摘要
为确定不同规格的鳜(Siniperca chuatsi)对饲料蛋白水平的需求,以G1、G2、G3规格的初始体质量分别为(11.58±1.34)、(94.77±2.59)和(245.26±3.59) g的鳜为研究对象,研究不同蛋白水平饲料对其生长性能、饲料利用率、形态指标、消化酶活性、抗氧化能力和氨氮排泄的影响。结果显示,G1和G2组鳜特定生长率、终末体质量和增重率均在蛋白水平为500 g/kg时最高,但G3组鳜在饲料蛋白水平为450 g/kg时达到最大值;饲料系数则呈现出相反的变化趋势。特定生长率折线回归模型结果显示,3种规格鳜的最适蛋白需求分别为497.1、451.9和446 g/kg。G1和G2组鳜摄食低蛋白水平(350 g/kg和400 g/kg)饲料时存活率均显著低于其他各组,但饲料蛋白水平对G3组鳜的存活率无显著影响。G1和G2组鳜肥满度、肝体比和脏体比与饲料蛋白含量呈负相关(P<0.05)。随饲料中蛋白含量升高,G1和G3组鳜对饲料干物质的表观消化率均先上升后趋于稳定,而G2组鳜呈先升后降的趋势。在一定的蛋白水平范围内,3种规格的鳜粗蛋白表观消化率与饲料中蛋白含量呈正相关(P<0.05),在蛋白水平为500 g/kg时达到峰值,随后保持不变;前肠胰蛋白酶活性有着相似的变化趋势。3种规格的鳜肝脏中的谷丙转氨酶、谷草转氨酶活力随饲料蛋白含量的增加而明显增高(P<0.05)。其氨氮排泄率均在摄食后6 h达到高峰,并随着饲料蛋白水平的提高均显著增加;饲料蛋白水平为550 g/kg和600 g/kg时,G3组鳜的氨氮排泄率显著高于G1组。以上结果表明,饲料蛋白含量对3种规格鳜的生长性能及消化、代谢指标均有明显的影响,确定最适蛋白需求量才能达到最理想的鳜健康养殖效果。
鳜(Siniperca chuatsi)是一种传统的肉食性鱼类,目前主要依赖饲喂鲜活饵料鱼进行养殖,但是因饵料鱼供应不稳定、且质量无法保障导致鳜活饵料鱼养殖产量和效益极其不稳定。因此,科学工作者一直在通过品种选育和人工驯化来提高鳜对配合饲料的摄食选择性和利用率,并取得一定的进
不同试验条件、不同鱼种和不同规格的鱼类对饲料蛋白需求存在明显差
以白鱼粉、酪蛋白和发酵豆粕作为蛋白来源,以鱼油和大豆油作为脂质来源,加入α-淀粉使之达到等脂等能。设计6种饲料的蛋白质水平350、400、450、500、550和600 g/kg,分别编号为Diet 35、Diet 40、Diet 45、Diet 50、Diet 55、Diet 60,饲料配方如
项目 Item | Diet 35 | Diet 40 | Diet 45 | Diet 50 | Diet 55 | Diet 60 |
---|---|---|---|---|---|---|
成分 Component | ||||||
白鱼粉/(g/kg) White fish meal | 265 | 303 | 341 | 378 | 416 | 454 |
酪蛋白/(g/kg) Casein | 190 | 217 | 244 | 271 | 299 | 326 |
发酵豆粕/(g/kg) Fermented soybean meal | 10 | 11 | 13 | 14 | 15 | 17 |
α-淀粉/(g/kg) α-Starch | 70 | 70 | 70 | 70 | 70 | 70 |
鱼油/(g/kg) Fish oil | 40 | 40 | 40 | 40 | 40 | 40 |
豆油/(g/kg) Soybean oil | 30 | 30 | 30 | 30 | 30 | 30 |
磷脂/(g/kg) Phospholipid | 10 | 10 | 10 | 10 | 10 | 10 |
微晶纤维素/(g/kg) Microcrystalline cellulose | 331 | 265 | 199 | 132 | 66 | 0 |
维生素预混料/(mg/kg) Vitamin premix | 20 | 20 | 20 | 20 | 20 | 20 |
矿物预混料/(mg/kg) Mineral premix | 15 | 15 | 15 | 15 | 15 | 15 |
甜菜碱/(g/kg) Betaine | 10 | 10 | 10 | 10 | 10 | 10 |
磷酸二氢钙/(g/kg) CaH2PO4 | 5 | 5 | 5 | 5 | 5 | 5 |
氯化胆碱/(g/kg) Choline chloride | 2 | 2 | 2 | 2 | 2 | 2 |
防霉剂/(g/kg) Mould inhibitor | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
三氧化二铬/(g/kg) Cr2O3 | 1 | 1 | 1 | 1 | 1 | 1 |
营养组成 Nutrient composition | ||||||
粗蛋白/(g/kg) Crude protein | 347 | 402.3 | 449.7 | 503.4 | 547.7 | 598.6 |
粗脂肪/(g/kg) Crude lipid | 82.3 | 84.2 | 85.4 | 85 | 87.1 | 86.3 |
粗灰分/(g/kg) Crude ash | 50.6 | 49.8 | 51 | 50.9 | 48.9 | 50.8 |
总能量/(MJ/kg) Gross energy | 22.31 | 21.89 | 22.61 | 21.47 | 23.02 | 22.18 |
试验鳜购自武汉市农业科学院的水产繁育基地。试验开始前,鳜按照Liang
在驯化期结束后,称量并记录试验鳜的初始体质量。G1组采集30尾试验鱼,G2、G3组分别采集12尾鱼,-80 ℃储存,用于测定鱼体营养成分。第5周开始收集粪便,每周收集5 d,参照Mo
增重率(weight gain rate,WGR)、特定生长率(specific growth rate,SGR)、饲料系数(food coefficient rate,FCR)、蛋白质效率(protein efficiency ratio,PER)、蛋白沉积率(protein deposition rate,PDR)、存活率(survival rate,SR)、肝体比(hepotasomatic index,HSI)、脏体比(viscerasomatic index,VSI)和肥满度(condition factor,CF)按参考文献[
采用AOAC(1984)所述常规方法对饲料样品和粪便进行营养成分分析。用电感耦合等离子体发射光谱法(ICP-OES,Vista-MPX; Varian,Inc./Agilent Technologies,Palo Alto,CA,USA)测定饲料和粪便中Cr2O3的含量。试验和基础饲料的营养物质、干物质(DM)和能量表观消化率(apparent digestibility coefficient,ADC)计算公式如下:
干物质表观消化率= 100%-100%×A1/A2
营养物质的表观消化率= 100%-100%×(A1/A2)×(B1/B2)
上述公式中,A1、A2分别表示饲料和粪便中Cr2O3的含量,%;B1、B2分别指饲料和粪便中粗蛋白的含量,%。
使用试剂盒(南京建成生物工程研究所,南京)检测肝脏谷丙转氨酶(GPT)和谷草转氨酶(GOT)、前肠胰蛋白酶、淀粉酶和脂肪酶的活性。将肝脏或前肠样品称质量后,在 1/10 (m/V) 0.01 mol/L PBS (pH 7.4)中用JX-24组织分析仪(净信实业发展有限公司,上海)以65 Hz的频率匀浆2 min,然后将在4 ℃下以1 000 r/min离心10 min,收集上清液。采用Bradford法,以牛血清白蛋白为标准,检测上清蛋白总量。
在饲养8周后,从每组随机抽取10尾健康鳜进行氨氮排泄率的测定。准备20 L的圆形塑料桶用作代谢瓶,瓶中装入适量脱氯自来水;每个代谢瓶不断曝气,确保瓶中溶氧不低于5 mg/L。每组设置5个代谢瓶与1个空白对照瓶,每个瓶中放入2尾鳜。试验开始前,按照“材料与方法1.2”喂养试验的方法进行喂养。投喂2 h后,去除瓶中残留饲料,在整个试验期间,根据水中氨氮的浓度,代谢瓶里的水换为新水,并清除粪便以消除外界干扰。温度为5~24 ℃,溶解氧大于0.5 mg/L(2 h 1次,监测24 h),计算出每小时每千克体质量的氨氮排放量。
使用Berthelot脲酶法(试剂盒来自中国上海生物制品研究所)测定水样中氨氮浓度,氨氮排泄率的计算参照文献[
U= V×[(ρ2-ρ
其中,U代表试验过程中养殖水体的氨氮排泄率[mg/(kg·h)],V表示试验期间代谢瓶内水的体积,ρ1和ρ2分别代表试验过程中初始和最终水样的氨氮质量浓度,mg/L;ρ
由
组别 Group | 指标 Index | Diet 35 | Diet 40 | Diet 45 | Diet 50 | Diet 55 | Diet 60 |
---|---|---|---|---|---|---|---|
G1 | IBW/g | 11.76±1.53 | 11.34±0.79 | 11.58±2.34 | 11.63±1.28 | 11.22±0.76 | |
FBW/g | 35.36±4.00a | 43.26±2.59b | 52.76±3.37c | 51.37±2.13c | 49.33±3.44c | ||
WGR/% | 201.25±11.14a | 281.78±4.15b | 357.75±28.96c | 345.00±47.84bc | 341.80±54.20bc | ||
SGR/(%/d) | 1.97±0.07a | 2.39±0.02b | 2.71±0.11c | 2.66±0.19bc | 2.64±0.23bc | ||
FCR | 1.62±0.06c | 1.41±0.01b | 1.29±0.04a | 1.31±0.06ab | 1.31±0.09ab | ||
PER | 1.54±0.02c | 1.57±0.01c | 1.56±0.04c | 1.39±0.06b | 1.27±0.09a | ||
PDR/% | 27.02±0.34c | 27.64±0.23c | 27.46±0.75c | 24.38±1.15b | 22.31±1.54a | ||
SR/% | 88.89±1.92a | 91.11±1.92ab | 92.22±1.92ab | 94.45±3.85b | 92.22±1.92ab | ||
CF/(g/c | 2.64±0.11b | 2.31±0.35a | 2.28±0.34a | 2.24±0.47a | 2.26±0.55a | ||
HSI/% | 1.85±0.13c | 1.69±0.14b | 1.42±0.09a | 1.41±0.16a | 1.50±0.16a | ||
VSI/% | 8.87±0.24d | 8.59±0.23c | 8.25±0.19b | 8.19±0.12ab | 8.00±0.13a | ||
G2 | IBW/g | 94.31±7.59 | 94.77±8.59 | 93.88±9.06 | 92.60±11.53 | 94.93±13.98 | 95.96±11.13 |
FBW/g | 172.50±16.19a | 206.48±17.40b | 225.82±16.65c | 227.91±19.31c | 225.32±10.95c | 223.54±13.98c | |
WGR/% | 86.65±8.06a | 118.02±11.13b | 140.70±7.10c | 146.37±15.70c | 137.61±9.33c | 132.94±2.65bc | |
SGR/(%/d) | 1.11±0.08a | 1.39±0.09b | 1.57±0.05c | 1.61±0.11c | 1.54±0.07c | 1.51±0.02bc | |
FCR | 2.60±0.16c | 2.12±0.13b | 1.90±0.06a | 1.86±0.11a | 1.93±0.08ab | 1.96±0.02ab | |
PER | 1.09±0.06b | 1.18±0.08b | 1.17±0.04b | 1.08±0.06b | 0.94±0.03a | 0.85±0.01a | |
PDR/% | 18.90±1.06c | 20.50±1.48c | 20.34±0.63c | 18.83±1.16c | 16.38±0.61b | 14.75±0.20a | |
SR/% | 86.67±3.34a | 88.89±1.92ab | 95.56±1.93c | 94.44±1.93c | 93.33±3.34bc | 92.22±3.85bc | |
CF/(g/c | 2.56±0.15d | 2.47±0.22c | 2.40±0.32b | 2.41±0.23b | 2.33±0.12a | 2.31±0.33a | |
HSI/% | 2.14±0.06c | 1.83±0.14b | 1.67±0.22a | 1.65±0.13a | 1.64±0.25a | 1.60±0.14a | |
VSI/% | 10.41±0.43c | 8.75±0.29b | 8.22±0.08a | 8.12±0.16a | 7.94±0.13a | 7.92±0.19a | |
G3 | IBW/g | 248.36±35.21 | 248.86±23.72 | 241.52±25.06 | 248.62±34.58 | 245.26±33.59 | 245.13±39.10 |
FBW/g | 345.38±24.23a | 383.81±16.83b | 395.82±23.36b | 400.97±22.88b | 394.20±30.92b | 389.06±20.97b | |
WGR/% | 39.12±3.92a | 54.24±2.90b | 63.93±3.79c | 61.26±2.91bc | 60.74±4.06bc | 58.90±8.39bc | |
SGR/(%/d) | 0.59±0.05a | 0.77±0.03b | 0.88±0.04c | 0.85±0.03bc | 0.85±0.05bc | 0.83±0.10bc | |
FCR | 3.01±0.26b | 2.30±0.09a | 2.03±0.09a | 2.09±0.08a | 2.11±0.11a | 2.18±0.26a | |
PER | 0.95±0.08b | 1.09±0.05c | 1.09±0.05c | 0.96±0.04b | 0.86±0.04ab | 0.77±0.09a | |
PDR | 15.92±1.38b | 18.51±0.89c | 18.77±0.90c | 16.44±0.65b | 14.71±0.74ab | 13.17±1.62a | |
SR/% | 97.78±1.92 | 98.89±1.92 | 96.67±3.34 | 96.67±0.00 | 97.78±1.92 | 98.89±1.92 | |
CF/(g/c | 2.31±0.26 | 2.28±0.33 | 2.24±0.32 | 2.25±0.22 | 2.27±0.12 | 2.29±0.21 | |
HSI/% | 2.12±0.24c | 1.78±0.13b | 1.55±0.12a | 1.53±0.22a | 1.51±0.35a | 1.54±0.21a | |
VSI/% | 9.07±0.44 | 9.12±0.56 | 9.12±0.36 | 8.96±0.39 | 8.82±0.21 | 8.66±0.17 |
注: 同一行数据不同的字母表示有显著差异(P<0.05),下表同。Note: Treatments without a common alphabet are significantly different (P<0.05),the same as below. IBW:初始体质量Initial mean body weight; FBW: 终末体质量Final mean body weight; WGR:增重率Weight gain rate; SGR:特定生长率Specific growth rate; FCR:饲料系数Food coefficient rate; PER:蛋白质效率Protein efficiency ratio; PDR:蛋白沉积率Protein deposition rate; SR:存活率Survival rate; CF:肥满度Condition factor; HSI:肝体比Hepotasomatic index; VSI:脏体比Viscerasomatic index.
G2组鳜,在450 g/kg的饲料蛋白含量下,其WGR和SGR值与更高蛋白水平处理组之间差异均不明显(P>0.05)。当饲料蛋白含量由350 g/kg增加至450 g/kg时,鳜 FCR值明显降低(P<0.05)。饲料蛋白水平高于500 g/kg后,鳜的PER和PDR显著降低(P<0.05)。饲料蛋白水平为450 g/kg的处理组鳜的SR与更高蛋白水平处理组之间无显著差异,且其SR均超过90%。CF随着饲粮蛋白水平的升高而显著降低(P<0.05)。鳜的HSI和VSI在饲喂蛋白质水平高于450 g/kg的处理组之间没有显著性差异(P>0.05),但显著低于饲料蛋白水平为350 g/kg和400 g/kg的处理组(P<0.05)。
G3组鳜,其WGR和SGR均先升高后降低,当饲料蛋白含量为450 g/kg时,鳜的WGR和SGR最高。鳜的FCR在饲料蛋白水平为350 g/kg时显著高于其他处理组(P<0.05)。饲料蛋白含量升高,鳜的PER和PDR显著上升(P<0.05),当饲料蛋白水平高于450 g/kg后降低。饲料蛋白水平对G3组鳜的SR无显著影响(P>0.05),在所有处理中均超过96%。CF和VSI在不同处理间差异不显著(P>0.05)。但随着饲料蛋白含量升高,鳜的HSI先下降,在饲料蛋白水平增加到450 g/kg后趋于稳定。
对不同规格的鳜进行SGR折线回归模型分析(

图1 鳜饲料蛋白水平与SGR的关系
Fig.1 Relationship between dietary protein levels and SGR of mandarin fish
A:G1; B:G2; C:G3.
由
组别 Group | 营养物质 Nutrients | Diet 35 | Diet 40 | Diet 45 | Diet 50 | Diet 55 | Diet 60 | |
---|---|---|---|---|---|---|---|---|
G1 | 干物质 Dry matter | 61.38±3.51a | 63.92±6.56a | 68.88±3.98b | 69.00±4.06b | 68.38±4.94b | ||
粗蛋白 Crude protein | 76.00±5.62a | 81.17±3.58b | 86.04±2.21c | 83.12±4.46b | 81.56±4.57b | |||
粗脂肪 Crude lipid | 84.91±4.09a | 91.11±3.35ab | 92.39±2.55b | 93.41±4.62b | 90.74±4.91ab | |||
总能 Gross energy | 67.61±2.22a | 73.03±4.00b | 79.16±3.95c | 77.90±4.02bc | 76.57±2.98b | |||
G2 | 干物质 Dry matter | 63.10±3.64a | 65.44±3.45ab | 70.53±4.47c | 70.87±3.54c | 69.85±3.12bc | 65.60±1.63ab | |
粗蛋白 Crude protein | 74.85±4.18a | 80.97±3.13b | 84.10±3.09c | 85.54±3.80c | 82.39±2.40bc | 81.50±4.49b | ||
粗脂肪 Crude lipid | 93.11±1.05 | 92.93±5.85 | 91.71±4.71 | 92.27±4.24 | 91.15±2.16 | 90.39±3.00 | ||
总能 Gross energy | 67.76±4.91a | 70.26±0.89b | 74.82±2.84c | 75.38±3.86c | 74.08±3.07bc | 70.79±4.63ab | ||
G3 | 干物质 Dry matter | 67.28±0.48a | 70.75±1.50b | 70.84±1.30b | 71.63±1.98b | 70.83±1.54b | 71.03±2.01b | |
粗蛋白 Crude protein | 75.71±3.67a | 80.93±1.24b | 85.79±2.90c | 85.93±2.82c | 82.48±3.45bc | 81.94±2.59bc | ||
粗脂肪 Crude lipid | 90.65±4.48 | 91.06±3.41 | 91.25±4.78 | 90.25±5.65 | 88.93±4.18 | 89.77±5.68 | ||
总能 Gross energy | 75.66±5.86 | 74.56±4.34 | 73.85±3.08 | 74.42±4.08 | 75.06±5.76 | 74.77±4.23 |
3种规格鳜的前肠胰蛋白酶、脂肪酶和淀粉酶的检测结果如
组别 Group | 消化酶种类Species of digestive enzyme | Diet 35 | Diet 40 | Diet 45 | Diet 50 | Diet 55 | Diet 60 |
---|---|---|---|---|---|---|---|
G1 | 胰蛋白酶/ (U/mg) Trypsin | 12.94±1.26a | 17.77±1.50b | 21.50±1.29c | 21.28±1.37c | 22.16±1.63c | |
脂肪酶/(U/g) Lipase | 25.56±1.54 | 29.79±3.22 | 28.93±8.52 | 25.60±3.60 | 25.77±1.41 | ||
淀粉酶/(U/mg) Amylase | 0.18±0.03a | 0.39±0.03b | 0.59±0.03c | 0.42±0.04b | 0.38±0.02b | ||
G2 | 胰蛋白酶/(U/mg) Trypsin | 21.32±1.02a | 27.23±2.17b | 31.22±0.87c | 31.33±1.33c | 31.54±1.18c | 29.89±1.31c |
脂肪酶/(U/g) Lipase | 32.56±2.51 | 32.76±2.56 | 32.30±3.00 | 33.10±1.94 | 32.61±2.80 | 32.49±1.17 | |
淀粉酶/(U/mg) Amylase | 1.20±0.04e | 0.78±0.04d | 0.66±0.08c | 0.55±0.03b | 0.43±0.02a | 0.40±0.04a | |
G3 | 胰蛋白酶/(U/mg) Trypsin | 16.12±1.66a | 19.04±1.22b | 22.90±0.60d | 22.08±2.90cd | 19.83±0.92bc | 18.66±0.59ab |
脂肪酶/(U/g) Lipase | 26.40±1.92 | 26.46±1.99 | 25.39±1.60 | 24.55±1.06 | 24.14±0.57 | 24.50±0.98 | |
淀粉酶/(U/mg) Amylase | 0.92±0.03e | 0.84±0.03d | 0.75±0.03b | 0.45±0.08b | 0.36±0.03a | 0.34±0.01a |
由
组别 Group | 酶 Enzyme | Diet 35 | Diet 40 | Diet 45 | Diet 50 | Diet 55 | Diet 60 |
---|---|---|---|---|---|---|---|
G1 | 谷丙转氨酶 GPT | 26.58±1.15a | 34.83±2.02b | 45.00±2.20c | 49.95±1.91d | 51.74±1.79d | |
谷草转氨酶 GOT | 37.42±2.75a | 51.93±1.80b | 62.57±3.83c | 66.92±3.36cd | 68.90±1.35d | ||
G2 | 谷丙转氨酶 GPT | 35.61±3.03a | 40.87±1.18b | 57.35±2.05c | 59.92±1.81c | 58.53±1.94c | 57.43±2.82c |
谷草转氨酶 GOT | 23.58±2.90a | 32.47±2.85b | 47.35±2.05c | 50.43±0.71cd | 52.32±1.13d | 52.94±1.47d | |
G3 | 谷丙转氨酶 GPT | 27.14±1.67a | 40.72±4.43b | 51.96±2.04c | 61.59±2.04d | 61.22±1.63d | 62.47±2.50d |
谷草转氨酶 GOT | 28.40±1.55a | 33.37±2.71b | 39.78±1.72c | 44.86±1.04d | 40.63±1.31c | 38.01±1.71c |
由

图2 不同饲料蛋白水平下鳜摄食后氨氮排泄率的变化
Fig.2 Different dietary protein levels on the change of ammonia nitrogen excretion of mandarin fish after feeding
A:G1; B:G2; C:G3. 不同字母表示不同蛋白水平处理在第6小时差异显著(P<0.05)。Different letters indicate significant differences among treatments at the 6 hour and 16 hour (P<0.05).
鳜的蛋白需求与其规格密切相关,在本试验条件下,3种规格鳜饲料适宜蛋白质水平分别为497.1、451.9和446 g/kg,G1组鳜的蛋白质需求量最高,这与丝尾鲤(Hemibagrus wyckioides
本研究中,随着饲料蛋白水平的提高,3种规格鳜WGR、SGR先升高后下降。低蛋白组鳜的生长性能较差,可能是由于蛋白含量不足,不能为鱼体细胞、组织及机体合成蛋白质提供足够的氨基酸和生长代谢所需的能
本研究中,3种不同规格的鳜的干物质ADC范围从61.38%到71.63%,这一结果与Mo
GPT和GOT对动物氨基酸代谢非常重要。氨基酸代谢酶的活性和氮排泄的水平是饲料蛋白质利用的重要指
水体中氨浓度过高会对鱼虾的肾、肝、脾、甲状腺和血液组织产生严重影响。而亚硝酸盐会影响机体氧气的正常运输,损害身体的组织和器
综上所述,饲料蛋白含量对3种规格鳜的生长性能、饲料利用率、鱼体营养成分、抗氧化能力和氨氮排泄有明显的影响。蛋白质含量偏高或偏低都会对鱼类的生长发育产生一定的影响。此外,高蛋白饲粮增加了氨氮水平及其代谢物,从而对培养环境产生了显著的毒性作用。本研究旨在确定3种规格鳜的最佳蛋白质水平,为开发具有最佳生长性能和抗氧化能力的新型鳜饲料提供有价值的信息。鳜的最佳蛋白质需要量与其规格密切相关,根据不同规格的鳜进行SGR折线回归模型分析,初始体质量为(11.58±1.34)、(94.77±2.59)和(245.26±3.59) g的鳜最适蛋白质需求量分别为491.7、451.9和446 g/kg。
参考文献References
LIANG X F,OKU H,OGATA H Y,et al.Weaning Chinese perch Siniperca chuatsi (Basilewsky) onto artificial diets based upon its specific sensory modality in feeding[J].Aquaculture research,2001,32:76-82. [百度学术]
MO A J,SUN J X,WANG Y H,et al.Apparent digestibility of protein,energy and amino acids in nine protein sources at two content levels for mandarin fish,Siniperca chuatsi[J].Aquaculture,2019,499:42-50. [百度学术]
SANKIAN Z,KHOSRAVI S,KIM Y O,et al.Dietary protein requirement for juvenile mandarin fish,Siniperca scherzeri[J].Journal of the world aquaculture society,2019,50(1):34-41. [百度学术]
王贵英,曾可为,高银爱,等.鳜配合饲料的最适蛋白质含量[J].水生生物学报,2005,29(2):189-192.WANG G Y,ZENG K W,GAO Y A,et al.The optimum dietary protein level for Siniperca chuatsi[J].Acta hydrobiologica sinica,2005,29(2):189-192 (in Chinese with English abstract). [百度学术]
GARLING D L Jr,WILSON R P.Optimum dietary protein to energy ratio for channel catfish fingerlings,Ictalurus punctatus[J].The journal of nutrition,1976,106(9):1368-1375. [百度学术]
杨伟杰,莫爱杰,杨慧君,等.克氏原螯虾不同生长阶段饲料适宜蛋白水平的研究[J].华中农业大学学报,2022,41(1):170-178.YANG W J,MO A J,YANG H J,et al.Protein requirement of red swamp crayfish (Procambarus clarkii) at three different growth stages[J].Journal of Huazhong Agricultural University,2022,41(1):170-178 (in Chinese with English abstract). [百度学术]
CRAIG S,HELFRICH L A. Understanding fish nutrition,feeds,and feeding [M].Yorktown: Virginia Cooperative Extension,2002: 4. [百度学术]
杨伟杰.饲料蛋白水平、投喂水平和投喂频率对克氏原螯虾生长和健康的影响[D].武汉:华中农业大学,2022.YANG W J.The effects of dietary protein level、feeding frequency and feeding level on growth and health of Procambarus clarkii[D].Wuhan:Huazhong Agricultural University,2022 (in Chinese with English abstract). [百度学术]
李军,骆小年,徐忠源,等.鸭绿沙塘鳢耗氧率、氨氮排泄率与临界窒息点研究[J].上海海洋大学学报,2010,19(5):685-691.LI J,LUO X N,XU Z Y,et al.Studies on the oxygen consumption rate and critical stifling point of Odontobutis yaluensis[J].Journal of Shanghai Ocean University,2010,19(5):685-691(in Chinese with English abstract). [百度学术]
DUNCAN D B.Multiple range and multiple F tests[J].Biometrics,1955,11(1):1. [百度学术]
DENG J M,ZHANG X,BI B L,et al.Dietary protein requirement of juvenile Asian red-tailed catfish Hemibagrus wyckioides[J].Animal feed science and technology,2011,170(3/4):231-238. [百度学术]
廖朝兴,黄忠志.草鱼种在不同生长阶段对饲料蛋白质需要的研究[J].淡水渔业,1987,17(1):1-5.LIAO C X,HUANG Z Z.Study on feed protein requirement of grass carp species at different growth stages[J].Freshwater fisheries,1987,17(1):1-5 (in Chinese). [百度学术]
姜才根,王玮玮,谢夏全,等.眼斑拟石首鱼养殖全程的饲料蛋白质最适含量[J].福建农业学报,2005,20(S1):7-12.JIANG C G,WANG W W,XIE X Q,et al.Study on the optimal dietary protein levels for red drum Sciaenops ocelletus in the whole cultured process[J].Fujian journal of agricultural sciences,2005,20(S1):7-12 (in Chinese with English abstract). [百度学术]
HEMRE G I,DENG D F.Dietary nutrients,additives,and fish health[M].Hoboken:John Wiley & Sons,Inc,2015:95-110. [百度学术]
曾本和,刘海平,王建,等.饲料蛋白质水平对拉萨裸裂尻鱼幼鱼肌肉氨基酸及蛋白质代谢的影响[J].中国水产科学,2019,26(6):1153-1163.ZENG B H,LIU H P,WANG J,et al.Effects of dietary protein levels on muscular amino acids and protein metabolism of Schizopygopsis younghusbandi younghusbandi Regan[J].Journal of fishery sciences of China,2019,26(6):1153-1163 (in Chinese with English abstract). [百度学术]
吴凡,文华,蒋明,等.饲料碳水化合物水平对吉富罗非鱼幼鱼生长性能和血液主要生化指标的影响[J].西北农林科技大学学报(自然科学版),2012,40(12):8-14.WU F,WEN H,JIANG M,et al.Effects of different dietary carbohydrate levels on growth performance and blood biochemical parameters of juvenile GIFT tilapia(Oreochromis niloticus)[J].Journal of Northwest A & F University (natural science edition),2012,40(12):8-14(in Chinese with English abstract). [百度学术]
TELES A O,COUTO A,ENES P,et al.Dietary protein requirements of fish:a meta-analysis[J/OL].Reviews in aquaculture,2019:raq.12391[2022-05-07].https://doi.org/10.1111/raq.12391. [百度学术]
MELO J F B,LUNDSTEDT L M,METÓN I,et al.Effects of dietary levels of protein on nitrogenous metabolism of Rhamdia quelen (Teleostei:Pimelodidae)[J].Comparative biochemistry and physiology part A:molecular & integrative physiology,2006,145(2):181-187. [百度学术]
杨州,杨家新.暗纹东方魨幼鱼对蛋白质的最适需要量[J].水产学报,2003,27(5):450-455.YANG Z,YANG J X.Optimum protein requirement of juvenile Takifugu obscurus[J].Journal of fisheries of China,2003,27(5):450-455 (in Chinese with English abstract). [百度学术]
ALVAREZ-GONZÁLEZ C A,CIVERA-CERECEDO R,ORTIZ-GALINDO J L,et al.Effect of dietary protein level on growth and body composition of juvenile spotted sand bass,Paralabrax maculatofasciatus,fed practical diets[J].Aquaculture,2001,194(1/2):151-159. [百度学术]
JAUNCEY K.The effects of varying dietary protein level on the growth,food conversion,protein utilization and body composition of juvenile tilapias (Sarotherodon mossambicus)[J].Aquaculture,1982,27(1):43-54. [百度学术]
CARVALHO M A G,FERNANDES L F L,DE CARVALHO GOMES L.Digestibility,protein retention rate and ammonia excretion in juvenile fat snook (Centropomus parallelus) fed with different protein levels[J/OL].Ciência rural,2017,47(7):e20160369[2022-05-07].https://doi.org/10.1590/0103-8478cr20160369 [百度学术]
JANA S N,GARG S K,BARMAN U K,et al.Effect of varying dietary protein levels on growth and production of Chanos chanos (Forsskal) in inland saline groundwater:laboratory and field studies[J].Aquaculture international,2006,14(5):479-498. [百度学术]
QIN Q,CAO X F,DAI Y J,et al.Effects of dietary protein level on growth performance,digestive enzyme activity,and gene expressions of the TOR signaling pathway in fingerling Pelteobagrus fulvidraco[J].Fish physiology and biochemistry,2019,45(5):1747-1757. [百度学术]
LUNDSTEDT L M,MELO J F B,MORAES G.Digestive enzymes and metabolic profile of Pseudoplatystoma corruscans (Teleostei:Siluriformes) in response to diet composition[J].Comparative biochemistry and physiology,Part B,Biochemistry & molecular biology,2004,137(3):331-339. [百度学术]
YI T L,SUN J,LIANG X F,et al.Effects of polymorphisms in pepsinogen (PEP),amylase (AMY) and trypsin (TRY) genes on food habit domestication traits in mandarin fish[J].International journal of molecular sciences,2013,14(11):21504-21512. [百度学术]
钱曦,王桂芹,周洪琪,等.饲料蛋白水平及豆粕替代鱼粉比例对翘嘴红鲌消化酶活性的影响[J].动物营养学报,2007,19(2):182-187.QIAN X,WANG G Q,ZHOU H Q,et al.Effect of dietary protein on the activities of digestive enzymes of topmouth culter (Erythroculter ilishaeformis Bleeker)[J].Chinese journal of animal nutrition,2007,19(2):182-187(in Chinese with English abstract). [百度学术]
桑永明,杨瑶,尹航,等.饲料蛋白水平对方正银鲫幼鱼生长、体成分、肝脏生化指标和肠道消化酶活性的影响[J].水生生物学报,2018,42(4):736-743.SANG Y M,YANG Y,YIN H,et al.Effects of dietary protein levels on growth performance,body composition,liver biochemical indices,and digestive enzyme activities of juvenile Chinese crucian carp[J].Acta hydrobiologica sinica,2018,42(4):736-743(in Chinese with English abstract). [百度学术]
ALAM M S,LIANG X F,LIU L W.Indirect effect of different dietary protein to energy ratio of bait fish Mori diets on growth performance,body composition,nitrogen metabolism and relative AMPK & mTOR pathway gene expression of Chinese perch[J/OL].Aquaculture reports,2020,16:100276[2022-05-07].https://doi.org/10.1016/j.aqrep.2020.100276. [百度学术]
FANG L,BAI X L,LIANG X F,et al.Ammonia nitrogen excretion in mandarin fish (Siniperca chuatsi) and grass carp (Ctenopharyngodon idellus) fed practical diets:the effects of water temperature[J].Aquaculture research,2017,48(3):836-843. [百度学术]
LAM S S,AMBAK M A,JUSOH A,et al.Waste excretion of marble goby (Oxyeleotris marmorata Bleeker) fed with different diets[J].Aquaculture,2008,274(1):49-56. [百度学术]
王桂芹,周洪琪,陈建明,等.饲料蛋白对翘嘴鲌氮排泄的影响[J].华南农业大学学报,2008,29(1):92-96.WANG G Q,ZHOU H Q,CHEN J M,et al.The effect of dietary protein on nitrogen excretion in Culter alburnus juveniles[J].Journal of South China Agricultural University,2008,29(1):92-96 (in Chinese with English abstract). [百度学术]
OBIRIKORANG K A,GYAMFI S,GOODE M E,et al.Effect of soybean meal diets on the growth performance,ammonia excretion rates,gut histology and feed cost of Nile tilapia (Oreochromis niloticus) fry[J].Aquaculture research,2020,51(9):3520-3532. [百度学术]
SUN L H,CHEN H R.Effects of ration and temperature on growth,fecal production,nitrogenous excretion and energy budget of juvenile cobia (Rachycentron canadum)[J].Aquaculture,2009,292(3/4):197-206. [百度学术]
MCGOOGAN B B,GATLIN D M.Dietary manipulations affecting growth and nitrogenous waste production of red drum,Sciaenops ocellatus I.Effects of dietary protein and energy levels[J].Aquaculture,1999,178(3/4):333-348. [百度学术]