网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

植物耐干机制研究进展  PDF

  • 卓露 1
  • 林晓华 1
  • 薛山 1
  • 梁玉青 2
  • 张卓文 3
  • 李鸿彬 1
  • Wood Andrew 4
  • 张道远 1,2
1. 石河子大学生命科学学院/新疆植物药资源利用教育部重点实验室/;绿洲城镇与山盆系统生态兵团重点实验室,石河子 832000; 2. 中国科学院新疆生态与地理研究所新疆抗逆植物基因资源保育与利用重点实验室,乌鲁木齐 830011; 3. 华中农业大学园艺林学学院,武汉 430070; 4. 美国南伊利诺伊斯大学,卡本代尔 62901

中图分类号: Q945

最近更新:2023-10-13

DOI:10.13300/j.cnki.hnlkxb.2023.05.004

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

干旱已成为制约我国农业发展的关键环境因素之一。植物因固着生长,当外界水分因子变化时不能主动逃避胁迫,只能依赖自身机制来抵御外界胁迫,因此,植物的耐干性研究显得十分迫切。本文对前人有关植物耐干研究的工作进行了综述,重点阐明了耐干植物的分类、耐干植物在失水再复水期间形态结构、生理及分子水平上的响应机制,以期为挖掘耐干植物耐干基因、创制耐干种质资源和培育耐干新品种提供新思路。

气候变化是全球农业生产面临的严峻挑战,事关粮食安全、社会稳定和经济发展。近些年,随着全球极端天气频发、并发,土地日趋沙漠化、生态平衡遭到破坏、水资源短缺等危机俨然已成为全人类面对的重要生态问题。而耐干植物具有其他普通陆生植物无法比拟的植物体耐干特性,是不可多得的开展抗逆研究的好材料,特别是复水时强大的细胞保护和修复机制已成为抗逆分子生物学领域的研究热点。近些年,学者们对耐干植物的研究日益广泛,主要集中在阐明其脱水过程中的生理生化特性、发掘植物体自身耐干资源和耐干基因、解析植物耐干分子机制等方面。在此基础上,本文对耐干植物耐干特性及复水机制的研究进行了综述,系统阐述了耐干植物的分类、耐干植物在失水再复水过程中的形态结构、生理及分子水平上的响应机制,以期为耐干基因的鉴定及后续耐干植物的开发应用提供理论依据。

1 耐干植物的定义

植物与干旱环境之间存在复杂的相互作用,经过漫长的进化,植物已经从形态结构、生理生化及分子水平等多个层面进化出应对干旱胁迫的机制。前人研究表明,耐干植物主要是通过糖和脯氨酸等渗透调节物质的累积提高细胞渗透性,利用抗氧化酶降低干旱造成的植物体活性氧伤害,从而维持植物体内的水分含量,防止细胞内水分的散失,维持细胞结构的稳定性,忍耐干旱胁迫得以生

1

生长在干旱地区的植物能够与周围环境的水势达到平衡,意味着植物对脱水具有一定的耐受能力。耐干植物(desiccation tolerance plants)属于耐旱植物的一个特殊类群,也称为复苏植物(resurrection plants

2-3, 多集中在较低等植物类群中,如地衣、苔藓等。研究发现,常见植物能够耐受干旱的程度为-3 MPa到-4 MPa,部分植物在-12 MPa仍可继续存活(如水稻、小麦、拟南芥等),普通耐干植物能够耐受-100 MPa的脱水胁迫,多数苔藓植物均能够耐受-40 MPa胁迫,某些极端耐干苔藓甚至可以耐受-600 MPa的极度脱水,当环境适宜仍然能够复苏,并继续生存和繁殖(图1)。

图1  植物耐受干旱的程

4-5

Fig.1  The degree of desiccation-tolerance in plants

2 耐干植物的分类

研究表明,耐干植物虽然不具备特殊的保水或吸水结构,但可以通过细胞的耐失水性来保证大分子物质结构在干旱失水时不受破坏,或当受到破坏后可被修复。这种特殊的耐失水性赋予了耐干植物耐受高强度干旱的能力,从而在极端环境中存活。目前,在世界范围内已记录200余种耐干植

3,主要分布在干旱或环境含水量剧烈变化地区,多集中在低等植物类群中,如苔藓(bryophytes)、蕨类(pteridophytes)和地衣(lichen)等,且多是整个植株体都具有耐干特性。而在被子植物中,随着进化进程,植株体耐干特性在高等维管植物中渐渐消失,仅在植物种子、花粉等繁殖器官中得以保36-7

目前,耐干植物主要分为不完全耐干植物和完全耐干植物2种类型。

2.1 不完全耐干植物

不完全耐干植物(modified desiccation-tolerant plants)主要指在缓慢干燥情况下存活的类群,如非洲复原草(Sporobolus stapfianus)、东北多足蕨(Polypodium virginianum)等。在干旱失水条件下,不完全耐干植物能够在结构上对失水过程产生积极响应,降低失水速度,以此方式保护植物体本身,还能通过一定的生化调节来保护代谢不平衡所引起的损

8-9

失水胁迫发生时,光照也能够激发植物体内产生较多的能量,进而直接产生氧自由基,对植物的光系统元件造成巨大危

8。研究发现,不完全耐干植物在应对失水过程中的光氧化胁迫主要有2种途径:(1)叶绿体变化型(poikilochlorophyllous),也称作叶绿体重组型植物,这类植物在失水过程中能够通过分解叶绿体来降低光胁迫,即在快速失水过程中叶绿体会分解,在复水时叶绿体进行重10;(2)叶绿体保持型(homoiochlorophyllous),也称作叶绿体保持型植物,这类植物在失水过程中通过叶片卷曲、花青素的积累等策略来保护叶绿体,即在失水过程中能够维持叶绿体的完整9,如非洲复活植物。

2.2 完全耐干植物

完全耐干植物(fully desiccation-tolerant plants)以耐干苔藓为代表,指在失水过程中植物体内的含水量与外界环境的含水量可达到平衡,即便在快速失水过程中仍然能够保持存活,这一点是被子植物无法做到

11。苔藓植物是最早登陆的陆生植物。相对水生环境而言,陆地高浓度的氧含量、强烈的大气辐射以及剧烈的温度变化,促使苔藓植物进化出精细的组织结构,利用复杂的代谢调控来适应干旱胁迫,且大多数为整株耐干。虽然耐干苔藓植物资源丰富、种类繁多、分布广泛,但很多资源尚未开发,仍属于一个刚刚起步的学科领12-13。目前国内外对苔藓植物的研究主要集中在分类14-16与植物区系地理17、保护生物18、形态和繁殖生物19-20、生理21-22以及生态23等方面。相较于其他高等维管植物而言,苔藓植物由单细胞层组成,结构简单,生长周期短,容易培养;单倍体的配子体占主导地位,易于获得突变体,有利于开展遗传分析;且具有极高的同源重组频率(高达94%),便于进行基因敲24,这些结果表明苔藓植物将成为开展耐干机制研究的理想材料。

3 耐干植物在失水-复水期间的形态和生理生化机制

在长期的系统进化过程中,耐干植物形成了许多特殊的形态结构与生理变化来适应这种极端的干旱环境,如:耐干苔藓利用芒尖降低紫外辐射带来的损伤;通过叶片卷缩以降低蒸腾作用;利用叶片上的绒毛附属物避免紫外辐射伤害

25-26

3.1 失水过程中细胞结构变化

在完全耐干植物“复水(hydration)-失水(dehydration)-再复水(rehydration)”过程中,何时发生细胞损伤?这一科学问题是研究植物耐干机制的关键。利用光学显微镜观察耐干苔藓植物山墙藓(Tortula ruralis)细胞脱水实验,发现细胞会发生质壁分离现象,原生质体浓缩、细胞中空、叶绿体变小变圆,但细胞核基本不受脱水的影

27;Oliver28在1984年开展了耐干苔藓的脱水实验,研究结果显示失水能够引起细胞器的收缩;Platt29于1994年利用冰冻蚀刻技术研究了干旱胁迫下山墙藓细胞结构的变化,证明脱水没有造成细胞膜的损伤。由此可知,虽然干旱胁迫引起植物细胞结构的变化,但没有直接证据能够证明“细胞内部发生了损伤”,耐干植物复水过程中细胞超微结构的变化也证实了这一30。山墙藓在复水阶段,浓缩的细胞质迅速膨胀,并充满整个细胞腔,叶绿体、线粒体在数分钟内膨胀变大;而类囊体的损伤程度主要是由前期脱水速度决定,脱水速度越快,受损伤程度越27

3.2 细胞抗氧化损伤

干旱胁迫诱导的细胞结构变化与抗氧化损伤之间存在密切联系。一方面,胁迫发生时,蛋白质巯基氧化使蛋白质发生变性,色素含量下降,光合系统受损;另一方面,随着脂质过氧化程度加深,过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)等含量增加,自由脂肪酸在膜上逐渐沉

31,产生大量如抗坏血酸过氧化物酶、谷胱甘肽还原酶等抗氧化32。研究发现,山墙藓在经过缓慢失水后,大约有30% 谷胱甘肽(GSH)转变成氧化型谷胱甘肽(GSSG),氧化损伤程度下降;而在快速失水试验中发现GSSG含量没有升高,在复水过程中反而增33。也有研究发现山墙藓在遇到干旱胁迫时,GSH含量并未出现明显变化,而抗坏血酸含量下降。由此推测,缓慢失水和快速失水处理可能会引起植物体不同的氧化损伤保护反应。

3.3 光合系统变化

在失水-复水期间,光合细胞器是关键的代谢部位,也是产生氧化胁迫分子的重要结构,又是极易受到损伤的细胞器。相关研究发现,耐干植物的光合系统在失水-复水期间能够保持生理结构的相对完整。进一步研究发现,耐干植物在复水阶段,细胞类囊体基本不受蛋白质合成抑制剂的影响,光反应功能迅速恢复,但CO2吸收固定恢复的过程则相对缓慢,推测可能原因是此过程需要一些叶绿体基因组编码蛋白的参

6-7。耐干苔藓植物在再复水的短时间里,光系统Ⅱ(PSⅡ)的Fv/Fm比值(光化学效率)能够恢复到非胁迫条件下光化学效率的70%以7。处理前期,光照条件下经过氯霉素处理,光系统Ⅱ(PSⅡ)实际光化学效率受到一定程度的抑制,而环己烷对该作用效果不明显;处理后期,黑暗条件下氯霉素和环己烷抑制剂对光化学效率Fv/Fm的抑制作用非常小,光照条件下氯霉素处理能使光化学效率Fv/Fm值持续下6。由此可知,在光合系统缓慢恢复过程中,蛋白质合成抑制剂对蛋白质的周转代谢起积极作用,而对快速恢复过程影响较小。

3.4 糖类物质变化

在干旱胁迫下,糖类物质对植物细胞的保护存在2种方式:(1)糖的羟基能替代水分维持细胞膜与蛋白质间的亲水交互反应;(2)糖类通过参与细胞质形成细胞玻璃化过程来维持大分子结构和功能的完整

34。Ghasempour35研究表明,在干旱胁迫下耐干物种苦苣苔科植物的总糖含量远远高于耐干敏感植物,说明糖类在耐干植物脱水复苏过程中发挥重要作36-37

4 耐干植物在失水-复水期间的分子机制

耐干植物应对脱水胁迫倾向于加强保护、减少损伤的机制,不需要消耗太多能量,主要通过特殊应答蛋白响应(如分子伴侣、胚胎发育晚期丰富蛋白、水分通道蛋白、光诱导蛋白等)以及信号转导等过程,参与耐干保护。

4.1 分子伴侣

分子伴侣(molecular chaperones)是指在序列上没有相关性,但在细胞中能够帮助其他核酸(或多肽)进行折叠、转运、组装与分解的一类蛋白,在DNA复制、转录和信号转导等过程中发挥重要作

38。多数热休克蛋白(heat shock proteins, HSP)属于分子伴侣,主要包括HSP100s、HSP90s、HSP70s、HSP60s、small HSPs、Calnexin和折叠酶39。Alamillo40研究Craterostigma plantagineum绿色组织中的失水相关蛋白,利用杂交技术发现通过热激和水分胁迫都能诱导耐干植物产生大量与sHSP相关的多肽;在不耐干植物的体内并没有检测出相关多肽,但通过外部处理可诱导产生相关多肽物质。

4.2 胚胎发育晚期丰富蛋白

在非生物胁迫诱导的一系列植物细胞保护蛋白中,胚胎发育晚期丰富蛋白(late embryogenesis abundant proteins,LEA)的相关研究备受关

41-42。LEA蛋白具有保护生物大分子、维持特定细胞结构的作用,并具备缓解干旱、盐碱、低温等非生物胁迫的生物学功2。LEA蛋白大多具有较高的亲水性,从而在植物失水过程中暂时起到维持水分、稳定细胞和膜结构的功43-45。大量研究证明LEA蛋白与植物耐旱性密切相4446。Reymond47认为,当植物遭受水分胁迫时,细胞有序的结构会被破坏,而LEA蛋白较高的亲水性能够把足够的水分捕获到细胞内部,从而避免缺水造成细胞的伤害。同时,细胞液离子浓度会随着失水的加剧迅速升高,这种高强度离子浓度能够造成细胞不可逆的伤害,而Group 3 LEA 蛋白表面具有束缚阴离子和阳离子的能力,在一定程度上可以缓解离子伤害。Liu48利用基因芯片技术发现复苏植物旋蒴苣苔(Boea hygroscopica)的LEA蛋白受ABA调控,能够参与植物的失水过程,通过烟草的遗传转化,发现转基因烟草在干旱时的水分含量及相关光合蛋白的稳定性显著高于野生型。Ataei49研究发现,在失水过程中,耐干植物Craterostigma plantagineum 编码的LEA 11-24蛋白大量表达,而在干旱敏感植物Lindernia subracemosa中表达量则较低,以上研究结果表明LEA蛋白在应对干旱环境中具有强大的保护细胞的功能。

4.3 水通道蛋白

水通道蛋白(aquaporin,AQP)组成了水分运输的特异性通道,属于主要膜内在蛋白(major intrinsic proteins,MIPs),在植物水分运输过程中起着关键作

50。干旱胁迫状态下,跨膜通道蛋白的表达与活性受到诱导,通过调节细胞膜透性而维持细胞内外环境水分平衡。在研究模式植物小立碗藓的全基因组时,发现除之前定义的亚组蛋白,如质膜内在蛋白(plasma membrane intrinsic proteins,PIPs)、液泡膜内在蛋白(tonoplast intrinsic proteins,TIPs)、类Nodulin 26膜内在蛋白(nodulin 26⁃like intrinsic proteins,NIPs)和小分子碱性膜内在蛋白(small and basic intrinsic proteins,SIPs),还存在混合内在蛋白(hybrid intrinsic proteins, HIPs)与X类内在蛋白(uncategorized X intrinsic proteins, XIPs),据此推测,高等植物在进化过程中可能已经丢失了HIPs,而单子叶植物在进化过程中同时丢失了HIPs和XIPs51

4.4 光诱导蛋白

早期光诱导蛋白(early light-induced protein, ELIP)在耐干苔藓的光系统保护和修复过程中发挥了重要作用。Zeng

52利用Northern印迹杂交技术研究耐干苔藓山墙藓的ELIP基因在缓慢失水、快速失水/复水、强光复水等胁迫处理下的mRNA和蛋白表达情况,结果发现ELIPaELIPb的mRNA的表达量在受到胁迫时会增加,初步推断ELIPa和ELIPb蛋白可能具有抗非生物胁迫的功能,在光保护和光合器官修复过程中起到重要作用。

4.5 ABA诱导和非ABA诱导

脱落酸(ABA)是一类重要的植物激素,在调控植物的生长发育以及逆境胁迫中发挥重要的作用,营养组织耐旱性诱导一般可分为ABA诱导和非ABA诱导2种类

53。其中,ABA诱导型的植物不能在快速失水过程中存活,只有在缓慢失水中才产生防御反应;而非ABA依赖型则可耐受快速失水-复水过程,并迅速启动保护防御机54。目前,耐干植物的研究主要集中在非ABA依赖的胁迫应答信号传55。完全耐干植物山墙藓属于非ABA诱导型,复水后主要依靠失水期内相关基因的mRNA积累,合成大量蛋白,如具有强大修复能力的Rehydrins蛋白和Hydrins mRNA,并快速启动生化代谢,提高植物的抗逆53

5 展望

本文从形态、生理和分子等多层面概述了耐干植物失水-复水的细胞结构变化和耐干机制,但无可否认的是目前研究结果仅是冰山一角。要全面揭示植物耐干的分子机制,并利用这种耐干机制进行农作物遗传改良还需进行深入的研究。

目前已有个别耐干植物的全基因组、转录组、蛋白组等测序完成,如复活草 (Oropetium thomaeum)、齿肋赤藓 (Syntrichia caninervis Mitt.)、旋蒴苣苔 (Boea hygrometrica)等。耐干基因的分离鉴定也取得了一定进展。目前利用耐干苔藓齿肋赤藓,已经克隆了耐干基因60余个,包括AP2/ERF和ABI转录因子家族基因、乙醛脱氢酶ALDH家族基因、光捕获蛋白Elip以及ScAPD1⁃like抗大丽轮枝菌相关基因等,并成功将耐干基因ScALDH21应用至陆地棉等农作物的遗传改良中提高植物的耐干

134853。由于苔藓植物相关耐干基因的功能原位验证存在技术瓶颈,影响耐干基因功能的深度解析。因此,在未来的研究中,可进一步挖掘更多耐干植物的抗逆资源,对相关的“明星”基因进行精准定位,从分子水平解析耐干植物抗逆机制,为后续耐干基因的研究提供重要理论依据。另外,可以加强对耐干相关环境因子的解析,如关注水分胁迫与热胁迫、盐胁迫及紫外辐射等逆境之间的关系,结合运用现代育种、生理生化和分子生物学等技术手段,推进对耐干植物抗逆机制的研究和农业的可持续发展。

参考文献 References

1

王艳青,陈雪梅,李悦,等.植物抗逆中的渗透调节物质及其转基因工程进展[J].北京林业大学学报,2001,23(4):66-70.WANG Y Q,CHEN X M,LI Y,et al.The osmotic solute in plant resistance to adverse conditions and progress in relative genic engineering[J].Journal of Beijing Forestry University,2001,23(4):66-70 (in Chinese with English abstract). [百度学术] 

2

BARTELS D,NELSON D.Approaches to improve stress tolerance using molecular genetics[J].Plant,cell and environment,1994,17(5):659-667. [百度学术] 

3

OLIVER M J,CUSHMAN J C,KOSTER K L.Dehydration tolerance in plants[J].Methods in molecular biology, 2010,639:3-24. [百度学术] 

4

OLIVER M J, BEWLEY J D. Desiccation‐tolerance of plant tissues: a mechanistic overview [J]. Horticultural reviews,2010,18:171-213. [百度学术] 

5

WOOD A J.The nature and distribution of vegetative desiccation-tolerance in hornworts,liverworts and mosses[J].The bryologist,2007,110(2):163-177. [百度学术] 

6

PROCTOR M C.The bryophyte paradox:tolerance of desiccation,evasion of drought[J].Plant ecology,2000,151(1):41-49. [百度学术] 

7

PROCTOR M.Patterns of desiccation tolerance and recovery in bryophytes[J].Plant growth regulation,2001,35(2):147-156. [百度学术] 

8

LI Y,WANG Z B,XU T H,et al.Reorganization of photosystem II is involved in the rapid photosynthetic recovery of desert moss Syntrichia caninervis upon rehydration[J].Journal of plant physiology,2010,167(16):1390-1397. [百度学术] 

9

SAGADEVAN G M,BIENYAMEEN B,SHAHEEN M,et al.Physiological and molecular insights into drought tolerance[J].African journal of biotechnology,2002,1(2):28-38. [百度学术] 

10

OLIVER M J,TUBA Z,MISHLER B D.The evolution of vegetative desiccation tolerance in land plants[J].Plant ecology,2000,151(1):85-100. [百度学术] 

11

PROCTOR M C F,TUBA Z.Poikilohydry and homoihydry: antithesis or spectrum of possibilities?[J].New phytologist,2002,156(3):327-349. [百度学术] 

12

王强.苔藓植物资源的开发利用现状与展望[J].自然博物,2015(1):47-53,66.WANG Q.The study development of brophytes application value and its prospect[J].Research of natural history and museum,2015(1):47-53,66 (in Chinese). [百度学术] 

13

ZHUO L,LIANG Y Q,YANG H L,et al.Thermal tolerance of dried shoots of the moss Bryum argenteum[J/OL].Journal of thermal biology,2020,89:102469 [2023-03-24].https://doi.org/10.1016/j.jtherbio.2019.102469. [百度学术] 

14

HU R L.A revision of the Chinese species of Entodon (Musci,Entodontaceae)[J].The bryologist,1983,86(3):193-233. [百度学术] 

15

REESE W D,LIN P J.A monograph of the Calymperaceae of China[J].Journal of the hattori botanical laboratory,1991,69:323-372. [百度学术] 

16

WU Y H,WANG Y F,HU R G.Systematic positions of some genera of Leskeaceae and Thuidiaceae accessed by electrophoretic evidences[J].Journal of plant resources and environment,2000,9:39-42. [百度学术] 

17

HEINRICHS J,GROTH H,LINDNER M,et al.Intercontinental distribution of Plagiochila corrugata (Plagiochilaceae,Hepaticae) inferred from nrDNA ITS sequences and morphology[J].Botanical journal of the Linnean society,2004,146(4):469-481. [百度学术] 

18

曹同,高谦,付星,等.苔藓植物的生物多样性及其保护[J].生态学杂志,1997,16(2):47-52.CAO T,GAO Q,FU X,et al.Diversity of bryophytes and their conservation[J].Chinese journal of ecology,1997,16(2):47-52(in Chinese with English abstract). [百度学术] 

19

李文安.地钱在离体条件下的无性繁殖及脱分化与再分化的研究[J].植物学报,1990,32(11):852-857,913.LI W A.In vitro propagation,dedifferentiation and redifferentiation of Marchantia polymorpha L[J].Journal of integrative plant biology,1990,32(11):852-857,913 (in Chinese with English abstract). [百度学术] 

20

TAO Y,ZHANG Y M.Effects of leaf hair points of a desert moss on water retention and dew formation:implications for desiccation tolerance[J].Journal of plant research,2012, 125:351-360. [百度学术] 

21

ZHENG Y P,XU M,ZHAO J C,et al.Morphological adaptations to drought and reproductive strategy of the moss Syntrichia caninervis in the Gurbantunggut Desert,China[J].Arid land research and management,2011,25:116-127. [百度学术] 

22

刘应迪,朱杰英,陈军,等.3种藓类植物水分含量与光合作用、呼吸作用和水势的关系[J].武汉植物学研究,2001,19(2):135-142.LIU Y D,ZHU J Y,CHEN J,et al.Relationships of water content to photosynthesis,respiration and water potential in three species of mosses[J].Journal of Wuhan botanical research,2001,19(2):135-142 (in Chinese with English abstract). [百度学术] 

23

杜庆民,郑学海,蔡海超,等.用苔袋监测大气颗粒物及其它污染物的方法研究[J].生态学杂志,1989,8(1):56-60.DU Q M,ZHENG X H,CAI H C,et al.Study on the method of monitoring atmospheric particulates and other pollutants with moss[J].Chinese journal of ecology,1989,8(1):56-60 (in Chinese). [百度学术] 

24

RESKI R,FAUST M,WANG X H,et al.Genome analysis of the moss Physcomitrella patens (Hedw.) B.S.G.[J].Molecular and general genetics,1994,244(4):352-359. [百度学术] 

25

张元明,曹同,潘伯荣.干旱与半干旱地区苔藓植物生态学研究综述[J].生态学报,2002,22(7):1129-1134.ZHANG Y M,CAO T,PAN B R.A review on the studies of bryophyte ecology in arid and semi-arid areas[J].Acta ecologica sinica,2002,22(7):1129-1134 (in Chinese with English abstract). [百度学术] 

26

张元明,曹同,潘伯荣.新疆古尔班通古特沙漠南缘土壤结皮中苔藓植物的研究[J].西北植物学报,2002,22(1):18-23.ZHANG Y M,CAO T,PAN B R.A study on bryophyte associated with formation of soil crust in south fringe of Gurbantunggut Desert in Xinjiang[J].Acta botanica boreali-occidentalia sinica,2002,22(1):18-23 (in Chinese with English abstract). [百度学术] 

27

TUCKER E B,BEWLEY J D.The site of protein synthesis in the moss Tortula ruralis on recovery from desiccation[J].Canadian journal of biochemistry,1974,52(4):345-348. [百度学术] 

28

OLIVER M J,BEWLEY J D.Plant desiccation and protein synthesis:V.Stability of poly (A) and poly (A) RNA during desiccation and their synthesis upon rehydration in the desiccation-tolerant moss Tortula ruralis and the intolerant moss Cratoneuron filicinum[J]. Plant physiology,1984:74(4): 917-922. [百度学术] 

29

PLATT K A,OLIVER M J,THOMSON W W.Membranes and organelles of dehydrated Selaginella and Tortula retain their normal configuration and structural integrity[J].Protoplasma,1994,178(1):57-65. [百度学术] 

30

吴玉环,程佳强,冯虎元,等.耐旱藓类的抗旱生理及其机理研究[J].中国沙漠,2004,24(1):23-29.WU Y H,CHENG J Q,FENG H Y,et al.Advances of research on desiccation-tolerant moss[J].Journal of desert research,2004,24(1):23-29(in Chinese with English abstract). [百度学术] 

31

MAHOUACHI J,ARGAMASILLA R,GÓMEZ-CADENAS A.Influence of exogenous glycine betaine and abscisic acid on Papaya in responses to water-deficit stress[J].Journal of plant growth regulation,2012,31(1):1-10. [百度学术] 

32

OLIVER MJ,O'MAHONY P,WOOD A J.“To dryness and beyond”:preparation for the dried state and rehydration in vegetative desiccation-tolerant plants[J].Plant growth regulation,1998,24:193-201. [百度学术] 

33

DHINDSA R S.Glutathione status and protein synthesis during drought and subsequent rehydration in Tortula ruralis[J].Plant physiology,1987,83(4):816-819. [百度学术] 

34

BUITINK J,HEMMINGA M A,HOEKSTRA F A.Is there a role for oligosaccharides in seed longevity?An assessment of intracellular glass stability[J].Plant physiology,2000,122(4):1217-1224. [百度学术] 

35

GHASEMPOUR H R,GAFF D F,WILLIAMS R P W,et al.Contents of sugars in leaves of drying desiccation tolerant flowering plants,particularly grasses[J].Plant growth regulation,1998,24(3):185-191. [百度学术] 

36

AVONCE N,LEYMAN B,THEVELEIN J,et al.Trehalose metabolism and glucose sensing in plants[J].Biochemical society transactions,2005,33(1):276-279. [百度学术] 

37

LIN P C,POMERANZ M C,JIKUMARU Y,et al.The Arabidopsis tandem zinc finger protein AtTZF1 affects ABA- and GA-mediated growth,stress and gene expression responses[J]. Plant journal,2011,65(2):253-268. [百度学术] 

38

ELLIS J.Proteins as molecular chaperones[J].Nature,1987,328(6129):378-379. [百度学术] 

39

WEHMEYER N,VIERLING E.The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance[J].Plant physiology,2000,122(4):1099-1108. [百度学术] 

40

ALAMILLO J,ALMOGUERA C,BARTELS D,et al.Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum[J].Plant molecular biology,1995,29(5):1093-1099. [百度学术] 

41

ANDERSON J M,HAND S C.Transgenic expression of late embryogenesis abundant proteins improves tolerance to water stress in Drosophila melanogaster[J/OL].The journal of experimental biology,2021,224(Pt4):jeb238204[2023-03-24].https://doi.org/10.1242/jeb.238204. [百度学术] 

42

SHIH M D,HOEKSTRA F A,HSING Y I C.Late embryogenesis abundant proteins[J].Advances in botanical research,2008,48:211-255. [百度学术] 

43

HAND S C,MENZE M A,Toner M,et al.LEA proteins during water stress: not just for plants anymore[J].Annual review of physiology,2010,73(1):115-134. [百度学术] 

44

HOEKSTRA F A,GOLOVINA E A,BUITINK J.Mechanisms of plant desiccation tolerance[J].Trends in plant science,2001,6(9):431-438. [百度学术] 

45

GAO J,LAN T.Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli[J/OL].Scientific reports,2016,6:19467[2023-03-24].https://doi.org/10.1038/srep19467. [百度学术] 

46

ROTHSCHILD L J,MANCINELLI R L.Life in extreme environments[J].Nature,2001,409(6823):1092-1101. [百度学术] 

47

REYMOND P,WEBER H,DAMOND M,et al.Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis[J].The plant cell,2000,12(5):707-720. [百度学术] 

48

LIU X,WANG Z,WANG L L,et al.LEA 4 group genes from the resurrection plant Boea hygrometrica confer dehydration tolerance in transgenic tobacco[J].Plant science,2009,176(1):90-98. [百度学术] 

49

ATAEI S,BRAUN V,CHALLABATHULA D,et al.Differences in LEA-like 11-24 gene expression in desiccation tolerant and sensitive species of Linderniaceae are due to variations in gene promoter sequences[J].Functional plant biology,2016,43(7):695-708. [百度学术] 

50

SCHÄFFNER A R.Aquaporin function,structure,and expression:are there more surprises to surface in water relations?[J].Planta,1998,204(2):131-139. [百度学术] 

51

DANIELSON J, JOHANSON U .Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens[J/OL].BMC plant biology, 2008, 8(1):45[2023-03-24].https://doi.org/10.1186/1471-2229-8-45. [百度学术] 

52

ZENG Q,CHEN X B,WOOD A J.Two early light-inducible protein (ELIP) cDNAs from the resurrection plant Tortula ruralis are differentially expressed in response to desiccation,rehydration,salinity,and high light[J].Journal of experimental botany,2002,53(371):1197-1205. [百度学术] 

53

张一弓,张怡,阿依白合热木·木台力甫,等.异源过表达齿肋赤藓ScABI3基因改变拟南芥气孔表型并提高抗旱性[J].植物学报,2021,56(4):414-421.ZHANG Y G,ZHANG Y,MUTAILIFU A. Heterologous overexpression of desiccation-tolerance moss ScABI3 gene changes stomatal phenotype and improves drought resistance in transgenic Arabidopsis[J].Chinese bulletin of botany,2021,56(4):414-421 (in Chinese with English abstract). [百度学术] 

54

O'MAHONY P J,OLIVER M J.Characterization of a desiccation-responsive small GTP-binding protein (Rab2) from the desiccation-tolerant grass Sporobolus stapfianus[J].Plant molecular biology,1999,39(4):809-821. [百度学术] 

55

OLIVER M J,WOOD A J,O’MAHONY P.How some plants recover from vegetative desiccation:a repair based strategy[J].Acta physiologiae plantarum,1997,19(4):419-425. [百度学术]