网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

缓/控释肥研究进展及其应用  PDF

  • 刘永红 1
  • 郑文涛 1
  • 张晋天 1
  • 马忠华 1
  • 蒯婕 2
  • 汪波 2
  • 周广生 2
1. 华中农业大学理学院,武汉430070; 2. 华中农业大学植物科学技术学院,武汉430070

中图分类号: S14

最近更新:2023-08-29

DOI:10.13300/j.cnki.hnlkxb.2023.04.019

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

随着绿色高效、集约化现代农业的快速发展,缓/控释技术在农业生产领域得到广泛应用。缓/控释肥的使用可以减少化肥对环境的污染、恢复土壤生态、提高化肥的利用率、降低人工成本,但是缓/控释肥的应用也存在一些不足。为促进现代农业健康发展,进一步了解缓/控释技术在农业集约化生产和农业科学研究、提高农业生产效率和实现化肥减施增效领域的进展,在调研文献的基础上,本文综述了近年缓/控释肥的发展、分类及制备方法及其应用进展,总结了缓/控释肥在应用中的优点和不足;同时针对缓/控释肥应用中的问题及对策进行了梳理,提出今后应围绕绿色材料开发、生产工艺和设备创新,开展缓/控释肥施用技术与评价体系的系统研究,形成缓/控释肥产业化技术集成与示范,研制出符合生产要求的高效、环保、低成本的缓/控释肥。

肥料是农作物生长所需的“粮食”,在农业生产中有着不可替代的作用。大量作物栽培试验表明,在农业生产中,合理施肥可以有效提高农作物产

1。据相关统计资料显示,氮、磷、钾肥的使用在不同作物上增产幅度不同:水稻、小麦和玉米施用N、P2O5、K2O平均增产幅度分别达到10.8~12.2、9.2~11.5和6.8~10.4 kg/hm2[2。化肥的使用提高了农作物的产量,但在农业生产实际中化肥的利用率很低,统计资料显示,我国农业生产中氮、磷、钾肥当季作物利用率分别为0%~35%、10%~20%和35%~50%3-4。当前,我国农业生产面临着一些严峻的问题,例如,化肥的施用量大于作物的需求量,导致多余的肥料进入环境中,对土壤、水体和大气等造成危2-3,具体包括:地下水硝酸盐含量超5、湖泊水体富营养6、温室气体N2O等的排7-8、土壤重金属污染19,严重影响生态环境和人类健110-12。另一方面,过量施肥也造成资源的极大浪费,不利于农业生产的可持续发13

据Zhang

14预测,到2033年我国人口将达到15亿,届时粮食生产需要增长35%才能满足我国人口及人均粮食“双增长”的需求。要确保我国人口的增长及人均粮食需求的安全,需要在作物生产中进行多次施肥,这与当前我国农业生产的社会现实是矛盾的。因此,我国农业生产迫切需要探索一套省工、稳产高产、绿色环保的施肥技术。缓/控释肥料是一种新型肥料,在作物生长过程中一次性施用可以满足作物整个生育期的养分需12,同时兼有简化施肥操作和降低人工成本、减少环境污染的优点,其环境效益和经济效益显15-16。因此,开展缓控/释肥料研究,可为我国集约化农业生产施肥转型、化肥农药减施增效提供新思路,对保障国家粮食安全、农业生产可持续发展和生态文明建设具有重要意义。

1 缓/控释技术的发展

缓/控释技术是指利用物理或化学方法贮存活性物质,在预期的时间内控制其释放速度以在某一体系内维持一定浓度,从而达到减少活性物质使用量和使用次数,实现活性物质持续稳定、充分地释放并发挥作

17。此处所述活性物质包括能有效影响动植物生长的化学物质(医药、农药及肥料养分等),与传统的化学活性物质的作用相比较,缓/控释技术释放的活性物质可以在较长时间内维持有效的浓度范围(图1),从而延长活性物质的作用时间,提高其作用效果和利用效率。

图1  活性物质在某种体系中的浓度变化

Fig.1  The active substances concentration changes in different systems

自20世纪50年代第1款商品化缓释氮肥甲醛包衣尿素在美国生产后,不同类型的商品化缓/控释肥在全球各地被研制出来(图2

18。其中,缓释技术是利用基质对活性物质进行简单的物理吸附或包埋,增加活性组分的传质阻力,达到使活性物质缓慢释放的目的。为防止活性组分暴发式释放,通常会对基质结构进行修饰、改进,利用环境因素的调节作用,使“阀门”打开,或者化学键断裂,活性物质缓慢释放。这种具有智能控释的系统往往具有特异性,活性物质对特定的环境因素产生响应而释放,称为控释技术,如受环境pH影响的酸/碱响19-20、温度响21、光响22以及酶响23等。

图2  缓/控释肥的发展历

18

Fig.2  Chorological development of controlled release fertilizers/slow release fertilizes

18

在“缓/控释肥”的定义中,缓释肥料(slow release fertilizers,SRFs)是指养分以可控和缓慢的方式释放到环境中的肥料;文献中通常使用“控释肥料(controlled release fertilizers,CRFs)”一

9。因此,在实际应用中,并未将“缓释肥”和“控释肥”进行严格区23。通过Web of Science数据库调研2001-2021年间的文献,以“缓释肥”“控释肥”“slow-release fertilizer”“sustainable-release fertilizer”和“controlled-release fertilizer”为主题词进行检索,结果(图3)显示,自2001年开始,关于“缓/控释肥”的研究逐年增加,到2021年,发表的相关研究成果较2001年增加了8倍,年均增幅高达11%;尤其是2014-2021年,年均增幅接近15%,表明当前科技工作者在“缓/控释肥”领域的研究和实践日益增多。缓/控释技术经过数十年的发展日渐成熟,在不同领域得到广泛应24-30。随着全球农业科技和农业现代化不断发展,可以预见,今后关于缓/控释肥的研究还会进一步增加。目前,缓/控释技术在农业领域的研究将成为农学及相关学科的热点。

图3  2001-2021年发表的关于缓/控释肥的研究论文(源自Web of Science)

Fig 3  Results from searches of the Web of Science database of scientific documents on “slow/controlled release fertilizers” during 2001-2021

2 缓/控释肥的研究及应用进展

2.1 缓/控释肥的制作方法及其作用原理

Trenkel

24综合了有关缓/控释肥养分缓慢释放(slow release)或控制释放(controlled release)的释放率和释放时间的特点,提出了缓/控释肥应具备的3条标准,即在25 ℃的条件下:①肥料中的养分在24 h 内的释放率不超过15%;②在28 d内养分释放率不超过75%;③在规定的释放时间内,养分释放率不得低于75%。根据Trenkel的3条标准,综合文献报道,缓/控释肥根据其作用原理和制作方法可以分为以下几种类912172431-32:①生化抑制型缓/控释肥。在制备缓/控释尿素(氮肥)的过程中,通过添加抑制尿素水解或硝化的化学试剂来进行造粒,抑制剂能够抑制尿素在田间的生物化学反应,从而减少农田施肥过程中氮肥损失,增强其肥效。②物理包被型缓/控释肥。将所施用的肥料采用某些无机材料、有机材料或者复合材料进行包膜处理,减缓肥料进入田间的时间,通过阻滞肥料扩散来减缓肥料的溶出速率,进而达到缓释的效果。③化学合成型缓/控释肥。使肥料(如尿素等)与高分子材料发生化学反应,通过加聚/缩聚反应连接到聚合物上,然后通过田间环境的变化引起聚合物化学键的断裂释放肥料,主要的试剂种类有脲甲醛、脲乙醛、亚异丁基等。④基质型缓/控释肥。通常是将肥料(氮、磷、钾以及微量元素等)分散或吸附在具有核壳结构、多孔结构等的功能化材料中(如生物炭、多孔硅和多孔黏土矿物等),然后利用物理障碍和化学键、分子间作用力等实现养分缓释。⑤低溶解性无机肥料。由于低溶解性无机肥具有枸溶性,所以在土壤中可以储存氮,通过环境微生物的硝化作用使之缓慢分解,提供植物生长所需养33。上述缓/控释肥开发与应用为肥料的高效利用、环境污染的控制发挥积极作用。

缓/控释肥的养分释放机制主要包括:①缓/控释肥具有微孔不渗透膜,在土壤溶液中养分从膜层微孔溶出,溶出的速度取决于膜材料的性质、膜的厚度、肥料的性质及加工条件

18;②缓/控释肥不存在渗透膜,则主要依靠物理、化学、生物等作用力破坏颗粒而释放养34-36;③缓/控释肥具有半渗透性膜层,土壤水分扩散到膜层内,致使内部渗透压把膜层胀破或膜层扩张到具有足够的渗透性而释放养37-38。缓控释肥料养分释放机制(图4)如下:缓/控释肥进入土壤中,在受到土壤环境温度、pH、水分以及土壤微生物等因素的刺激下,包覆肥料的膜会出现局部崩裂(图4A);在土壤水、土壤微生物及光热等的进一步作用下,肥料包膜继续崩解,吸收水分养分易于溶出(图4B);养分中的氮、磷、钾及微量元素等在渗透作用和离子交换作用之下,进入土壤中逐步被植物吸收(图4C);一段时间后,在植物根系、土壤微生物及光热等条件的综合作用下缓/控释肥的团聚体最终崩解并释放所有营养物质(图4D)。

图4  缓/控释肥的作用机制(根据文献资料综合整理)

Fig. 4  Schematic representations of slow/controlled release fertilizers systems(According the literatures)

N:氮肥;P:磷肥;K:钾肥;ME:微量元素;T:温度刺激;pH:pH刺激;H2O:水渗透作用;Mb:微生物作用。N:Nitrogen fertilizer; P:phosphorous fertilizer; K:Potassium fertilizer; ME:Microelement fertilizer; H2O:Water permeability; Mb:Microbial action.

2.2 缓/控释肥的研究与应用

缓/控释肥制备通常选用可以降低养分释放的包膜材料,包括天然材料中的黏土矿物和纳米黏土矿物,如蛭石、蒙脱石、凹凸棒石等;不易降解的聚砜;以及可生物降解的高分子材料,如海藻酸盐、淀粉、木质素、壳聚糖

333639-41表1是一些常见的养分包膜材料或者载体材料。

表1  适用于缓/控释肥的载体和包膜材料
Table 1  Carriers and coating materials suitable for the slow/controlled-release fertilizers
载体或者包膜材料 Carrier or coated substance肥料 Fertilizer

参考文献

References

褐煤、生物炭 Brown coal,biochar 氮肥 Nitrogen fertilizer

根据文献[

39]整理

Collected from reference 39

珍珠岩、蛭石、蒙脱石、凹凸棒石 Perlite, vermiculite, bentonite, and attapulgite 各种营养元素 All kinds of nutrients
泥炭 Peat 氮肥 Nitrogen fertilizer
海藻酸钙 Calcium alginate 复合肥 Compound fertilizer
锯木屑 Saw wood 氮肥 Nitrogen fertilizer
改性腐殖酸 Modified humic acid 氮肥 Nitrogen fertilizer

蛭石、蒙脱石、有机蛭石复合物纳米材料

Vermiculite, bentonite, organic vermiculite compound nano materials

氮肥 Nitrogen fertilizer
蛭石、蒙脱石、磷灰石纳米材料 Vermiculite, bentonite, hydroxyapatite nano materials 磷肥 Phosphate fertilizer
蛭石、蒙脱石纳米材料 Vermiculite, bentonite nano materials 钾肥 Potassium fertilizer
硫层壳聚糖包膜纳米材料 Sulphur@chitosan-coated nano materials 氮磷钾复合肥 NPK compound fertilizer
蛭石纳米材料 Vermiculite nano materials

硫、锌、铁、硼等微肥

S, Zn, Fe and B micronutrients

海藻酸盐 Alginate salt 磷酸二铵 Diammonium phosphate

根据文献[

33,36,40-42]整理

Collected from references 33,36,40-42

聚丙烯酰胺 Polyacrylamide 磷酸二铵 Diammonium phosphate
聚丙烯酰胺 Polyacrylamide 尿素 Urea
海藻酸盐 Alginate salt 磷酸二铵 Diammonium phosphate
羧甲基纤维素 Carboxymethylcellulose 磷酸二铵 Diammonium phosphate
淀粉 Starch 磷酸一铵 Monoammonium phosphate
壳聚糖 Chitosan 氮肥 Nitrogen fertilizer
聚丙烯酸 Polyacrylic acid 氮磷混合肥 Nitrogen and phosphate fertilizer
木质素 Lignin 氮肥 Nitrogen fertilizer
醋酸纤维、聚丙烯酸、聚丙烯酰胺 Acetate cellulose, polyacrylic acid, polyacrylamide 氮磷钾复合肥 NPK compound fertilizer
聚丙烯酸 Polyacrylic acid 氮磷钾复合肥 NPK compound fertilizer [42]
苯乙烯-丙烯酸丁酯-甲基丙烯酸甲酯共聚物Phenylethylene-acrylic acid-methyl methacrylate polymer 氮肥 Nitrogen fertilizer [37]
蓖麻油基聚氨酯 Castor oil-based polyurethane 磷酸二铵 Diammonium phosphate [38]
木质素 Lignin 磷肥 Phosphate fertilizer [43]
聚乙烯醇、聚乙烯醇/壳聚糖 Poly(vinyl alcohol), poly(vinyl alcohol)/chitosan 钾肥 Potassium fertilizer [44]

1)缓/控释氮肥。缓/控释肥料的种类繁多,当前对缓/控释肥研究较多的是氮

45-47,真正应用在农业生产实践中的产品并不多见。例如,中盐红四方公司对尿素颗粒进行包膜处理形成缓释肥料,连续5 a在多个省市的多种作物上开展缓释肥料示范试验,结果表明施用红四方缓释肥对水稻、玉米、小麦的长势、有效穗数、穗粒数、千粒重等性状有促进作用,与传统施肥方式相比增产率分别达到7.53%、8.22%、6.64%48,这表明缓/控释肥在实际应用中具有增产增收的效果。

交联聚合物常常被用来制作缓/控释材料,它可使线型分子之间产生新化学键,形成特定网络结构,以提高材料的强度、弹性、耐热性等理化性质。Zhao

42研究了交联剂用量对包膜表面结构和疏水性的影响以及不同后处理的影响,研究结果表明,以水溶性高分子聚丙烯酸乳液为主成分的包膜材料中添加交联剂(氮丙啶)的比例由1%增加至2%时,可溶性氮磷钾复合肥包膜拥有更好的疏水性。2种不同的包膜化肥在40 ℃的水中浸泡9 d,总营养素释放率分别为90%和40%。而An37通过在流化床中喷涂,将苯乙烯-丙烯酸丁酯-甲基丙烯酸甲酯共聚物胶乳/氧化石墨烯膜包覆在KNO3颗粒上,结果显示,当涂层中氧化石墨烯的添加量分别为0.18%、0.72%、1.43%和2.86%时,氮肥释放持续时间由24 d分别延长至26、29、34和38 d。由此可见,经交联剂和膜包覆处理后有助于延长缓释肥料中氮素的持续释放时间,进而提高肥效。Nakano49开发了低硫酸盐缓释化肥,以尿素形式加入氮肥,并用硅酸盐代替硫酸盐,开展缓释化肥培养番茄试验,研究结果表明,与普通的硫酸环二脲化肥相比,施用低硫酸盐缓释化肥可以减轻施用硫酸环二脲引起的番茄枝条和根生长减少症状。施用低硫酸盐缓释化肥的番茄果实较环二脲的果实质量增加59%,低硫酸盐缓释化肥具有增产的作用,但番茄糖含量下降了。

2)缓/控释磷肥。与缓/控释氮肥相比,缓/控释磷肥的研究不

50。Lu 38用蓖麻油基聚氨酯包衣磷酸二铵(DAP)制备缓释磷肥进行盆栽玉米试验,经2%的水抛光处理的包衣缓释肥料比未经抛光处理的包衣缓释磷肥的缓释时间延长5.26倍。将包衣缓释磷肥和普通磷肥混施可以将玉米的产量提高8%~23%,肥效提高24%~85%,与此同时,这种缓控释磷肥降低了肥料的制作成本。磷养分源自自然界的磷矿粉,很多磷矿粉在一定的条件下也能缓慢释放可溶性磷,但是有效磷含量远不能满足作物生长需要。Dwairi43研究发现,用NH4+交换处理源自约旦的钙沸石,能够促进天然磷矿粉缓慢溶解,释放出可溶性的磷、钙和氮等营养元素供植物生长所需。研究表明,NH4+-钙沸石在磷矿粉溶解时能够阻止钙的释放,两者协同作用释磷量大于磷矿粉单独存在时的释磷量,这是一种天然的磷缓释肥。由木质素和添加剂(角叉胶和聚乙二醇(PEG))对三过磷酸钙(TSP)进行包衣制备缓控释磷肥,试验结果显示,木质素-角叉胶@三过磷酸钙和木质素-角叉胶-聚乙二醇@三过磷酸钙在6 h内,磷的释放仅有13.51%和28.21%,明显慢于普通磷肥三过磷酸钙中磷的释放,具有较好的缓释效51

3)缓/控释钾肥。钾是农作物生长所必需的3种大量营养元素之一,与氮磷养分不同,钾不是作物体内有机物的组分。钾通常呈离子状态存在于植物体液中,或吸附在原生质胶粒的表面。钾在植物体内含量仅次于氮,流动性很强,在植物体内可以被反复利用。钾通常是以氮磷钾复合缓/控释肥的形式存在。Jamnongkan

44用戊二醛作交联剂,制备了聚乙烯醇(PVA)、聚乙烯醇/壳聚糖(PVA/CS)、壳聚糖(CS)缓释钾肥料水凝胶,该缓释钾肥水凝胶的吸水倍率为70%~300%;30 d后,在土壤中缓释钾肥水凝胶的持水率分别为25%、10%和4%。在pH 4.1、30 d条件下,土壤中聚乙烯醇(PVA)、聚乙烯醇/壳聚糖(PVA/CS)、壳聚糖(CS)缓释钾肥料水凝胶中钾的累计缓释率分别为17%、24%和34%;但是在pH 7.3的土壤中,钾的累计缓释率分别升高至34%、46%和63%,可见,该水凝胶缓释钾肥还能够响应pH变化,pH升高有利于钾的释放。

4)多功能缓/控释肥。由于部分缓/控释肥采用高分子有机材料处理,使得它们还兼具有节水保水的作用。袁国桂

52采用盆栽试验研究了超高效硝酸铵负载凝胶状缓释肥对番茄生长和节水的影响,在相同的硝酸铵施用量下,当水分减少到80%和60%时,施用凝胶态硝酸铵化肥的番茄果实质量分别增加了42.05%和30.39%,表明凝胶-缓释化肥不但能够增产,还可以节约用水。何绪生53对化学聚合、物理、化学方法制备的吸水缓释氮肥的性能进行研究,结果表明,吸水缓释氮肥的pH值呈中性,盐指数极低;吸水缓释氮肥吸水后溶胀并且不溶于水;保留在吸水缓释氮肥中的水则以游离和冷冻水状态存在,占缓释氮肥中保留吸水量的95%以上,而非冻结水不到5%。吸水缓释氮肥在水中缓释试验显示,在7 d的试验里,营养液中缓释氮肥占总营养素含量的77%,吸水缓释氮肥显示出氮缓释和储存水的双重功能。因此,在开发缓/控释肥的同时可以研制具有保水功能的专用肥料,用于干旱地区或者秋季播种。

5)缓/控释复合肥及其他。如前所述,单一养分经缓/控释处理可延长肥料释放时间,有利于提高肥效。在农业生产中通常需要同时施用氮磷钾等复合肥,以保障作物的正常生长,缓/控释复合肥的肥效和利用率具有良好的协同作

5054-56。研究表明缓/控释复合肥可以改善植物对其他营养成分的吸收效果。Kaplan56开展了为期2 a的盆栽菊花试验,以研究2种具有缓释功能的化肥对室外菊花生长的影响,以及它们对氮、磷、钾的吸收效果,结果表明,具有缓释效果的化肥比同等肥力的普通化肥对菊花生长有更好的作用、更高的生物量和营养物质吸收水平。Li57采用尿素、甲醛、(NH42HPO4和KCl经溶液聚合和喷雾干燥后,制备了一种新型廉价高效缓释复合肥,并将其应用于大白菜生产,大白菜收率相比于尿素甲醛施肥和未添加KCl的条件下分别提升50.1%和26.2%。进一步的试验结果表明该缓释肥料在70 d内释放的养分能够满足大白菜的生长需求,更有利于作物产量提升。而且,其原料成本与工艺能耗均低于传统缓释肥,因此,其在农业生产领域显示出了优异的应用前景。

Wu

58制备了醋酸纤维素包衣的缓/控释复合肥保水剂(CAFCW),该复合物由3层物质构成:核心是氮磷钾养分颗粒,内层是醋酸纤维素,外层是聚丙烯酸-丙烯酰胺-不可膨胀的蛭石复合物层。研究结果表明,该复合肥缓释肥兼有保水作用和养分缓释作用,它在土壤中第10天和第20天的持水率分别为25.1%和13.2%,在土壤中30 d内养分的释放率在75%以内。Jarosiewicz59将氮磷钾肥(6-20-30)颗粒物用聚砜(PSF)、聚丙烯腈(PAN)和醋酸纤维(CA)包膜制备包膜缓释复合肥,材料的孔隙度不同,养分元素的释放速率也不同:16%的聚丙烯氰(PAN)包膜形成60.45%孔隙度的缓释肥料在4 h内NH4+和P2O5就完全释放完毕,而K+则在5 h内释放了99.7%。当包膜材料的孔隙度为48.8%时,NH4+、P2O5K+在5 h内分别释放了31.8%、16.7%、11.6%。进一步的研究表明,K+在聚砜和聚丙烯氰薄膜的材料中释放最慢,NH4+在醋酸纤维(CA)包膜材料中释放最慢,养分成分释放最慢的是聚砜(PSF)包膜材料。由此可见,缓控释复合肥在肥效和实际利用率方面具有较好应用前景。

近年来,随着纳米材料的广泛应用,在农业领域,纳米化肥智能缓/控释技术也日渐受到重

60-63。除常规的缓/控释氮磷钾肥外,一些具有特殊结构、特性的纳米材料也具有缓释功能,如含有微量元素的纳米材料也具有调整作物生长的效果。已有研究报道纳米氧化铁、纳米镁、纳米锰等含有植物微量元素的纳米材料能通过提高植物的光合作用来促进植物生64-66。除此之外,纳米CeO2能为作物提供稀土养分,增强植物抗盐胁迫的能67。Madusanka68将ZnO纳米材料以硬脂酸、石蜡为粘结剂包覆尿素,制备了同时缓释Zn和尿素的缓释肥料制剂,Zn的释放周期在30 d以上,尿素在15 d后的累计释放率约为80%。除了纯粹的纳米颗粒,学者们还研究出了多种纳米肥料体系,用纳米材料作为包裹肥料的载体或以纳米结构作为调节肥料释放的添加69-72。由于纳米缓/控释肥特殊的性质和效应,在实际生产中应用还需要进一步的研究和试验。

3 缓/控释肥的优势和存在的问题

当前,缓/控释技术在农业领域得到广泛应用,在实验室和大田进行了缓/控释肥的研究应用并取得了较好的效果,世界上主要的缓/控释肥应用地区包括中国、美国、西欧和日本 ,每年的需求量还在不断增加。与传统的肥料相比,缓/控释肥具有较多优

1873-76:①简化施肥管理,有利于机械化操作,减少劳动力投入,提高生产效率;②提高养分利用效率,减少施肥量和施肥频率,节约资源;③降低了生态环境污染的潜在风险,具有重要的环境效应;④缓/控释肥养分释放可能包含作物的生长周期,可以为作物生长提供持续的养分供给,有利于农产品提质增产。

自1948 年美国Clart 等人合成了世界上第1个具有缓释效果的化肥——缓释脲醛肥料以来,便开启了研究新型肥料的新领域。但是,缓/控释肥在农业领域的推广与应用还存在一些亟待解决的问

77-80:①缓/控释肥产品开发成本高,市场价格高,导致推广难;②缓/控释肥的辅助材料主要以难降解高分子有机物为主,长期大量使用存在二次污染的风险;③在实际应用中各种养分的肥效影响因素(如包膜性质、土壤性质等)较多。为了推广缓/控释肥,需要在廉价、高性能、低毒环保载体材料开发,生态环境影响综合研究等方面着手。

4 展望

目前,缓/控释肥等新型肥料的研究和测试过程大多在实验室条件下模拟完成,对植物(作物)生长发育影响的研究也局限于盆栽试验,而在大田应用中,土壤的温度、湿度、pH、土壤微生物和植物的种类等因素均会影响缓/控释肥的效果。今后,我国在缓/控释肥领域的开发应该以大宗粮食作物和经济作物为重点研究对象,并结合经济效益、农学效益和环境效益相统一的原

1,开发符合以下特点的缓/控释4181:①产品经济成本低;②作物对肥料养分的转化率高,养分释放特点基本符合作物的需肥特点和生长周期;③包膜材料、载体或填充物无污染或低污染、可自然降解;④根据种植需求,开发作物专有缓/控释肥。因此,应该围绕绿色材料开发、生产工艺和设备创新,开展缓/控释肥施用技术与评价体系的系统研究,形成缓/控释肥产业化技术集成与示范;研制出符合生产要求的高效、环保、低成本的缓/控释肥。通过对缓/控释肥各环节的优化与创新,使实验室里的缓/控释肥可以商品化,并广泛应用于农业生产,最终实现农民增产增收、环境友好、企业经济效益高的综合目标。

参考文献References

1

朱兆良,金继运.保障我国粮食安全的肥料问题[J].植物营养与肥料学报,2013,19(2):259-273.ZHU Z L,JIN J Y.Fertilizer use and food security in China[J].Plant nutrition and fertilizer science,2013,19(2):259-273 (in Chinese with English abstract). [百度学术] 

2

刘晓燕.我国农田土壤肥力和养分平衡状况研究[D].北京:中国农业科学院,2008.LIU X Y.Study on soil fertility and nutrient balance of farmland in China[D].Beijing:Chinese Academy of Agricultural Sciences,2008 (in Chinese with English abstract). [百度学术] 

3

中国科学院生物学部. 我国化肥面临的突出问题及建议[C] //李庆逵,朱兆良,于天仁. 中国农业持续发展中的肥料问题.南昌:江西科学技术出版社,1997:3-5.Biology Department of Chinese Academy of Sciences.Outstanding problems and suggestions of chemical fertilizer in China[C]// LI Q K, ZHU Z L, YU T R.Fertilizer problems in sustainable agricultural development in China.Nanchang: Jiangxi Science & Technology Press, 1997:3-5 (in Chinese). [百度学术] 

4

张福锁, 王激清, 张卫峰, 等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报, 2008, 45(5):918-924.ZHANG F S, WANG J Q, ZHANG W F, et al.Nutrient use efficiencies of major cereal crops in China and measures for improvement[J].Acta pedologica sinica, 2008, 45(5): 918-924 (in Chinese with English abstract). [百度学术] 

5

JU X T,KOU C L,ZHANG F S,et al.Nitrogen balance and groundwater nitrate contamination:comparison among three intensive cropping systems on the North China Plain[J].Environmental pollution,2006,143(1):117-125. [百度学术] 

6

CONLEY D J,PAERL H W,HOWARTH R W,et al.Ecology.controlling eutrophication:nitrogen and phosphorus[J].Science,2009,323(5917):1014-1015. [百度学术] 

7

ZHANG W, DOU Z, HE P.Improvements in manufacture and agricultural use of nitrogen fertilizer in China offer scope for significant reductions in greenhouse gas emissions[J].PNAS, 2013, 110: 8375-8380. [百度学术] 

8

OITA A,MALIK A,KANEMOTO K,et al.Substantial nitrogen pollution embedded in international trade[J].Nature geoscience,2016,9(2):111-115. [百度学术] 

9

SHAVIV A,MIKKELSEN R L.Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation :a review[J].Fertilizer research,1993,35(1):1-12. [百度学术] 

10

SUTTON M A,OENEMA O,ERISMAN J W,et al.Too much of a good thing[J].Nature,2011,472(7342):159-161. [百度学术] 

11

GU B J,JU X T,CHANG J,et al.Integrated reactive nitrogen budgets and future trends in China[J].PNAS,2015,112(28):8792-8797. [百度学术] 

12

刘兆辉,吴小宾,谭德水,等.一次性施肥在我国主要粮食作物中的应用与环境效应[J].中国农业科学,2018,51(20):3827-3839.LIU Z H,WU X B,TAN D S,et al.Application and environmental effects of one-off fertilization technique in major cereal crops in China[J].Scientia agricultura sinica,2018,51(20):3827-3839 (in Chinese with English abstract). [百度学术] 

13

史常亮,朱俊峰.我国粮食生产中化肥投入的经济评价和分析[J].干旱区资源与环境,2016,30(9):57-63.SHI C L,ZHU J F.Economic evaluation and analysis of chemical fertilizer inputs in Chinese grain production[J].Journal of arid land resources and environment,2016,30(9):57-63 (in Chinese with English abstract). [百度学术] 

14

ZHANG J H.China’s success in increasing per capita food production[J].Journal of experimental botany,2011,62(11):3707-3711. [百度学术] 

15

YANG Y C,ZHANG M,LI Y C,et al.Controlled release urea improved nitrogen use efficiency,activities of leaf enzymes,and rice yield[J].SSSA,2012,76(6):2307-2317. [百度学术] 

16

GENG J B,MA Q,ZHANG M,et al.Synchronized relationships between nitrogen release of controlled release nitrogen fertilizers and nitrogen requirements of cotton[J].Field crops research,2015,184:9-16. [百度学术] 

17

冯文来,赵平.控制释放技术发展及展望[J].化学工业与工程,1996,13(1):49-52,66.FENG W L,ZHAO P.Development and prospect of controlled release technology[J].Chemical industry and engineering,1996,13(1):49-52,66(in Chinese with English abstract). [百度学术] 

18

FERTAHI S,ILSOUK M,ZEROUAL Y,et al.Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers[J].Journal of controlled release,2021,330:341-361. [百度学术] 

19

FENG C,LÜ S Y,GAO C M,et al.“Smart” fertilizer with temperature- and pH-responsive behavior via surface-initiated polymerization for controlled release of nutrients[J].ACS sustainable chemistry & engineering,2015,3(12):3157-3166. [百度学术] 

20

GRABLE C,KNIGHT J,INGRAM D L.Plant growth and leachate electrical conductivity and pH as influenced by controlled-release fertilizer blends and coating technologies[J].Horttechnology,2017,27(5):639-643. [百度学术] 

21

LIU J,HUANG Y R,KUMAR A,et al.pH-Sensitive nano-systems for drug delivery in cancer therapy[J].Biotechnology advances,2014,32(4):693-710. [百度学术] 

22

LV F Z,XU L N,ZHANG Y H,et al.Layered double hydroxide assemblies with controllable drug loading capacity and release behavior as well as stabilized layer-by-layer polymer multilayers[J].ACS applied materials & interfaces,2015,7(34):19104-19111. [百度学术] 

23

KAZIEM A E,GAO Y H,HE S,et al.Synthesis and insecticidal activity of enzyme-triggered functionalized hollow mesoporous silica for controlled release[J].Journal of agricultural and food chemistry,2017,65(36):7854-7864. [百度学术] 

24

TRENKEL M E.Controlled-release and stabilized fertilizer in agriculture[M].[S.l.]:International Fertilizer Industry Association, 1997:11. [百度学术] 

25

ZHANG J,COULSTON R J,JONES S T,et al.One-step fabrication of supramolecular microcapsules from microfluidic droplets[J].Science,2012,335(6069):690-694. [百度学术] 

26

黄雅萍,叶景芬,邓凯波,等.抗性淀粉用于微胶囊制备的研究进展[J].食品研究与开发,2019,40(7):218-224.HUANG Y P,YE J F,DENG K B,et al.Research progress of resistant starch for microencapsulation[J].Food research and development,2019,40(7):218-224 (in Chinese with English abstract). [百度学术] 

27

方京徽,李伟,马方.缓释淀粉食品对2型糖尿病患者血糖波动的影响[J].中外医疗,2010,29(28):15-17.FANG J H,LI W,MA F .Effect of carbohydrate slow-release food on glucose undulation in patients with type 2 diabetes mellitus[J].China foreign medical treatment,2010,29(28):15-17 (in Chinese with English abstract). [百度学术] 

28

张莉会,乔宇,周颖,等.硅藻土附载丁香酚缓释对草莓的保鲜作用[J].现代食品科技,2019,35(8):98-106,90.ZHANG L H,QIAO Y,ZHOU Y,et al.The preservation effect of eugenol sustained-release diatomite on strawberry[J].Modern food science and technology,2019,35(8):98-106,90 (in Chinese with English abstract). [百度学术] 

29

JU J,CHEN X Q,XIE Y F,et al.Application of essential oil as a sustained release preparation in food packaging[J].Trends in food science & technology,2019,92:22-32. [百度学术] 

30

周云,付朝阳,郑家燊.耐高温固体缓蚀阻垢剂的研制[J].材料保护,2004,37(6):14-16,2.ZHOU Y,FU C Y,ZHENG J S.A solid corrosion and scale inhibitor with high temperature resistance[J].Materials protection,2004,37(6):14-16,2 (in Chinese with English abstract). [百度学术] 

31

SONG C,GUAN Y,WANG D,et al.Palygorskite-coated fertilizers with a timely release of nutrients increase potato productivity in a rain-fed cropland[J].Field crops research,2014,166:10-17. [百度学术] 

32

吴周周,刘佳欣,陈粤彤,等.缓控释肥研究现状及其在水稻上的应用[J].中国稻米,2022,28(1):13-17.WU Z Z,LIU J X,CHEN Y T,et al.Research status of slow and controlled release fertilizer and its application in rice[J].China rice,2022,28(1):13-17 (in Chinese with English abstract). [百度学术] 

33

MORGAN K T,CUSHMAN K E,SATO S.Release mechanisms for slow- and controlled-release fertilizers and strategies for their use in vegetable production[J].HortTechnology,2009,19(1):10-12. [百度学术] 

34

FERTAHI S,BERTRAND I,ILSOUK M,et al.New generation of controlled release phosphorus fertilizers based on biological macromolecules:effect of formulation properties on phosphorus release[J].International journal of biological macromolecules,2020,143:153-162. [百度学术] 

35

LUBKOWSKI K,SMOROWSKA A,GRZMIL B,et al.Controlled-release fertilizer prepared using a biodegradable aliphatic copolyester of poly(butylene succinate) and dimerized fatty acid[J].Journal of agricultural and food chemistry,2015,63(10):2597-2605. [百度学术] 

36

EL ASSIMI T,BENIAZZA R,RAIHANE M,et al.Overview on progress in polysaccharides and aliphatic polyesters as coating of water-soluble fertilizers[J].Journal of coatings technology and research,2022,19(4):989-1007. [百度学术] 

37

AN D, LIU B, YANG L, et al.Fabrication of graphene oxide/polymer latex composite film coated on KNO3 fertilizer to extend its release duration[J].Chemical engineering journal, 2017, 311: 318-325. [百度学术] 

38

LU H, TIAN H Y, ZANG M, et al.Water polishing improved controlled-release characteristics and fertilizer efficiency of castor oil-based polyurethane coated diammonium phosphate[J/OL].Scientific reports, 2020,10: 5763[2022-08-01]. doi.org/10.1038/s41598-020-62611-w. [百度学术] 

39

CALABI-FLOODY M,MEDINA J,RUMPEL C,et al.Smart fertilizers as a strategy for sustainable agriculture[M]Amsterdam:Elsevier,2018:119-157. [百度学术] 

40

AZIZ M Z,NAVEED M,ABBAS T,et al.Alternative fertilizers and sustainable agriculture[M]//FAROOQ M,PISANTE M.Innovations in sustainable agriculture.Cham:Springer,2019:213-245. [百度学术] 

41

WU L,LIU M Z.Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention[J].Carbohydrate polymers,2008,72(2):240-247. [百度学术] 

42

ZHAO C, SHEN Y Z, ZHOU J M.Study on the controlled release performance of modified polyacrylate coated controlled release fertilizers[J].Acta pedologica sinica, 2017, 54(3): 767-774. [百度学术] 

43

DWAIRI I M.Renewable,controlled and environmentally safe phosphorus release in soils from mixtures of NH4+-phillipsite tuff and phosphate rocks[J].Environmental geology,1998,34(4):293-296. [百度学术] 

44

JAMNONGKAN T,KAEWPIROM S.Potassium release kinetics and water retention of controlled-release fertilizers based on chitosan hydrogels[J].Journal of polymers and the environment,2010,18(3):413-421. [百度学术] 

45

TYAGI J,AHMAD S,MALIK M.Nitrogenous fertilizers:impact on environment sustainability,mitigation strategies,and challenges[J].International journal of environmental science and technology,2022,19(11):11649-11672. [百度学术] 

46

RAIGON M D,PRIMO YUFERA E,MAQUIEIRA A,et al.The use of slow-release fertilizers in citrus[J].Journal of horticultural science,1996,71(3):349-359. [百度学术] 

47

CEN Z S,WEI L,MUTHUKUMARAPPAN K,et al.Assessment of a biochar-based controlled release nitrogen fertilizer coated with polylactic acid[J].Journal of soil science and plant nutrition,2021,21(3):2007-2019. [百度学术] 

48

杨晓庆,郑兴来.红四方缓释肥料在不同作物上的应用效果研究[J].中国盐业,2021(21):46-50.YANG X Q,ZHENG X L.Study on application effect of red square slow-release fertilizer on different crops[J].China salt industry,2021(21):46-50 (in Chinese). [百度学术] 

49

NAKANO A,YAMAUCHI A,UEHARA Y.Effects of application of low-sulfate slow-release fertilizer (LSR) on shoot and root growth and fruit yield of tomato (Lycopersicon esculentum Mill.)[J].Japan agricultural research quarterly,2003,37(2):121-127. [百度学术] 

50

ALHARBI K,GHONEIM A,EBID A,et al.Controlled release of phosphorous fertilizer bound to carboxymethyl starch-g-polyacrylamide and maintaining a hydration level for the plant[J].International journal of biological macromolecules,2018,116:224-231. [百度学术] 

51

FERTAHI S,BERTRAND I,AMJOUD M,et al.Properties of coated slow-release triple superphosphate (TSP) fertilizers based on lignin and carrageenan formulations[J].ACS sustainable chemistry & engineering,2019,7(12):10371-10382. [百度学术] 

52

袁国桂,龙小燕,王正辉,等.超高硝酸铵负载凝胶态缓释肥的节肥节水效应[J].华南农业大学学报,2009,30(4):16-18.YUAN G G,LONG X Y,WANG Z H,et al.The effect of superhigh ammonium nitrate loading gel-state slow release fertilizer on fertilizer and water saving[J].Journal of South China Agricultural University,2009,30(4):16-18 (in Chinese with English abstract). [百度学术] 

53

何绪生,廖宗文,黄培钊,等.一种新型保水缓释氮肥有关特征及性能[J].中国农业科学,2006,39(10):2048-2055.HE X S,LIAO Z W,HUANG P Z,et al.Characteristics and performance of A new water-absorbent slow release nitrogen fertilizer[J].Scientia agricultura sinica,2006,39(10):2048-2055 (in Chinese with English abstract). [百度学术] 

54

BI S W,BARINELLI V,SOBKOWICZ M J.Degradable controlled release fertilizer composite prepared via extrusion:fabrication,characterization,and release mechanisms[J/OL].Polymers,2020,12(2):301[2022-08-01].https://doi.org/10.3390/polym12020301. [百度学术] 

55

NOPPAKUNDILOGRAT S,PHEATCHARAT N,KIATKAMJORNWONG S.Multilayer-coated NPK compound fertilizer hydrogel with controlled nutrient release and water absorbency[J/OL].Journal of applied polymer science,2015,132(2): 41429[2022-08-01] https://doi.org/10.1002/app.41249. [百度学术] 

56

KAPLAN L,TLUSTOŠ P,SZÁKOVÁ J,et al.The influence of slow-release fertilizers on potted chrysanthemum growth and nutrient consumption[J].Plant,soil and environment,2013,59(9):385-391. [百度学术] 

57

LI J Y,LIU Y,LIU J,et al.A novel synthetic slow release fertilizer with low energy production for efficient nutrient management[J/OL].The science of the total environment,2022,831:154844[2022-08-01].https://doi.org/10.1016/j.scitotenv.2022.154844. [百度学术] 

58

WU L,LIU M Z.Preparation and characterization of cellulose acetate-coated compound fertilizer with controlled-release and water-retention[J].Polymers for advanced technologies,2008,19(7):785-792. [百度学术] 

59

JAROSIEWICZ A,TOMASZEWSKA M.Controlled-release NPK fertilizer encapsulated by polymeric membranes[J].Journal of agricultural and food chemistry,2003,51(2):413-417. [百度学术] 

60

RALIYA R,SAHARAN V,DIMKPA C,et al.Nanofertilizer for precision and sustainable agriculture:current state and future perspectives[J].Journal of agricultural and food chemistry,2018,66(26):6487-6503. [百度学术] 

61

ZULFIQAR F, NAVARRO M, ASHRAF M, et al.Nanofertilizer use for sustainable agriculture: advantages and limitations[J/OL].Plant science, 2019, 289:110270[2022-08-01] .https:doi.org/10.1016/j.plantsci.2019.110270. [百度学术] 

62

JAKHAR A M, AZIZ I, KALERI A R, et al.Nano-fertilizers: a sustainable technology for improving crop nutrition and food security[J/OL].NanoImpact, 2022,27:100411[2022-08-01] .https:doi.org/10.1016/j.impact.2022.100411. [百度学术] 

63

FINCHEIRA P,TORTELLA G,SEABRA A B,et al.Nanotechnology advances for sustainable agriculture:current knowledge and prospects in plant growth modulation and nutrition[J].Planta,2021,254(4):1-25. [百度学术] 

64

PALCHOUDHURY S,JUNGJOHANN K L,WEERASENA L,et al.Enhanced legume root growth with pre-soaking in α-Fe2O3 nanoparticle fertilizer[J].RSC advances,2018,8(43):24075-24083. [百度学术] 

65

RATHORE I,TARAFDAR J C.Perspectives of biosynthesized magnesium nanoparticles in foliar application of wheat plant[J].Journal of bionanoscience,2015,9(3):209-214. [百度学术] 

66

PRADHAN S,PATRA P,DAS S,et al.Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata:a detailed molecular,biochemical,and biophysical study[J].Environmental science & technology,2013,47(22):13122-13131. [百度学术] 

67

WU H H,SHABALA L,SHABALA S,et al.Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention[J].Environmental science:nano,2018,5(7):1567-1583. [百度学术] 

68

MADUSANKA N,NALIN DE SILVA K M,AMARATUNGA G.A curcumin activated carboxymethyl cellulose-montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media[J].Carbohydrate polymers,2015,134:695-699. [百度学术] 

69

SHAO C,ZHAO H W,WANG P.Recent development in functional nanomaterials for sustainable and smart agricultural chemical technologies[J/OL].Nano convergence,2022,9(1):11[2022-08-01].https://doi.org/10.1186/s40580-022-00302-0. [百度学术] 

70

KOTTEGODA N,SANDARUWAN C,PRIYADARSHANA G,et al.Urea-hydroxyapatite nanohybrids for slow release of nitrogen[J].ACS nano,2017,11(2):1214-1221. [百度学术] 

71

MADUSANKA N,SANDARUWAN C,KOTTEGODA N,et al.Urea-hydroxyapatite-montmorillonite nanohybrid composites as slow release nitrogen compositions[J].Applied clay science,2017,150:303-308. [百度学术] 

72

VANDEVOORT A R,ARAI Y.Macroscopic observation of soil nitrification kinetics impacted by copper nanoparticles:implications for micronutrient nanofertilizer[J/OL].Nanomaterials,2018,8(11):927[2022-08-01].https://doi.org/10.3390/nano8110927. [百度学术] 

73

ROP K,KARUKU G N,MBUI D,et al.Formulation of slow release NPK fertilizer (cellulose-graft-poly(acrylamide)/nano-hydroxyapatite/soluble fertilizer) composite and evaluating its N mineralization potential[J].Annals of agricultural sciences,2018,63(2):163-172. [百度学术] 

74

SHARMA S,SAHU B K,CAO L D,et al.Porous nanomaterials:main vein of agricultural nanotechnology[J/OL].Progress in materials science,2021,121:100812[2022-08-01].https://doi.org/10.1016/j.pmatsci.2021.100812. [百度学术] 

75

JARIWALA H,SANTOS R M,LAUZON J D,et al.Controlled release fertilizers (CRFs) for climate-smart agriculture practices:a comprehensive review on release mechanism,materials,methods of preparation,and effect on environmental parameters[J].Environmental science and pollution research,2022,29(36):53967-53995. [百度学术] 

76

SCHMIDT M A,KREINBERG A J,GONZALEZ J M,et al.Soil microbial communities respond differently to three chemically defined polyphenols[J].Plant physiology and biochemistry,2013,72:190-197. [百度学术] 

77

AZEEM B,KUSHAARI K,MAN Z B,et al.Review on materials & methods to produce controlled release coated urea fertilizer[J].Journal of controlled release,2014,181:11-21. [百度学术] 

78

TIMILSENA Y P,ADHIKARI R,CASEY P,et al.Enhanced efficiency fertilisers:a review of formulation and nutrient release patterns[J].Journal of the science of food and agriculture,2015,95(6):1131-1142. [百度学术] 

79

TRENKEL M E.Slow and controlled-release and stabilized fertilizers:an option for enhancing nutrient use efficiency in agricuoture[M].Paris:International Fertilizer Industry Association (IFA), 2010:1-163. [百度学术] 

80

NI B L,LIU M Z,LÜ S Y,et al.Novel slow-release multielement compound fertilizer with hydroscopicity and moisture preservation[J].Industrial & engineering chemistry research,2010,49(10):4546-4552. [百度学术] 

81

DAVIDSON D,GU F X.Materials for sustained and controlled release of nutrients and molecules to support plant growth[J].Journal of agricultural and food chemistry,2012,60(4):870-876. [百度学术]