摘要
为探究转Cry2A*基因水稻品系根系特性,为抗虫转基因水稻的栽培调控提供技术支撑,通过盆栽试验,以常规粳稻与其转Cry2A*基因水稻品系、常规籼稻与其转Cry2A*基因水稻品系为试验材料,探究施氮、不施氮处理下转Cry2A*基因水稻品系的根系特性。结果表明:转Cry2A*基因水稻品系的根长、根表面积、根体积在成熟期不施氮处理下显著低于亲本对照,在施氮处理下与亲本对照无显著差异;KY(Cry2A*)的根系活跃吸收面积在花期显著高于亲本对照,而MH86(Cry2A*)的根系活跃吸收面积与其亲本对照无显著差异;与不施氮处理相比,施氮能显著提高KY(Cry2A*)的根直径,对MH86(Cry2A*)的根直径无显著影响。本研究结果表明,转Cry2A*基因水稻根系特性与其亲本之间存在一定差异,且这种差异在不施氮处理条件下更为明显。
水稻是我国的主要粮食作物之一,同时也易受到虫害的侵袭,造成严重的产量损失。据不完全统计,每年全球因虫害而导致的水稻减产量占总产量的5%以上,达100
然而,由于转入了非传统基因库的外源基因,转基因水稻的某些生理代谢过程发生了改变,进而引起转基因水稻的生物学特性、营养需求特性、生态适应性等与普通水稻有所差
试验使用常规粳稻空育131(KY131)与其转Cry2A*基因水稻品系KY(Cry2A*)-1、KY(Cry2A*)-2以及常规籼稻明恢86(MH86)与其转Cry2A*基因水稻品系MH86(Cry2A*)为试验材料。
2019年在湖北省武汉市华中农业大学盆栽场进行盆栽试验。土壤与沙按m土壤∶m沙=2∶1混合均匀后装入长24 cm、宽18 cm、高27cm的桶中,每桶装入混合后的土12 kg。土壤背景值为:总氮510 mg/kg,速效磷37.5 mg/kg,速效钾167.8 mg/kg。
采用秧田水育秧,20 d后选择长势一致的秧苗移栽到桶中,每桶移栽1株秧苗。试验为随机区组设计,设置施氮(RN)和不施氮(N0) 2个氮肥处理,每处理3次重复。氮肥[CO(NH2)2]用量为每株2.14 g,按基肥∶分蘖肥∶幼穗分化肥=5∶2∶3的质量比施用;磷肥(NaH2PO4)用量为每株1.94 g,全部作基肥施用;钾肥(KCl)用量为每株1.91 g,按基肥∶幼穗分化肥=1∶1的质量比施用。
根系形态使用根系扫描仪(Epson LA2400 Scanner, USA)测定,将冲洗干净的根扫描成TIF图像文件后采用根系分析软件(WinRHIZO, Canada)进行计算,分析得出每株根系的总根长、总根表面积、总根体积和根直径。根系活跃吸收面积用甲烯蓝比色法进行测定。根冠比为根干质量/地上部干物质质量。
由

图1 施氮(RN)、不施氮(N0)处理下不同时期粳稻KY131与KY(Cry2A*)的根直径(A)、总根长(B)、总根表面积(C)和总根体积(D)
Fig. 1 Root diameter(A),total root length(B), total root surface area(C) and total root volumes(D) of japonica rice KY131 and KY(Cry2A*) at different stages under nitrogen(RN) and no nitrogen(N0) treatments
柱子上不同小写字母表示同一时期不同处理间差异显著(P<0.05)。Different lowercase letters in the columns indicate significant differences among different treatments in the same period (P <0.05).
如

图2 施氮(RN)、不施氮(N0)处理下不同时期籼稻MH86与MH86(Cry2A*)的根直径(A)、总根长(B)、总根表面积(C)和总根体积(D)
Fig. 2 Root diameter(A),total root length(B),total root surface area(C) and total root volumes(D) of indica rice MH86 and MH86(Cry2A*) at different stages under nitrogen (RN) and no nitrogen (N0) treatments
由

图3 施氮(RN)、不施氮(N0)处理下不同时期粳稻KY131与KY(Cry2A*)的根系活跃吸收面积(A)和活跃吸收面积/总吸收面积(B)
Fig.3 Root active absorption area (RAAA) (A) and the ratio of RAAA to total root absorption area (RAAA/RTAA) (B) of japonica rice KY131and KY(Cry2A*) at different stages under nitrogen (RN) and no nitrogen (N0) treatments
由

图4 施氮(RN)、不施氮(N0)处理下不同时期籼稻MH86与MH86(Cry2A*)的根系活跃吸收面积(A)和活跃吸收面积/总吸收面积(B)
Fig. 4 Root active absorption area(RAAA)(A) and the ratio of RAAA to total root absorption area (RAAA/RTAA)(B)of indica rice MH86 and MH86(Cry2A*) at different stages under nitrogen (RN) and no nitrogen (N0) treatments
由
品系Variety | 氮处理 N treatment | 花期 Flowering stage | 花后15 d 15 d post-flowering | 成熟期 Maturity stage | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总生物量/g Biomass | 根干质量/g Root dry weight | 根冠比 Root-shoot ratio | 总生物量/g Biomass | 根干质量/g Root dry weight | 根冠比 Root-shoot ratio | 总生物量/g Biomass | 根干质量/g Root dry weight | 根冠比 Root-shoot ratio | |||
KY131 | 1.10b | 0.16b | 0.161a | 2.33a | 0.26a | 0.137a | 4.64a | 0.37a | 0.088a | ||
KY(Cry2A*)-1 | N0 | 2.62a | 0.38a | 0.170a | 3.78a | 0.32a | 0.092a | 3.48a | 0.17a | 0.050b | |
KY(Cry2A*)-2 | 1.34b | 0.14b | 0.118a | 2.37a | 0.22a | 0.097a | 4.51a | 0.20a | 0.045b | ||
KY131 | 23.93b | 2.48c | 0.116a | 35.43b | 2.65b | 0.081a | 42.50a | 2.38a | 0.059b | ||
KY(Cry2A*)-1 | RN | 26.14ab | 2.70b | 0.116a | 45.92a | 3.59a | 0.085a | 48.89a | 3.04a | 0.066a | |
KY(Cry2A*)-2 | 28.29a | 2.89a | 0.114a | 38.24b | 2.60b | 0.073a | 44.34a | 2.42a | 0.058b | ||
方差分析Analysis of variance | |||||||||||
氮处理N treatment | ** | ** | * | ** | ** | NS | ** | ** | NS | ||
品系Variety | * | ** | NS | ** | ** | NS | NS | NS | ** | ||
氮处理N treatment× 品系 Variety | NS | ** | NS | ** | ** | NS | NS | NS | ** |
注: 同一列内不同小写字母表示同一地点不同处理间差异显著(P<0.05)。*表示差异达到0.05水平;**表示差异达到0.01水平;NS表示差异不显著。Note: Different lowercase letters in the same column indicate significant differences among different treatments in the same site(P<0.05);*:P<0.05;**:P<0.01;NS:No significant difference.The same as below.
由
品系 Variety | 氮处理 N treatment | 花期 Flowering stage | 花后15 d 15 d post-flowering | 成熟期 Maturity stage | ||||||
---|---|---|---|---|---|---|---|---|---|---|
总生物量/g Biomass | 根干质量/g Root dry weight | 根冠比 Root-shoot ratio | 总生物量/g Biomass | 根干质量/g Root dry weight | 根冠比 Root-shoot ratio | 总生物量/g Biomass | 根干质量/g Root dry weight | 根冠比 Root-shoot ratio | ||
MH86 | N0 | 46.07a | 7.45a | 0.193a | 48.71a | 7.02a | 0.163a | 59.37a | 8.70a | 0.172a |
MH86(Cry2A*) | 44.69a | 6.70a | 0.176a | 49.42a | 6.34a | 0.147a | 45.64b | 5.76b | 0.145b | |
MH86 | RN | 111.79a | 14.10a | 0.144a | 138.68a | 14.07a | 0.113a | 131.75a | 12.37a | 0.104a |
MH86(Cry2A*) | 102.69a | 11.90a | 0.131b | 131.33a | 12.11b | 0.102a | 111.90b | 11.01a | 0.109a | |
方差分析 Analysis of variance | ||||||||||
氮处理 N treatment | ** | ** | ** | ** | ** | ** | ** | ** | ** | |
品系 Variety | NS | * | ** | NS | * | * | ** | ** | * | |
氮处理N treatment×品系Variety | NS | NS | NS | NS | NS | NS | NS | NS | ** |
土壤养分状况、气候条件等易影响到植物根系的生长情
施用氮肥有利于提高植株的根系活力延缓植株衰老,提高水稻产
有研究报道MH63与其转Bt基因水稻品系的生物量无显著差
综上,转Cry2A*基因水稻品系的根系形态、根系活力、生物量等与其受体亲本相比存在一定的差异,但不同受体的转Cry2A*基因水稻品系的根系性状表现有所不同,即使是同一品系的根系性状在不同时期不同氮肥处理下表现也有所不同。当土壤中氮素缺乏时,转Cry2A*基因水稻品系的根系形态与受体亲本差异更明显。
参考文献 References
PANDI V,SUNDARA BABU P C,KAILASAM C.Prediction of damage and yield loss caused by rice leaffolder at different crop periods in a susceptible rice cultivar (IR 50)[J].Journal of applied entomology,1998,122(1/2/3/4/5):595-599. [百度学术]
ZHANG Q F.Strategies for developing green super rice[J].PNAS,2007,104(42):16402-16409. [百度学术]
高家旭,蓝天琼,刘成家,等.不同药剂对水稻螟虫防治效果初探[J].农业与技术,2015,35(7):47,78.GAO J X,LAN T Q,LIU C J,et al.Preliminary study on the control effect of different chemicals on rice stem borers[J].Agriculture and technology,2015,35(7):47,78 (in Chinese). [百度学术]
李荣田,王新宇,田崇兵,等.转cry1C*及cry2A*基因早粳稻Bt蛋白的时空表达和抗螟虫性[J].作物学报,2018,44(12):1829-1836.LI R T,WANG X Y,TIAN C B,et al.Spatio-temporal expression of Bt protein and stem borer resistance of transgenic early japonica rice with cry1C* or cry2A* gene[J].Acta agronomica sinica,2018,44(12):1829-1836 (in Chinese with English abstract). [百度学术]
FUJIMOTO H,ITOH K,YAMAMOTO M,et al.Insect resistant rice generated by introduction of a modified δ-endotoxin gene of Bacillus thuringiensis[J].Nature biotechnology,1993,11(10):1151-1155. [百度学术]
TU J,DATTA K,KHUSH G S,et al.Field performance of Xa21 transgenic indica rice (Oryza sativa L.),IR72[J].Theoretical and applied genetics,2000,101(1/2):15-20. [百度学术]
CHEN H,TANG W,XU C G,et al.Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests[J].Theoretical and applied genetics,2005,111(7):1330-1337. [百度学术]
TANG W,CHEN H,XU C G,et al.Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene[J].Molecular breeding,2006,18(1):1-10. [百度学术]
JIANG G H,XU C G,TU J M,et al.Pyramiding of insect- and disease-resistance genes into an elite indica,cytoplasm male sterile restorer line of rice,‘Minghui 63’[J].Plant breeding,2004,123(2):112-116. [百度学术]
CHEN L Y,SNOW A A,WANG F,et al.Effects of insect-resistance transgenes on fecundity in rice (Oryza sativa,Poaceae):a test for underlying costs[J].American journal of botany,2006,93(1):94-101. [百度学术]
XIA H,CHEN L Y,WANG F,et al.Yield benefit and underlying cost of insect-resistance transgenic rice:implication in breeding and deploying transgenic crops[J].Field crops research,2010,118(3):215-220. [百度学术]
KIM S,KIM C,LI W,et al.Inheritance and field performance of transgenic Korean Bt rice lines resistant to rice yellow stem borer[J].Euphytica,2008,164(3):829-839. [百度学术]
WANG F,JIAN Z P,NIE L X,et al.Effects of N treatments on the yield advantage of Bt-SY63 over SY63 (Oryza sativa) and the concentration of Bt protein[J].Field crops research,2012,129:39-45. [百度学术]
SHU Q Y,CUI H R,YE G Y,et al.Agronomic and morphological characterization of Agrobacterium-transformed Bt rice plants[J].Euphytica,2002,127(3):345-352. [百度学术]
HODGE A,BERTA G,DOUSSAN C,et al.Plant root growth,architecture and function[J].Plant and soil,2009,321(1):153-187. [百度学术]
樊剑波.不同氮效率基因型水稻氮素吸收和根系特征研究[D].南京:南京农业大学,2008.FAN J B.Difference in nitrogen uptake and root morphology of rice cultivars with different nitrogen use efficiency[D].Nanjing:Nanjing Agricultural University,2008 (in Chinese with English abstract). [百度学术]
NIU Y F,CHAI R S,JIN G L,et al.Responses of root architecture development to low phosphorus availability:a review[J].Annals of botany,2013,112(2):391-408. [百度学术]
TAN D K Y, BROUGHTON K, KNOX O G, et al. Soil microbial biomass and root growth in Bt and non-Bt cotton:EGU General Assembly Conference Abstracts[C].[S.l.]:EGU, 2012. [百度学术]
刘宝玉,徐家宽,王余龙,等.不同生育时期氮素供应水平对杂交水稻根系生长及其活力的影响[J].作物学报,1997,23(6):699-706.LIU B Y,XU J K,WANG Y L,et al.Effect of nitrogen supplying levels and timings on the development of roots in hybrid indica rice[J].Acta agronomica sinica,1997,23(6):699-706 (in Chinese with English abstract). [百度学术]
孙静文,陈温福,臧春明,等.水稻根系研究进展[J].沈阳农业大学学报,2002,33(6):466-470.SUN J W, CHEN W F, ZANG C M, et al. Advances of research on rice root systems[J]. Journal of Shenyang Agricultural University, 2002, 33(6): 466-470 (in Chinese with English abstract). [百度学术]
JIANG Y,LING L,ZHANG L L,et al.Comparison of transgenic Bt rice and their non-Bt counterpart in yield and physiological response to drought stress[J].Field crops research,2018,217:45-52. [百度学术]
LING L,LI X X,WANG K X,et al.Carbon and nitrogen partitioning of transgenic rice T2A-1 (Cry2A*) with different nitrogen treatments[J/OL].Scientific reports,2019,9:5351[2022-08-15].https://doi.org/10.1038/s41598-019-41267-1. [百度学术]