网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

棉花秸秆腐解特征及其对小麦产量的影响  PDF

  • 杨丽荣
  • 吕娜
  • 张钊
  • 刘安达
  • 马学峰
  • 杨国正
华中农业大学植物科学技术学院,武汉 430070

中图分类号: S562.09.9

最近更新:2023-08-29

DOI:10.13300/j.cnki.hnlkxb.2023.04.015

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

为探讨还田的棉花秸秆腐解动态及不同还田量的棉花秸秆对小麦产量的影响,于2018-2020年冬小麦播种后,将棉花秸秆机械粉碎覆盖还田,设置全量还田(all stalk returning,AS)、半量还田(half stalk returning,HS)(移出一半秸秆后机械粉碎)、不还田(zero stalk returning,ZS)(移出全部秸秆)3个处理,分析不同还田量棉花秸秆的腐解、养分释放及其结构组分变化规律。结果显示,秸秆腐解速率表现为先快后慢,还田后20 d腐解最快,此后腐解速率逐渐下降;还田后170 d,2018-2019年半量还田和全量还田秸秆腐解率分别为73.4%和66.8%,2019-2020年分别为77.6%和60.4%。秸秆中不同结构组分的释放率存在差异,经过170 d腐解,棉花秸秆可溶性糖释放率为70.7%~81.38%,纤维素腐解率为57.3%~60.7%,木质素腐解率为44.1%~50.3%;秸秆N、P、K释放率也存在差异,N、P、K释放率分别为66.5%~74.7%、71.4%~80.5%和83.1%~87.9%。本研究结果表明,棉花秸秆还田增加了小麦有效穗数,进而提高小麦产量。可见,棉花秸秆还田有利于改善土壤养分状况,提高冬季作物(小麦)产量,其中以全量秸秆还田更好。

我国棉花总产量位居世界第一,如何充分、合理地利用棉花秸秆成为亟待解决的难题。秸秆还田作为当前秸秆利用最重要、最广泛的技术途径之一,秸秆中N、P、K等多种营养物质释放到土壤中,可以补偿作物对土壤养分的消耗,减少肥料投入,防止因焚烧造成的空气污

1。而秸秆还田后在自然条件下的腐解特征,如腐解速度、腐解量等,不仅关系到秸秆还田技术,而且关系到对后茬作物生长发育及其产量形成的影响。因此,了解棉花秸秆还田后,秸秆腐解过程、土壤肥力状况、后茬作物产量等非常必要,这对于科学利用农作物秸秆具有重要意义。

农作物秸秆的化学组成主要包括纤维素、半纤维素、木质素、可溶性糖等富碳物质以及丰富的N、P、K等营养元

2。半纤维素和木质素以共价键连接,共同包裹纤维3,三者之间存在复杂的关系。秸秆自身物质组成也对其腐解进程起重要作用,作物秸秆碳氮比和氮磷比会分别影响氮和磷在土壤中的释4-6,适宜的碳氮比(25∶1)有利于微生物分解,秸秆碳氮比过高,还田后微生物和当季作物争夺土壤中的氮,导致秸秆腐解变慢,养分释放受限,作物产量降7-8。此外,多酚类物质、木质素含9、氮素含10均是影响秸秆腐解和养分释放的重要因素。

秸秆在土壤中的腐解大致分为3个阶段,秸秆还田后易矿化组分率先被白霉菌和无芽孢细菌分解利用,之后相对易分解的纤维素类物质被纤维素分解菌和芽孢细菌分解,最后某些真菌和放线菌缓慢分解利用木质素、单宁等难分解组

211-12

前人研究结果表明,秸秆还田可以提高土壤有机碳和微生物量碳含量、培肥地

13-14、提高作物产15-17。相较于小麦、玉米、水稻,关于棉花秸秆还田的研究较少,且研究内容多集中于棉秆还田对棉花产15-17、土壤养13以及棉花秸秆还田与其他肥料配施对后茬作物产量和土壤理化性质的影15,鲜少有对棉花秸秆还田后自身腐解特征的研究。本研究基于湖北省普遍采用的棉花-小麦复种模式,研究不同还田量棉花秸秆的腐解、养分释放过程及其结构组分变化规律,分析秸秆还田后的腐解特征及其对后茬作物(小麦)产量的影响,以期为棉花秸秆的合理利用提供理论依据。

1 材料与方法

1.1 试验区概况

试验于2018年11月至2020年6月在华中农业大学试验农场进行。供试土壤为黄棕壤,耕层(0~20 cm)土壤含碱解氮52.4 mg/kg、速效磷33.6 mg/kg、速效钾144.7 mg/kg。条播种植冬小麦后,棉花秸秆(机械)粉碎覆盖还田。棉花品种为华棉3109,小麦品种为郑麦9023,均为湖北省推广应用品种。棉花秸秆还田后,冬小麦生长季(秸秆还田腐解期间)降雨量分别为2018-2019年475.6 mm、2019-2020年463.8 mm(数据来源于本试验田附近100 m内)自动气象站(Campbell Scientific.Inc., USA,包括CR800数据采集器、HMP45C空气温湿度传感器、LI-200X总辐射传感器、TE525MM雨量计传感器、034B风速风向传感器)。

1.2 试验设计

棉花秸秆还田量设置3个水平,0 kg/hm2(秸秆不还田,ZS)、1 300 kg/hm2(半量还田,HS)、2 600 kg/hm2(全量还田,AS)。完全随机区组设计,3次重复,共9个小区,小区面积30.4 m2 (10 m×3.04 m)。

棉花10月底收获后,棉花秸秆(机械)粉粹(不还田处理全部移出、半量还田处理移出一半棉花秸秆),秸秆粉碎长度5~8 cm,均匀覆盖厢面。开沟条播小麦(2018年11月8日播种,2019年5月21日收获;2019年11月18日播种,2020年5月22日收获),小麦田间管理按常规措施进行。

1.3 采样与测定方法

1) 秸秆取样。2018-2019年每20 d 采样1次,2019-2020年于0、20、50、170 d取0.25 m2棉花秸秆,装入网袋,清理秸秆表面泥土后烘干称质量,磨碎后分别过孔径0.150 mm筛(测定全氮、全磷、全钾、可溶性糖含量)和孔径0.425 mm筛(测定纤维素、木质素含量)。

2) 秸秆腐解率与腐解速率。棉花秸秆还田t 时间后的腐解率和腐解速率按下式计算:

秸秆腐解率=(M0-Mt)×100%/M0

秸秆腐解速率=(Mt -1-Mtt/A

式中,Mt为还田后t 时间秸秆质量,g;M0为还田当日的秸秆质量,g;t为连续2次取样的间隔时间,d;A为面积,m2

3) 秸秆成分。参照文献[

18-19] ,采用硫酸与重铬酸钾氧化法测定纤维素含量,采用浓硫酸法测定木质素含量,采用浓硫酸-蒽酮乙酸乙酯法测定可溶性糖含量。

组织成分腐解率=(M0-Mt)×100%/M0

式中,Mt为还田后t 时间秸秆成分含量,g/kg;M0为还田当日的秸秆成分含量,g/kg。

4)秸秆全氮、全磷、全钾测定。称取棉花秸秆样品0.200 g于消煮管,加浓硫酸5 mL摇匀,静置过夜。在消煮炉中消解1~2 h,期间加1~2次高氯酸,每次加5~10滴,消煮后冷却,过滤并定容到100 mL容量瓶中,同时消煮空白对照。待测液稀释5倍后用流动分析仪测定植株N、P含量,用火焰光度法测定棉花秸秆K含量。

养分释放率=(X0-Xt)/ X0×100%

式中,Xt为还田后t时间秸秆N(P、K)含量,g/kg;X0为还田当日的养分含量,g/kg。

1.4 数据处理和分析

采用Excel 2013进行数据整理,Statistix 8.1和Spss 24进行统计分析。

2 结果与分析

2.1 小麦产量及其构成因素

表1可见,棉花秸秆还田较不还田提高了小麦产量,且全量还田比半量还田增产幅度大。各处理小麦产量,全量还田处理最高,增产(较不还田处理)48.8%;半量还田处理次之,较不还田处理增产2.9%。半量还田、全量还田处理每平方米穗数均显著高于不还田处理,且随还田量增加而增加。还田量对千粒重无影响。2019-2020年,小麦产量随秸秆还田量增加而增加,其中全量还田处理较不还田处理增产59.8%,较半量还田处理增产6.6%。

表1  还田量对小麦产量及其构成因素的影响
Table 1  Yield and its components of wheat under different stalk treatments

处理

Treatment

有效穗数/m-2

Spike number

穗粒数

Grain number per spike

千粒重/g

1000-grain weight

产量 /( kg/ hm2)Grain yield
2018-20192019-20202018-20192019-20202018-20192019-20202018-20192019-2020
ZS 218.0c 205.0c 25.8b 30.07a 46.6a 41.3a 2 663.3c 2 542.4b
HS 236.0b 265.0b 19.6c 24.19b 48.5a 42.3a 2 741.8b 2 710.2b
AS 247.0a 374.3a 34.7a 25.08b 25.08b 44.6a 3 962.4a 4 062.9a

注:  ZS:秸秆不还田;HS:半量还田,1 300 kg/hm2;AS:全量还田,2 600 kg/hm2;不同小写字母表示差异显著(P < 0.05)。下同。Note:ZS:Zero stalk returning; HS:Half stalk returning,1 300 kg/hm2; AS:All stalk returning,2 600 kg/hm2.Different letters indicate significant difference (P<0.05).The same as follows.

2.2 棉花秸秆腐解率和腐解速率

不同还田量棉花秸秆腐解率差异显著(图1)。还田170 d后,2018-2019半量还田和全量还田处理中棉花秸秆的腐解率分别为73.4%和66.8%,2019-2020年分别为77.6%和60.4%,且半量还田处理棉花秸秆腐解率均显著大于全量还田处理,表明还田量小的处理,棉花秸秆的腐解率较大。2019-2020年半量还田处理的腐解率比2018-2019年增加了6%,而全量还田处理的腐解率降低了10%。

图1  还田量对棉花秸秆腐解率的影响

Fig. 1  Cotton stalk decomposition rates as affected by different returning stalk amounts

棉花秸秆腐解速率整体呈“快-慢-快”的变化趋势,腐解前期还田量少的处理腐解速率快,后期还田量大的处理腐解速率高(图2)。2018-2020年不同还田量棉花秸秆腐解速率最大的时期均为还田后20 d,2018-2019年半量还田和全量还田处理棉花秸秆腐解速率分别为3.20、2.42 g/(m2·d),2019-2020年半量还田和全量还田处理棉花秸秆腐解速率分别为3.85、3.58 g/(m2·d)。棉花秸秆还田后20~150 d,各处理腐解速率逐渐下降,150 d后棉花秸秆腐解速率相对变快。还田后90 d,半量还田处理棉花秸秆平均腐解速率高于全量还田处理;110~170 d,全量还田处理秸秆平均腐解速率高于半量还田处理。腐解过程中半量还田处理的平均腐解速率均高于全量还田处理,不同还田量处理第2年棉花秸秆平均腐解速率均高于第1年。

图2  还田量对棉花秸秆腐解速率的影响

Fig. 2  Cotton stalk decomposition rates under different returning stalk amounts

棉花秸秆半量还田比全量还田达到一定累计腐解率所需时间短,2018-2019年半量还田和全量还田处理达到30%、50%、80%的累计腐解率所需时间分别相差42 、35、23 d。累计腐解率从30%到50%和从50%到80%,半量还田分别需要64 d和96 d,全量还田需要57 d和84 d。

2.3 棉花秸秆纤维素、木质素的腐解及可溶性糖的释放

不同还田量棉花秸秆纤维素、木质素腐解及可溶性糖释放规律相似(图3)。棉花秸秆纤维素腐解缓慢,170 d后半量还田和全量还田处理棉花秸秆纤维素腐解率2018-2019年分别达到 59.5%、58.3%,2019-2020年分别为60.7%、57.3%。还田量对棉花秸秆纤维素腐解无显著影响,但显著影响木质素分解。2018-2019年半量还田和全量还田处理棉花秸秆木质素腐解率前期上升快后期变缓,170 d后腐解率分别达到 51.1%、44.1%,但其中还田后70 d的腐解率分别占最终腐解率的72.9%、65.3%。2019-2020年,半量还田和全量还田处理棉花秸秆木质素最终腐解率分别达到50.3%、48.3%,其中还田50 d后的腐解率分别占最终腐解率的66.7%、62.4%。还田量低的处理腐解率高。棉花秸秆腐解前期可溶性糖释放迅速,还田后70 d,各处理可溶性糖释放率均可占最终释放率的60%以上。还田后170 d,半量还田和全量还田处理中棉花秸秆可溶性糖释放率2018-2019年分别为79.80%、81.38%,2019-2020年分别为80.5%、70.7%。

图 3  还田量对棉花秸秆可溶性糖的释放率(A)和纤维素(B)、木质素(C)腐解率的影响

Fig.3  Soluble sugar(A), cellulose(B), lignin(C) release rates under different returning straw amounts

半量还田处理中棉花秸秆纤维素和木质素比全量还田达到一定腐解比例所需时间短,而还田量对棉花秸秆可溶性糖达到一定的释放比例所需时间无显著影响(表2)。还田后170 d, 全量还田处理棉花秸秆纤维素达到各腐解率所需时间分别比半量还田处理多21 d和14 d。半量还田和全量还田处理棉花秸秆纤维素从30%到50%所需时间均显著少于50%到80%所需时间,表明腐解前期棉花秸秆纤维素的腐解速率高于后期,且前期腐解量较大。半量还田和全量还田处理棉花秸秆木质素腐解率从30%到50%分别需要110 d和126 d,而从50%到80%则分别需要318 d和283 d,表明腐解前期棉花秸秆木质素腐解速率高于后期,且在腐解前期大量释放。半量还田和全量还田处理棉花秸秆可溶性糖释放率从30%到50%分别需要64、61 d,而从50%到80%则分别需要97、92 d,表明腐解前期棉花秸秆可溶性糖的释放速率高于后期,且在腐解前期大量释放。

表2  2018-2019年棉花秸秆纤维素、木质素、可溶性糖达到30%、50%和80%的腐解率所需时间
Table 2  Time for 30%, 50% and 80% cellulose, soluble sugar decomposition of cotton stalk during 2018-2019
秸秆成分Composition of straw处理Treatment

回归方程

Regression equation

R²

达到腐解率所需时间/d

Time for decomposition

30%50%80%
纤维素 Cellulose HS y = 0.2485x + 13.688 0.978 1 66 146 267
AS y = 0.2688x + 8.3929 0.957 5 87 167 288
木质素 Lignin HS y = 5.7962x0.4258 0.983 4 48 158 476
AS y = 2.7297x0.5453 0.985 1 81 207 490
可溶性糖Soluble sugar HS y = 0.3082x + 14.522 0.990 6 5 69 166
AS y = 0.3618x + 3.48 0.987 5 9 70 162

注:  x是还田时间,d;y是腐解率,%。Note:x is time after stalk return,d;and the y is decomposition rate ,%.

2.4 棉花秸秆养分释放规律

还田量显著影响棉花秸秆全氮释放率,还田量少的释放率高,但对全磷和全钾释放率无显著影响(图4)。2018-2019年不同处理棉花秸秆全氮快速释放时期均在还田后70 d,可占最终释放量的60%左右;110~170 d为缓慢释放阶段,170 d后,半量还田和全量还田处理全氮释放率分别达到74.7%和67.5%。半量还田处理在不同腐解阶段全氮释放率均显著高于全量还田处理。2019-2020年不同处理前50 d氮素释放率可占最终释放量的60%,经过170 d腐解后,半量还田和全量还田处理氮释放率分别达到74.4%和66.5%。

图4  不同还田量棉花秸秆全氮(A)、全磷(B)、全钾(C)释放率的变化特征

Fig.4  Cotton straw total N(A), total P(B), total K(C) release rate under different returning straw amounts

还田后90 d为棉花秸秆全磷主要释放期,半量还田和全量还田处理中全磷的释放率分别为58.8%、55.3%,占磷最终释放率的75.9%、77.4%。110~170 d期间,不同还田量棉花秸秆全磷释放减缓,还田170 d后,半量还田和全量还田处理棉花秸秆磷释放率分别为77.5%和71.4%。2019-2020年,半量还田和全量还田处理在还田后50 d的磷释放率分别占最终释放率的51.1%、50.9%,170 d后,全磷释放率分别达到80.5%和74.3%。

还田后70 d为棉花秸秆全钾主要释放期,半量还田和全量还田处理中全钾的释放率分别为68.4%、63.9%,可占钾最终释放率的77.8%、73.9%。90~170 d期间,不同还田量棉花秸秆全钾释放减缓,还田170 d后,半量还田和全量还田处理棉花秸秆钾释放率分别为87.9%和86.5%。2019-2020年,半量还田和全量还田处理在还田后50 d的钾释放率分别占最终释放率的67.0%、61.5%,170 d后,全钾释放率分别达到83.9%和83.1%。相较于第1年还田,第2年不同还田处理棉花秸秆钾释放率分别下降4.0、3.4百分点。

3 讨论

农作物秸秆在土壤中的腐解受土壤环境、秸秆内在特性和气候条件等多重因素共同影响。本试验中,棉花秸秆干物质衰减呈现先快后慢的2个不同腐解阶段。腐解前20 d的腐解速率最快,前70 d的腐解率占总腐解率的50%以上,此后各处理棉花秸秆腐解速率迅速下降,这是因为腐解前期棉花秸秆易分解物质充足,为微生物活动提供了丰富的碳源,中后期木质素等难分解物质比例升高,微生物活性降低,分解速率变

20-21。但由于还田后期气温回升,促进土壤微生物分解棉花秸秆中未被完全分解的有机质,故腐解后期棉花秸秆腐解速率有所上升。

从棉花秸秆化学组成上看,还田后秸秆中可溶性糖可在短时间内迅速大量释放,且在170 d还田期内可释放80%以上,而纤维素、半纤维素、木质素等结构性物质腐解缓慢且释放率相对较低,表现为可溶性糖>纤维素>木质素,这与前人研究结果一

22-23。纤维素和木质素结构复杂,且相互交织在一起,微生物难以破坏其结24,故导致其腐解速率较慢,腐解率较低,需要较长时间才能腐解完毕,且还田量高的处理各组分腐解率低。

秸秆N、P、K均表现为直接释放,还田70 d释放量可占最终释放量的50%以上,呈“快-慢”释放规律,平均腐解速率表现为K>P>N,这与前人研究结果一

25-26。还田后170 d,不同还田量棉花秸秆均表现为全钾释放率较高,为 83.1%~83.9%;其次是全磷,为 74.3%~80.5%;全氮释放率较低,为66.5%~74.4%。营养元素释放快慢与其存在形式密切相关,秸秆钾主要是K+,易溶于水被释放出来;而秸秆磷中有约40%的磷是难分解的有机磷;秸秆氮主要是结构性氮素,易释放的贮存性氮占比很小,结构性氮素需要被微生物矿化为无机氮才能逐渐释放,且释放比较27

秸秆还田对小麦有一定的增产效

28-29。本试验中,与棉花秸秆不还田处理相比,棉花秸秆还田处理产量提高了2.9%~59.8%,且不同年份全量还田处理比半量还田处理分别增产44.5%和49.9%,但2 a小麦产量无显著差异。还田秸秆被分解后向土壤中释放各种营养元素,可以有效提高冬小麦叶绿素含量,从而使旗叶的蒸腾作用和光合作用增强,促进光合物质向籽粒转运,且冬小麦生长前期气温较低,覆盖在土壤表面的棉花秸秆可起到增温保墒的作用。张娟30连续5 a试验结果证明,玉米秸秆还田可有效增加冬小麦单位面积穗数,但对其他产量构成因素无显著影响;殷文31研究结果也证明,秸秆还田可以提高冬小麦穗数和穗粒数,与本研究结果一致。

综上,棉花秸秆还田后170 d(小麦生长季)内,生物质腐解66.8%~73.4%,可溶性糖可释放80%,纤维素腐解60%,而木质素腐解仅为44.1%~51.1%。还田量对纤维素、木质素和可溶性糖的释放速度均无显著影响,棉花秸秆中K释放率最高,可为土壤提供更多的K元素,故秸秆还田后可适当减少钾肥施用量。

参考文献References

1

石祖梁,王飞,王久臣,等.我国农作物秸秆资源利用特征、技术模式及发展建议[J].中国农业科技导报,2019,21(5):8-16.SHI Z L,WANG F,WANG J C,et al.Utilization characteristics,technical model and development suggestion on crop straw in China[J].Journal of agricultural science and technology,2019,21(5):8-16 (in Chinese with English abstract). [百度学术] 

2

陈尚洪.还田秸秆腐解特征及其对稻田土壤碳库的影响研究[D].雅安:四川农业大学,2007.CHEN S H.Study on decomposition characteristics of straw return to soil and its effect on different available carbons[D].Yaan:Sichuan Agricultural University,2007 (in Chinese with English abstract). [百度学术] 

3

JEFFRIES T W.Biodegradation of lignin-carbohydrate complexes[J].Biodegradation,1990,1(2):163-176. [百度学术] 

4

李昌明,王晓玥,孙波.不同气候和土壤条件下秸秆腐解过程中养分的释放特征及其影响因素[J].土壤学报,2017,54(5):1206-1217.LI C M,WANG X Y,SUN B.Characteristics of nutrient release and its affecting factors during plant residue decomposition under different climate and soil conditions[J].Acta pedologica sinica,2017,54(5):1206-1217 (in Chinese with English abstract). [百度学术] 

5

KITONYO O M,ZHOU Y,COVENTRY D R,et al.Canopy development and grain yield of dryland wheat is modified by strategic nitrogen supply and stubble management[J].European journal of agronomy,2018,99:195-205. [百度学术] 

6

AKKAL-CORFINI N,MORVAN T,MENASSERI-AUBRY S,et al.Nitrogen mineralization,plant uptake and nitrate leaching following the incorporation of 15N)-labeled cauliflower crop residues (Brassica oleracea) into the soil:a 3-year lysimeter study[J].Plant and soil,2010,328(1):17-26. [百度学术] 

7

葛选良,于洋,钱春荣.还田作物秸秆腐解特性及相关影响因素的研究进展[J].农学学报,2017,7(7):17-21.GE X L,YU Y,QIAN C R.Returning crop straw:a review of decomposing features and influencing factors[J].Journal of agriculture,2017,7(7):17-21 (in Chinese with English abstract). [百度学术] 

8

刘世平,陈文林,聂新涛,等.麦稻两熟地区不同埋深对还田秸秆腐解进程的影响[J].植物营养与肥料学报,2007,13(6):1049-1053.LIU S P,CHEN W L,NIE X T,et al.Effect of embedding depth on decomposition course of crop residues in rice-wheat system[J].Plant nutrition and fertilizer science,2007,13(6):1049-1053 (in Chinese with English abstract). [百度学术] 

9

宁东峰,马卫萍,孙文彦,等.华北地区棉田翻压冬绿肥腐解及养分释放规律研究[J].华北农学报,2011,26(6):164-167.NING D F,MA W P,SUN W Y,et al.Study on regulars of decompostion and nutrients releasing of green manure ploughed in cotton field in north plain of China[J].Acta agriculturae boreali-sinica,2011,26(6):164-167 (in Chinese with English abstract). [百度学术] 

10

PARTON W,SILVER W L,BURKE I C,et al.Global-scale similarities in nitrogen release patterns during long-term decomposition[J].Science,2007,315(5810):361-364. [百度学术] 

11

倪文海,刘欢,刘振涛,等.水稻秸杆腐解过程溶解性有机质红外光谱研究[J].土壤,2013,45(2):1220-1226.NI W H,LIU H,LIU Z T,et al.Study on fourier-transform infrared spectra of dissolved organic matters extracted from rice straw at different decay stages[J].Soils,2013,45(2):1220-1226 (in Chinese with English abstract). [百度学术] 

12

TVEIT A,SCHWACKE R,SVENNING M M,et al.Organic carbon transformations in high-Arctic peat soils:key functions and microorganisms[J].The ISME journal,2013,7(2):299-311. [百度学术] 

13

周元,陈远学,蒋帆,等.玉米地土壤微生物量碳、氮及微生物熵对不同物料还田的响应[J].水土保持学报,2020,34(2):173-180.ZHOU Y,CHEN Y X,JIANG F,et al.Responses of soil microbial biomass carbon,nitrogen and microbial entropy to different materials returned to corn fields[J].Journal of soil and water conservation,2020,34(2):173-180 (in Chinese with English abstract). [百度学术] 

14

胡启良,杨滨娟,刘宁,等.绿肥混播下不同施氮量对水稻产量、土壤碳氮和微生物群落的影响[J].华中农业大学学报,2022,41(6):16-26.HU Q L,YANG B J,LIU N,et al.Effects of application rates of nitrogen on rice yield,carbon and nitrogen,microbial community in soil under mixed sowing of green manure[J].Journal of Huazhong Agricultural University,2022,41(6):16-26 (in Chinese with English abstract). [百度学术] 

15

吴立鹏,张士荣,娄金华,等. 秸秆还田与优化施氮对稻田土壤碳氮含量及产量的影响[J]. 华北农学报,2019,34(4):158-166.WU L P,ZHANG S R,LOU J H,et al.Effects of straw returning and nitrogen fertilizer on soil C and N content and yield of rice[J].Acta agriculturae boreali-sinica,2019,34(4):158-166 (in Chinese with English abstract). [百度学术] 

16

张珂珂,宋晓,郭斗斗,等.长期施肥措施下潮土土壤碳氮及小麦产量稳定性的变化特征[J].华北农学报,2021,36(3):142-149.ZHANG K K,SONG X,GUO D D,et al.Variation characteristics of soil organic carbon,nitrogen and the stability of wheat yield in fluvo-aquic soil under long-term fertilization[J].Acta agriculturae boreali-sinica,2021,36(3):142-149 (in Chinese with English abstract). [百度学术] 

17

王晓娇,齐鹏,蔡立群,等.培肥措施对旱地农田产量可持续性及土壤有机碳库稳定性的影响[J].草业学报,2020,29(10):58-69.WANG X J,QI P,CAI L Q,et al.Effects of alternative fertilization practices on components of the soil organic carbon pool and yield stability in rain-fed maize production on the Loess Plateau[J].Acta prataculturae sinica,2020,29(10):58-69 (in Chinese with English abstract). [百度学术] 

18

熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定[J].粮食与饲料工业,2005(8):40-41.XIONG S M,ZUO X F,ZHU Y Y.Determination of cellulose,hemi-cellulose and ligin in rice hull[J].Cereal & feed industry,2005(8):40-41 (in Chinese with English abstract). [百度学术] 

19

景峰.长期秸秆还田对连作棉田秸秆腐解特性及土壤有机碳平衡的影响[D].石河子:石河子大学,2016.JING F.Research on straw decomposition and soil organic carbon balance as affected by long-term straw incorporation in the continuous cropping cotton field[D].Shihezi:Shihezi University,2016 (in Chinese with English abstract). [百度学术] 

20

刘炎红,姜超强,沈嘉,等.烟杆腐解速率及养分释放规律研究[J].土壤,2017,49(3):543-549.LIU Y H,JIANG C Q,SHEN J,et al.Decomposition rates and nutrient release patterns of tobacco straw[J].Soils,2017,49(3):543-549 (in Chinese with English abstract). [百度学术] 

21

柳开楼,张俊清,苑举民,等.不同烟草秸秆还田量在水稻土中的腐解特征及其对水稻产量的影响[J].华北农学报,2019,34(S1):268-272.LIU K L,ZHANG J Q,YUAN J M,et al.Decomposition characteristics in paddy soil under different rates of tobacco straw and their effects on rice yield[J].Acta agriculturae boreali-sinica,2019,34(S1):268-272 (in Chinese with English abstract). [百度学术] 

22

刘单卿,李顺义,郭夏丽.不同还田方式下小麦秸秆的腐解特征及养分释放规律[J].河南农业科学,2018,47(4):49-53.LIU D Q,LI S Y,GUO X L.Characteristics of decomposition and nutrients release of wheat straw under different returning methods[J].Journal of Henan agricultural sciences,2018,47(4):49-53 (in Chinese with English abstract). [百度学术] 

23

文启孝.土壤有机质的组成、形成和分解[J].土壤,1984,16(4):121-129.WEN Q X.Composition,formation and decomposition of soil organic matter[J].Soils,1984,16(4):121-129 (in Chinese). [百度学术] 

24

曹培培,刘茂松,唐金艳,等.几种水生植物腐解过程的比较研究[J].生态学报,2014,34(14):3848-3858.CAO P P,LIU M S,TANG J Y,et al.A comparative study on the decomposition processes among some aquatic plants[J].Acta ecologica sinica,2014,34(14):3848-3858 (in Chinese with English abstract). [百度学术] 

25

HAN H F,NING T Y,ZENGIJA L,et al.Soil respiration rate in summer maize field under different soil tillage and straw application[J].Maydica,2014,59:185-190. [百度学术] 

26

戴志刚,鲁剑巍,李小坤,等.不同作物还田秸秆的养分释放特征试验[J].农业工程学报,2010,26(6):272-276.DAI Z G,LU J W,LI X K,et al.Nutrient release characteristic of different crop straws manure[J].Transactions of the CSAE,2010,26(6):272-276 (in Chinese with English abstract). [百度学术] 

27

张经廷,张丽华,吕丽华,等.还田作物秸秆腐解及其养分释放特征概述[J].核农学报,2018,32(11):2274-2280.ZHANG J T,ZHANG L H,LYU L H,et al.Overview of the characteristics of crop straw decomposition and nutrients release of returned field crops[J].Journal of nuclear agricultural sciences,2018,32(11):2274-2280 (in Chinese with English abstract). [百度学术] 

28

邵云,马守田,李学梅,等.秸秆还田方式对麦田土壤碳、氮、水动态及小麦产量的影响[J].麦类作物学报,2014,34(11):1545-1551.SHAO Y,MA S T,LI X M,et al.Effects of different straw returning methods on soil carbon,nitrogen,water dynamics and yield of wheat[J].Journal of triticeae crops,2014,34(11):1545-1551 (in Chinese with English abstract). [百度学术] 

29

张亮.关中麦玉轮作区施氮对秸秆还田小麦产量和秸秆养分释放的影响[D].杨凌:西北农林科技大学,2012.ZHANG L.Effects of nitrogen fertilizer on yield of winter wheat and straw decomposition under maize straw returning in Guanzhong irrigation district[D].Yangling:Northwest A & F University,2012 (in Chinese with English abstract). [百度学术] 

30

张娟霞.长期秸秆还田与施氮下冬小麦产量和土壤肥力的变化[D].杨凌:西北农林科技大学,2018.ZHANG J X.Changes of winter wheat yield and soil fertility under long-term straw management and nitrogen application[D].Yangling:Northwest A & F University,2018 (in Chinese with English abstract). [百度学术] 

31

殷文,陈桂平,柴强,等.河西灌区不同耕作与秸秆还田方式对春小麦出苗及产量的影响[J].中国生态农业学报,2017,25(2):180-187.YIN W,CHEN G P,CHAI Q,et al.Effect of tillage and straw retention mode on seedling emergence and yield of spring wheat in the Hexi Irrigation Area[J].Chinese journal of eco-agriculture,2017,25(2):180-187 (in Chinese with English abstract). [百度学术]