result from altered root morphological traits:evidence from a synthesis of global field trials[J].Plant,cell & environment,2018,41(11):2589-2599. [百度学术]
张馨月,王寅,陈健,等.水分和氮素对玉米苗期生长、根系形态及分布的影响[J].中国农业科学,2019,52(1):34-44.ZHANG X Y,WANG Y,CHEN J,et al.Effects of soil water and nitrogen on plant growth,root morphology and spatial distribution of maize at the seedling stage[J].Scientia agricultura sinica,2019,52(1):34-44 (in Chinese with English abstract). [百度学术]
张鸿,朱从桦,李其勇,等.灌溉方式和施氮量对直播稻氮素和水分利用的影响[J].中国生态农业学报,2017,25(12):1802-1814.ZHANG H,ZHU C H,LI Q Y,et al.Effect of irrigation management and nitrogen rate on nitrogen and water utilization of direct-seeded rice[J].Chinese journal of eco-agriculture,2017,25(12):1802-1814 (in Chinese with English abstract). [百度学术]
马晓鹏,莫彦,吕玉平,等.不同灌水量与每穴直播粒数对滴灌水稻生长发育及产量的影响[J].灌溉排水学报,2019,38(9):1-7.MA X P,MO Y,LÜ Y P,et al.Effects of different irrigation volume and direct seeding number on growth and yield of rice under drip irrigation[J].Journal of irrigation and drainage,2019,38(9):1-7 (in Chinese with English abstract). [百度学术]
朱士江,叶晓思,王斌,等.不同水分调控、生物炭配比对水稻产量与水分利用效率的影响[J].节水灌溉,2018(1):1-5.ZHU S J,YE X S,WANG B,et al.Effects of water-biochar coupling on rice yield and water use efficiency[J].Water saving irrigation,2018(1):1-5 (in Chinese with English abstract). [百度学术]
陈达刚,周新桥,李丽君,等.华南主栽高产籼稻根系形态特征及其与产量构成的关系[J].作物学报,2013,39(10):1899-1908.CHEN D G,ZHOU X Q,LI L J,et al.Relationship between root morphological characteristics and yield components of major commercial indica rice in South China[J].Acta agronomica sinica,2013,39(10):1899-1908 (in Chinese with English abstract). [百度学术]
张宇杰,马鹏,王志强,等.麦秆还田下水氮耦合对水稻根际环境及根系形态的影响[J].中国生态农业学报(中英文),2022,30(6):924-936.ZHANG Y J,MA P,WANG Z Q,et al.Water-nitrogen coupling influence on rhizosphere environment and root morphology of rice under wheat straw return[J].Chinese journal of eco-agriculture,2022,30(6):924-936 (in Chinese with English abstract). [百度学术]