摘要
为揭示间作体系中土壤微生物对根系分泌物的响应机制,设计桶栽试验,于2020-2021年在江西农业大学科技园种植冬季作物,探索紫云英与油菜间作根系分泌物与土壤微生物群落变化的互作机制。结果显示,紫云英和油菜不同种植模式下根系分泌物特征差异明显,与单作紫云英相比,间作显著增加了单糖类化合物含量,降低神经递质类化合物含量。氨基酸、单糖、神经递质类等化合物与土壤微生物显著相关,其中,单糖类化合物与酸杆菌门、绿弯菌门等微生物呈显著正相关;神经递质类化合物与绿弯菌门、厚壁菌门、芽单胞菌门、蓝藻细菌等微生物呈显著正相关。紫云英单作(A)、油菜单作(R)和紫云英与油菜间作(AR)3种模式的相关性结果显示,油菜单作模式下分泌物与微生物的相关性和整体结果差异最大,同时,紫云英单作和油菜单作模式下单糖类化合物与酸杆菌、绿弯菌均没有显著相关性,而紫云英与油菜间作模式下单糖类化合物与酸杆菌、绿弯菌呈极显著正相关。紫云英与油菜间作模式中酸杆菌群落相对丰度显著高于紫云英单作,微生物覆盖度指数也显著大于紫云英单作。因此,根系分泌物很可能是紫云英和油菜间作改变土壤微生物群落结构的重要因素,单糖化合物在这个过程中发挥了主要作用。
植物往往通过从根部分泌化合物到周围土壤中来适应和响应生物以及非生物环境,这些化合物包括糖、酚醛、氨基酸、有机酸以及其他次生代谢物等小分子化合物和多糖、蛋白质等高分子化合
紫云英(Astragalus sinicus)是一种具有固氮功能的豆科绿肥作物,可为其周围生长的植物提供营养。因此,紫云英间作其他作物(如禾本科、十字花科)的生产效益一直受到相关研究者的高度关注。油菜(Brassica napus)是十字花科油料作物,经济价值大。对紫云英与油菜间作的研究发现,油菜在间作系统中竞争能力较强,占据着优势主导地
试验在160 L塑料桶内进行,桶高70 cm,上下口径分别为56 cm和44 cm,每桶装土150 kg,土壤类型为南方红壤。试验时间:2020年10月—2021年5月,试验地点:江西省南昌市江西农业大学科技园(28°46′N,115°55′E)。试验前测定的土壤基本理化性状:土壤有机质(soil organic matter)为23.17 g/kg,土壤全氮(total N)、全磷(total P)、全钾(total K)、碱解氮(alkali-hydrolyzed nitrogen)、有效磷(available phosphorus)和速效钾(available potassium)含量分别为1.29 g/kg、0.92 g/kg、11.14 g/kg、99.98 mg/kg、5.01 mg/kg和118.44 mg/kg,土壤pH 4.75。
设计桶栽种植试验,共设3个处理(种植模式)。A:紫云英单作,采用条播方式种植紫云英,行距30 cm,每桶播2条,播种量0.9 g(45 kg/h
1)根系分泌物。于油菜成熟期收集作物根际处土壤溶液,使用仪器为土壤溶液采样器(Rhizon SMS)。将取样器轻轻插入根际土壤5~8 cm处,取样器外端接上注射器,再将注射器内抽真空,利用压强将土壤溶液吸入注射器,每桶收集50 mL。收集过程中及时将收集到的溶液保存在-80 ℃冰箱,待全部收集充足后将各个桶的溶液混匀保存。
根系分泌物的测定过程主要包括样品前处理和GC-MS检
2)土壤微生物。收集完土壤溶液之后,立即采集作物根际土壤样品(采集位置与插土壤溶液取样器位置相同),快速将土壤轻轻弄碎,并去除杂质,充分混匀,然后保存在-80℃冰箱中待测。
土壤微生物测定: 使用CTAB法提取土壤样品中的DNA,利用1%琼脂糖凝胶电泳检测抽提的基因组DNA。 然后进行PCR扩增, PCR 采用TransGen AP221-02(TransStart Fastpfu DNA Polymerase); PCR仪:ABI GeneAm
从3种种植模式的根系分泌物中共提取179种代谢物,经过预处理后保留了170种,其中符合KEGG化合物二级分类的有33种,主要分为8大类(

图1 不同处理下根系分泌物的相对含量
Fig. 1 Relative content for root exudates under different treatments
A: 紫云英单作 Monoculture milk vetch; R: 油菜单作 Monoculture rapeseed; AR: 紫云英||油菜模式Milk vetch intercropping with rapeseed; Ⅰ:氨基酸Amino acids;Ⅱ:脂肪酸Fatty acids;Ⅲ:单糖Monosaccharides;Ⅳ:羧酸Carboxylic acids;Ⅴ:胺类Amines;Ⅵ:碱基Bases;Ⅶ:其他激素Other hormones;Ⅷ:神经递质类Neurotransmitters;Ⅸ:其他Others。不同小写字母表示差异显著(P<0.05)。下同。Different small letters meant significant difference at 0.05 level.The same as follows.

图2 不同处理下根系分泌物的主成分分析(a)和最小二乘法-判别分析(b)
Fig. 2 PCA(a) and PLS-DA(b)for root exudates under different treatments
对不同处理下的根系分泌物进行主成分分析(principal component analysis,PCA)(
对不同处理下的土壤微生物群落丰度及其组间差异进行单因素方差分析(one-way ANOVA)(

图3 不同处理下的土壤微生物群落丰度占比及其组间差异
Fig. 3 Abundance percentage of soil microbial community and its difference among groups under different treatments
*、**分别表示差异显著(P<0.05)和极显著(P<0.01)。*,** indicate significant difference (P<0.05) and extremely significant difference. 下同。The same as follows.
在门水平上对土壤微生物进行PCA分析(

图4 不同处理下土壤微生物的主成分分析
Fig. 4 Principal component analysis for soil microorganism under different treatments
为了进一步揭示紫云英和油菜不同种植模式下土壤微生物群落结构的变化情况,对3个处理中的土壤微生物进行香农多样性(Shannon diversity)、辛普森多样性(Simpson diversity)和覆盖度多样性(coverage diversity)分析(

图5 不同处理下土壤微生物的多样性分析
Fig. 5 Analysis of soil microbial diversity under different treatments
图中箱子的最上和最下2条横线分别是样本数据的最大值和最小值,箱体的上下限分别是数据的上四分位数和下四分位数,箱子中的横线是中位数。The top and bottom horizontal lines of the box in the figure are the maximum and minimum values of the sample data respectively, the upper and lower limits of the box are the upper and lower quartiles of the data respectively, and the horizontal line in the box is the median.
为了探究根系分泌物对土壤微生物的影响,对根系分泌物和根际土壤微生物进行关联分析(

图6 根系分泌物与门水平上的土壤微生物的相关性热图
Fig. 6 Heat map of correlation analysis between root exudates and soil microorganism at phylum level
图中颜色代表相关性,红色代表正相关,蓝色代表负相关,*表示显著相关(P<0.05),**表示极显著相关(P<0.01),***表示极显著相关(P<0.001) 。The color in the figure represent the correlation, red = positive correlation, blue = negative correlation, * meant significant correlation (P<0.05), ** meant extremely significant correlation (P<0.01), *** meant extremely significant correlation (P<0.001).
本研究中,紫云英和油菜的根系分泌物主要包括氨基酸、脂肪酸、单糖、羧酸、胺类、碱基、其他激素和胺类或神经递质类化合物,其中含量最多的是氨基酸、脂肪酸和单糖。通过PCA和PLS-DA分析发现,紫云英和油菜的根系分泌物特征差异显著。单作油菜中的单糖、神经递质类化合物含量均显著高于单作紫云英。有研究表明,在根系分泌的化合物中,释放量最大的是糖类、氨基酸和有机
通过PCA分析发现,紫云英和油菜不同种植模式下的土壤微生物群落结构差异较大,紫云英与油菜间作的土壤微生物覆盖度指数显著高于紫云英单作。研究表明,在生态系统中,植物多样性增加会直接影响根系间的接触状况,间接提高根际土壤微生物多样
在本研究中,紫云英与油菜间作和紫云英单作的根系分泌物特征存在明显差异,间作同时也改变了土壤的微生物群落结构组成,如间作下的单糖化合物相对含量显著高于紫云英单作,间作中的土壤微生物覆盖度和酸杆菌丰度均大于紫云英单作,并且单糖与酸杆菌具有显著正相关关系。这些研究结果部分补充了紫云英||油菜系统中关于根际微生物变化机制研究的不足。在间作系统中,影响根际土壤微生物群落的因素除了根系分泌物外,还有土壤微环境。根系分泌物在“植物-土壤-微生物”互作过程中扮演着重要角色,它既可以充当底物,也可以充当信号分子。我们将进一步探究紫云英与油菜间作模式下根系分泌物如何介导“作物-土壤-微生物”互作,揭示间作系统中土壤微生物的变化机制。同时,了解影响土壤微生物群落结构的主要因素,也便于今后紫云英和油菜的种植管理,提高农业生产效益。
参考文献 References
BAIS H P,WEIR T L,PERRY L G,et al.The role of root exudates in rhizosphere interactions with plants and other organisms[J].Annual review of plant biology,2006,57:233-266. [百度学术]
JONES D L,HODGE A,KUZYAKOV Y.Plant and mycorrhizal regulation of rhizodeposition[J].The new phytologist,2004,163(3):459-480. [百度学术]
HINSINGER P.Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review[J].Plant and soil,2001,237(2):173-195. [百度学术]
ZHAO M L,ZHAO J,YUAN J,et al.Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth[J].Plant,cell & environment,2021,44(2):613-628. [百度学术]
BADRI D V,VIVANCO J M.Regulation and function of root exudates[J].Plant,cell & environment,2009,32(6):666-681. [百度学术]
SOMERS E,VANDERLEYDEN J,SRINIVASAN M.Rhizosphere bacterial signalling:a love parade beneath our feet[J].Critical reviews in microbiology,2004,30(4):205-240. [百度学术]
DOORNBOS R F,VAN LOON L C,BAKKER P A H M.Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere:a review[J].Agronomy for sustainable development,2012,32(1):227-243. [百度学术]
ABDEL-LATEIF K,BOGUSZ D,HOCHER V.The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi,rhizobia and Frankia bacteria[J].Plant signaling & behavior,2012,7(6):636-641. [百度学术]
RUDRAPPA T,CZYMMEK K J,PARÉ P W,et al.Root-secreted malic acid recruits beneficial soil bacteria[J].Plant physiology,2008,148(3):1547-1556. [百度学术]
CHAPARRO J M,BADRI D V,BAKKER M G,et al.Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions[J/OL].PLoS One,2013,8(2):e55731[2022-11-11].https//doi.org.10.1371/journal.pone.0055731. [百度学术]
BROECKLING C D,BROZ A K,BERGELSON J,et al.Root exudates regulate soil fungal community composition and diversity[J].Applied and environmental microbiology,2008,74(3):738-744. [百度学术]
DENNIS P G,MILLER A J,HIRSCH P R.Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities?[J].FEMS microbiology ecology,2010,72(3):313-327. [百度学术]
BAKKER M G,MANTER D K,SHEFLIN A M,et al.Harnessing the rhizosphere microbiome through plant breeding and agricultural management[J].Plant and soil,2012,360(1):1-13. [百度学术]
GUO Z Y,KONG C H,WANG J G,et al.Rhizosphere isoflavones (daidzein and genistein) levels and their relation to the microbial community structure of mono-cropped soybean soil in field and controlled conditions[J].Soil biology and biochemistry,2011,43(11):2257-2264. [百度学术]
LI B,LI Y Y,WU H M,et al.Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J].PNAS,2016,113(23):6496-6501. [百度学术]
MOREAU D,BARDGETT R D,FINLAY R D,et al.A plant perspective on nitrogen cycling in the rhizosphere[J].Functional ecology,2019,33(4):540-552. [百度学术]
BERENDSEN R L,PIETERSE C M J,BAKKER P A H M.The rhizosphere microbiome and plant health[J].Trends in plant science,2012,17(8):478-486. [百度学术]
王新宇,高英志.禾本科/豆科间作促进豆科共生固氮机理研究进展[J].科学通报,2020,65(S1):142-149.WANG X Y,GAO Y Z.Advances in the mechanism of cereal/legume intercropping promotion of symbiotic nitrogen fixation[J].Chinese science bulletin,2020,65(S1):142-149 (in Chinese with English abstract). [百度学术]
肖靖秀,郑毅,汤利,等.小麦-蚕豆间作对根系分泌糖和氨基酸的影响[J].生态环境学报,2015,24(11):1825-1830.XIAO J X,ZHENG Y,TANG L,et al.Effect of wheat and faba bean intercropping on sugar and amino acid exuded by roots[J].Ecology and environmental sciences,2015,24(11):1825-1830 (in Chinese with English abstract). [百度学术]
CHEN C P,CHENG C H,HUANG Y H,et al.Converting leguminous green manure into biochar:changes in chemical composition and C and N mineralization[J].Geoderma,2014,232/233/234:581-588. [百度学术]
宋莉,韩上,席莹莹,等.间作对油菜和紫云英生长及产量的影响[J].中国油料作物学报,2014,36(2):231-237.SONG L,HAN S,XI Y Y,et al.Effects of intercropping on growth and yield of rape and Chinese milk vetch[J].Chinese journal of oil crop sciences,2014,36(2):231-237 (in Chinese with English abstract). [百度学术]
周泉,王龙昌,马淑敏,等.西南旱地油菜间作紫云英和秸秆覆盖的生产效应[J].作物学报,2018,44(3):431-441.ZHOU Q,WANG L C,MA S M,et al.Influences of rape intercropping with Chinese milk vetch and straw mulching on productive benefits in dryland of southwest China[J].Acta agronomica sinica,2018,44(3):431-441 (in Chinese with English abstract). [百度学术]
ZHOU Q,CHEN J,XING Y,et al.Influence of intercropping Chinese milk vetch on the soil microbial community in rhizosphere of rape[J].Plant and soil,2019,440(1/2):85-96. [百度学术]
周泉,王龙昌,邢毅,等.间作紫云英下油菜根际土壤微生物群落功能特征[J].应用生态学报,2018,29(3):909-914.ZHOU Q,WANG L C,XING Y,et al.Effects of intercropping Chinese milk vetch on functional characteristics of soil microbial community in rape rhizosphere[J].Chinese journal of applied ecology,2018,29(3):909-914 (in Chinese with English abstract). [百度学术]
王亚君,王腾琦,侯志洁,等.根系分泌物对紫云英油菜间作的响应[J].应用生态学报,2021,32(5):1783-1790.WANG Y J,WANG T Q,HOU Z J,et al.Responses of root exudates to intercropping of Chinese milk vetch with rape[J].Chinese journal of applied ecology,2021,32(5):1783-1790 (in Chinese with English abstract). [百度学术]
FARRAR J,HAWES M,JONES D,et al.How roots control the flux of carbon to the rhizosphere[J].Ecology,2003,84(4):827-837. [百度学术]
XIAO H L, ZHENG X J. Effects of plant diversity on soil microbes[J]. Soil and environmental sciences, 2001, 10(3): 238-241. [百度学术]
JIMÉNEZ D J,ANDREOTE F D,CHAVES D,et al.Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes[J/OL].PLoS One,2012,7(12):e52069[2022-11-11].https//doi.org.10.1371/journal.pone.0052069. [百度学术]
LIU Z Q,LI S J,LIU N,et al.Soil microbial community driven by soil moisture and nitrogen in milk vetch (Astragalus sinicus L.)–rapeseed (Brassica napus L.) intercropping[J].Agriculture,2022,12(10):1-16. [百度学术]
CHENG W X,ZHANG Q L,COLEMAN D C,et al.Is available carbon limiting microbial respiration in the rhizosphere?[J].Soil biology and biochemistry,1996,28(10/11):1283-1288. [百度学术]
QIAN J H,DORAN J W,WALTERS D T.Maize plant contributions to root zone available carbon and microbial transformations of nitrogen[J].Soil biology and biochemistry,1997,29(9/10):1451-1462. [百度学术]
BERTIN C,YANG X H,WESTON L A.The role of root exudates and allelochemicals in the rhizosphere[J].Plant and soil,2003,256(1):67-83. [百度学术]