摘要
为提高枣树种植过程中施用氮肥的精准性,本研究以南疆重要经济作物骏枣(Ziziphus jujuba Mill.)为研究对象,通过对枣树叶片原始光谱和一阶微分光谱与全氮含量的相关性进行分析,利用光谱敏感变量构建植被指数作为衍生变量,再以衍生变量作为变量建立多种线性和非线性的氮素含量预测模型,并对氮素含量预测模型进行精度检验。结果显示:基于枣树原始光谱和一阶微分光谱的模型拟合决定系数均大于0.75,原始光谱变量的预测效果整体好于一阶微分光谱;预测效果最好的是基于原始光谱变量4的幂函数模型:Nit =1.097
红枣富含18种氨基酸和丰富的维生素C,营养价值高,还具有护肝降压、镇静安神等药用价
近年来高光谱技术因其快速、时效性强、低成本、信息量大等特点发展极为迅
光谱信号平滑处理是消除噪声最普遍的方法,将原始光谱数据导入Origin中采用SG方法进行平滑滤
本研究以南疆地区重要的经济作物红枣作为研究对象,对获取的枣树叶片的高光谱数据进行原始光谱、一阶微分光谱与全氮含量的相关性分析,利用筛选出的敏感波长或波段构建起线性、非线性回归模型,旨在为大面积枣树种植的营养监测以及精准施肥管理提供重要可靠的理论依据。
试验研究区位于新疆阿拉尔市塔里木大学园艺试验站,阿拉尔市属暖温带大陆干旱荒漠气候区,光照时间长、气候极度干旱、昼夜温差大、地表蒸发强烈。本试验以枣树叶片为研究材料,试验研究的红枣品种为南疆地区较多种植的骏枣(Ziziphus jujuba Mill.),树高约2~3 m,该品种叶片宽厚且颜色较深,非常有利于高光谱数据的采集。
试验样品叶片采样时间2021年9月1日至10日,此时间段为骏枣的成熟期,天气晴好,风力小于2级,每次测定时间12:00—16:00(太阳高度角大于45°)。采样时选取园艺站20块大小株高基本一致的矩形枣园(枣树种植时间均为10 a),东西长40 m,南北长60 m,采用五点取样
1)光谱测定。本研究使用 ASD Field Spec Hand Held 2 便携式高光谱仪测定枣树叶片的光谱数据,波谱范围350~1 000 nm,光谱分辨率为1 nm,1条光谱曲线有650条反射率数据。测定之前进行仪器系统配置的优化和白板校
2)全氮含量测定。将采集的新鲜样叶在100 ℃条件下杀青30 min左右,然后置于干燥箱中,80 ℃烘干,研钵充分研磨成均匀粉末,使用万分之一天平准确称取0.2 g加入消煮管,加入10 mL浓硫酸和催化剂,然后在FOSS消化炉中250 ℃消煮至淡蓝色澄清透明状液体。此过程中叶片中的有机氮在浓硫酸与催化剂(K2SO4、CuSO4·5H2O)的作用下经一系列反应转化为硫酸铵,再利用氢氧化钠蒸馏滴定确定全氮含量,全自动凯氏定氮仪会根据盐酸标准溶液的消耗量自动计算出样叶的全氮含
3)高光谱数据处理。采用
(1) |
4)模型建立。将预处理后的光谱数据导入Origin软件中,对基于原始光谱反射率和一阶微分光谱与样品叶全氮含量进行相关性分析得到所测全波段的相关系数,绘制全波段相关系数图,根据相关系数绝对值的大小确定敏感的波长或波段。将采集的所有叶片样本的原始光谱数据和全氮含量分为建模集和验证集,随机选取70%即3 500组光谱数据的样本数据作为建模集用于构建叶片氮素含量反演模型,30%即1 500组光谱数据的样本数据作为验证集用来检验预测模型的精度。将分析确定的特征变量代入SPSS软件中进行一元及多元线性回归分析,构建植被指数作为衍生变量,建立基于植被指数的线性、非线性模型,筛选出精度较高的模型代入验证集中进行精度评价,筛选出精度较高的预测模型方程,以拟合决定系数
(2) |
对采集的整体叶片的原始光谱数据进行波段特征分析,如

图 1 枣树叶片原始光谱曲线
Fig.1 Original spectral reflection curve of jujube leaves
将所采集全部叶片的光谱曲线进行平均处理后,结果如

图 2 枣树叶片光谱与全氮含量相关系数
Fig.2 Correlation coefficient between spectra and total nitrogen content of jujube leaves
A:原始光谱与全氮含量相关系数 Correlation coefficient curve between the original spectrum and total nitrogen content; B:一阶微分光谱与全氮含量相关系数 Correlation coefficient curve between the first order differential spectrum and total nitrogen content.
使用归一化植被指数(normalized difference vegetation index, NDVI) (NDVI=(NIR-R)/(NIR+R))方法对骏枣的叶片氮素含量进行反演研究(

图 3 归一化植被指数相关图像
Fig.3 Normalized difference vegetation index related images
A:相关系数图 Correlation coefficient diagram;B.等势图Equipotential diagram.
根据枣树叶片全氮含量与原始光谱和一阶微分光谱的相关性分析结果,筛选得到较为敏感的波长及波段,作为敏感变量构建线性方程定义新的植被指数(
变量 Variable | 方程 Equation | 相关系数 Correlation coefficient |
---|---|---|
1(R546) | y=1.352-0.777R546 | 0.777 |
2(R546,R556) | y=1.353-3.271R546+2.494R556 | 0.778 |
3(R546,R556,R607) | y=1.343-4.089R546+3.780R556-0.487R607 | 0.784 |
4(R546,R556,R607,R705) | y=1.430-12.957R546+14.474R556-0.172R607-2.128R705 | 0.818 |
5(R′519) | y=1.337-0.750R′519 | 0.751 |
6(R′519,R′523) | y=1.382-0.417R′519-0.341R′523 | 0.753 |
7(R′519,R′523,R′543) | y=1.380-0.407R′519-0.301R′523 -0.053R′543 | 0.754 |
8(R′519,R′575,R′639) | y=1.356-0.843R′519-0.337R′575-0.210R′639 | 0.776 |
9(R′614,R′639,R′659,R′692,R′693) | y=1.368-0.338R′614+0.07R′639-0.088R′659-0.243R′692-0.831 R′693 | 0.780 |
10(R′519,R′523,R′543,R′575,R′614,R′639,R′659,R′692,R′693) | y=1.397-0.837R′519-0.104R′523-0.259R′543-0.238R′575-0.362 R′614+0.147 R′639-0.252R′659+0.559R′692-0.768R′693 | 0.801 |
由
变量 Variable | 回归方式 Regression method | 方程 Equation | 相关系数Correlation coefficient |
---|---|---|---|
3(R546,R556,R607) | 线性 Linearity | y=1.472x-0.641 | 0.782 |
指数 Index |
y=0.259 | 0.782 | |
幂 Power |
y=0.852 | 0.781 | |
二次多项式 Quadratic polynomial |
y=3.034 | 0.783 | |
4(R546,R556,R607,R705) | 线性 Linearity | y=0.787x+0.311 | 0.802 |
指数 Index |
y=0.5729 | 0.812 | |
幂 Power |
y=1.097 | 0.813 | |
二次多项式 Quadratic polynomial |
y=0.265 | 0.814 | |
9(R′614,R′639,R′659,R′692,R′693) | 线性 Linearity | y=17.901x-23.125 | 0.761 |
指数 Index |
y=2E-09 | 0.764 | |
幂 Power |
y=0.0024 | 0.764 | |
二次多项式 Quadratic polynomial |
y=1004.1 | 0.772 | |
10(R′519,R′523,R′543,R′575, R′614,R′639,R′659,R′692,R′693) | 线性 Linearity | y=34.305x-46.536 | 0.771 |
指数 Index |
y=7E-18 | 0.774 | |
幂 Power |
y=2E-06 | 0.773 | |
二次多项式 Quadratic polynomial |
y=3075.6 | 0.781 |
选取回归决定系数
变量Variable | 回归方式Regression method | 方程 Equation | RMSE | |
---|---|---|---|---|
3(R546,R556,R607) | 线性 Linearity | y=1.472x-0.641 | 0.792 | 0.019 1 |
指数 Index |
y=0.259 | 0.788 | 0.019 2 | |
幂 Power |
y=0.852 | 0.778 | 0.019 4 | |
二次多项式 Quadratic polynomial |
y=-9.094 | 0.785 | 0.024 8 | |
4(R546,R556,R607,R705) | 线性 Linearity | y=1.057x-0.055 | 0.819 | 0.038 4 |
指数 Index |
y=0.573 | 0.813 | 0.025 1 | |
幂 Power |
y=1.097 | 0.821 | 0.024 5 | |
二次多项式 Quadratic polynomial |
y=0.265 | 0.813 | 0.025 2 | |
10(R′519,R′523,R′543,R′575,R′614, R′639,R′659,R′692,R′693) | 二次多项式 Quadratic polynomial |
y=3075.6 | 0.785 | 0.024 1 |

图 4 较高精度模型的拟合检验
Fig.4 The fitting test of high precision model
A:变量3(线性)Variable 3,linearity;B:变量4(幂)Variable 4,power;C:变量4(二次多项式)Variable 4,quadratic polynomial;D:变量10(二次多项式) Variable 10,quadratic polynomial.
通过支持向量回归(support vector regression,SVR)方法对数据进行试验,结果如

图 5 支持向量回归模型拟合检验
Fig.5 Support vector regression model fitting test
氮素是植物叶绿素、维生素、核酸、酶系统、激素等代谢有机化合物的重要组成成分,是植物生理活动最基础的元素。氮素充足可以促进枝叶发育,叶面积增大,光合作用变强,同时促进根系的生长和对养分、水分的吸
现有研究表明,归一化植被指数是常用来监测和估算植被的营养元素含量效果较好的植被指数。杨海波
在模型建立方法上,本研究先用筛选的敏感变量构建起多元线性植被指数作为衍生变量,基于衍生变量建立线性和非线性模型,多变量建模由于变量的复杂性,往往非线性模型的精度更高。李金梦
本研究最终建立的模型RMSE均小于0.1,稳定性较好,通过化学定量分析测定得到枣树叶片的全氮含量,将处理后的高光谱数据与全氮含量进行相关性分析,筛选得到敏感波长和波段,组合回归拟合得到新的衍生变量,再利用衍生变量建立枣树叶片线性和非线性预测模型,经过对模型的预测能力和精度评价,筛选确定了枣树叶片全氮含量的最佳预测模型是基于变量4的幂函数模型,即Nit =1.097
参考文献References
何伟忠,赵多勇,范盈盈,等.新疆红枣营养品质与稳定同位素及矿物元素特征产地溯源比较[J].核农学报,2021,35(5):1099-1112.HE W Z,ZHAO D Y,FAN Y Y,et al.Comparison of the nutrient quality,stable isotope and multi-element characteristics of Xinjiang jujube for origin traceability[J].Journal of nuclear agricultural sciences,2021,35(5):1099-1112(in Chinese with English abstract). [百度学术]
卢明艳,宋锋惠,史彦江,等.树形对骏枣叶片生理状态及产量和品质的影响[J].西南农业学报,2022,35(12):2794-2800.LU M Y,SONG F H,SHI Y J,et al.Impact of tree shapes on the physiological characteristics of leaves yield and fruit quality of Jun jujube[J].Southwest China journal of agricultural sciences,2022,35(12):2794-2800(in Chinese with English abstract). [百度学术]
张计峰,耿庆龙,曹文超,等.氮肥品种与施氮量对滴灌红枣光合特性和产量的影响[J].农业工程学报,2020,36(7):92-98.ZHANG J F,GENG Q L,CAO W C,et al.Effects of type and amount of nitrogen fertilizer on photosynthetic characteristics and yield of jujube under drip irrigation[J].Transactions of the CSAE,2020,36(7):92-98(in Chinese with English abstract). [百度学术]
解小锋,王中堂,张业梅,等.枣树的肥水需求及利用特性概述[J].落叶果树,2022,54(1):27-30.XIE X F,WANG Z T,ZHANG Y M,et al.Research progress on absorption and utilization characteristics of fertilizer and water in jujube[J].Deciduous fruits,2022,54(1):27-30(in Chinese with English abstract). [百度学术]
代云豪,管瑶,张钦凯,等.阿拉尔垦区土壤盐渍化遥感监测及时空特征分析[J].干旱区地理,2022,45(4):1176-1185.DAI Y H, GUAN Y, ZHANG Q K, et al.Remote sensing monitoring and temporal and spatial characteristics of soil salinization in Aral Reclamation Area[J].Arid land geography,2022,45(4):1176-1185(in Chinese with English abstract). [百度学术]
彭晓伟,张爱军,王楠,等.高光谱技术在土壤及适种作物的研究进展[J].遥感信息,2022,37(1):32-39.PENG X W,ZHANG A J,WANG N,et al.Research progress of hyperspectral technology in soil and suitable crops[J].Remote sensing information,2022,37(1):32-39(in Chinese with English abstract). [百度学术]
卢少志,杨蒙,杨万能,等.田间作物表型检测平台设计与试验[J].华中农业大学学报,2021,40(4):209-218.LU S Z,YANG M,YANG W N,et al.Design and experiment of a platform for detecting phenotype of field crop[J].Journal of Huazhong Agricultural University,2021,40(4):209-218(in Chinese with English abstract). [百度学术]
杨锦.近地面成像光谱技术在水稻氮诊断方面的应用[J].测绘与空间地理信息,2021,44(3):160-163.YANG J.Application of near surface imaging spectroscopy on the diagnosis of rice nitrogen[J].Geomatics & spatial information technology,2021,44(3):160-163(in Chinese with English abstract). [百度学术]
陈志超,蒋贵印,张正,等.基于无人机高光谱遥感的春玉米氮营养指数反演[J].河南理工大学学报(自然科学版),2022,41(3):81-89.CHEN Z C,JIANG G Y,ZHANG Z,et al.Inversion of nitrogen nutrition index of spring maize based on hyperspectral remote sensing of UAV[J].Journal of Henan University of Technology(natural science),2022,41(3):81-89(in Chinese with English abstract). [百度学术]
王琼,陈兵,窦中江,等.不同氮水平枣树冠层光谱特征[J].西北农业学报,2017,26(9):1355-1362.WANG Q,CHEN B,DOU Z J,et al.Study on canopy spectral characteristics of jujube canopy in different nitrogen level[J].Acta agriculturae boreali-occidentalis sinica,2017,26(9):1355-1362(in Chinese with English abstract). [百度学术]
丁雅,王振锡,瞿余红,等.枣叶片N素质量分数高光谱估算模型[J].东北林业大学学报,2018,46(11):45-50.DING Y,WANG Z X,QU Y H,et al.Hyperspectral estimation model for nitrogen content of jujube leaf[J].Journal of Northeast Forestry University,2018,46(11):45-50(in Chinese with English abstract). [百度学术]
乔星星,冯美臣,杨武德,等.SG平滑处理对冬小麦地上干生物量光谱监测的影响[J].山西农业科学,2016,44(10):1450-1454.QIAO X X,FENG M C,YANG W D,et al.Effect of SG smoothing processing on predicting the above ground dry biomass of winter wheat[J].Journal of Shanxi agricultural sciences,2016,44(10):1450-1454(in Chinese with English abstract). [百度学术]
纪景纯,刘建立,牛玉洁,等.基于全波段高光谱的冬小麦生长参数估算方法比较[J].作物杂志,2020(6):180-188.JI J C,LIU J L,NIU Y J,et al.Comparison of estimation methods for growth parameters of winter wheat based on full-band hyperspectral data[J].Crops,2020(6):180-188(in Chinese with English abstract). [百度学术]
张黎黎,吕霞.基于无人机高光谱的水稻叶片氮含量估测方法[J].农业科技与装备,2021(6):13-15.ZHANG L L,LÜ X. Estimating method for nitrogen content in rice leaves based on UAV hyper-spectrum[J].Agricultural science & technology and equipment,2021(6):13-15(in Chinese with English abstract). [百度学术]
第五鹏瑶,卞希慧,王姿方,等.光谱预处理方法选择研究[J].光谱学与光谱分析,2019,39(9):2800-2806.DIWU P Y,BIAN X H,WANG Z F,et al.Study on the selection of spectral preprocessing methods[J].Spectroscopy and spectral analysis,2019,39(9):2800-2806(in Chinese with English abstract). [百度学术]
LI H K,ZHOU B B,XU F,et al.Hyperspectral characterization and chlorophyll content inversion of reclaimed vegetation in rare earth mines[J].Environmental science and pollution research,2022,29(24):36839-36853. [百度学术]
YIN C X,LIN J,MA L L,et al.Study on the quantitative relationship among canopy hyperspectral reflectance,vegetation index and cotton leaf nitrogen content[J].Journal of the Indian society of remote sensing,2021,49(8):1787-1799. [百度学术]
LIU L,VICTOR O S,XU J X,et al.Genetic improvement of crop yield,grain protein and nitrogen use efficiency of wheat,rice and maize in China[J].Advances in agronomy,2021,168:203-252. [百度学术]
程高峰,李秉柏,李萍萍,等.作物红边位置算法评述[J].江苏农业科学,2009,37(2):12-14.CHENG G F,LI B B,LI P P,et al.Review on the algorithm of crop red edge position[J].Jiangsu agricultural sciences,2009,37(2):12-14(in Chinese with English abstract). [百度学术]
杨海波,张加康,杨柳,等.品种和生育时期对冠层光谱指数(NDVI)估测马铃薯植株氮素浓度的影响[J].作物学报,2020,46(6):950-959.YANG H B,ZHANG J K,YANG L,et al.Effect of variety and growth period on NDVI estimation of nitrogen concentration in potato plants[J].Acta agronomica sinica,2020,46(6):950-959(in Chinese with English abstract). [百度学术]
王晓珂,刘婷婷,许桂玲,等.基于冠层高光谱遥感的杂交水稻植被指数氮素营养诊断模型[J].中国稻米,2021,27(3):21-29.WANG X K,LIU T T,XU G L,et al.Nitrogen diagnosis model of vegetation indices based on canopy hyperspectral remote sensing for hybrid rice[J].China rice,2021,27(3):21-29(in Chinese with English abstract). [百度学术]
李金梦,叶旭君,王巧男,等.高光谱成像技术的柑橘植株叶片含氮量预测模型[J].光谱学与光谱分析,2014,34(1):212-216.LI J M,YE X J,WANG Q N,et al.Development of prediction models for determining N content in citrus leaves based on hyperspectral imaging technology[J].Spectroscopy and spectral analysis,2014,34(1):212-216(in Chinese with English abstract). [百度学术]