摘要
探索人工智能领域新技术与生猪养殖相结合,是当前智慧养殖领域的一个重要研究方向。其中,如何自动地识别猪只个体身份与行为,是当前生猪养殖行业要解决的一个关键问题。为推动计算机视觉和深度学习技术在猪只健康状态智能化监测方面的应用,本文先分析了基于计算机视觉与深度神经网络的人的身份及行为识别模型的研究进展,然后对利用计算机视觉与深度神经网络识别猪只个体身份及行为的方法进行了归纳总结,并指出已有方法中存在的问题,最后提出了下一步的重点研究方向:(1)在猪只运动不可控及关键特征部位受到污染的情况下,准确提取其身份及行为特征的方法研究;(2)针对猪只身份及行为特征的基于计算机视觉的原创性深度学习模型的研究;(3)能够同时检测猪只身份及行为的多任务神经网络的研究;(4)适用于多场景的基于基础姿态及动作的通用型猪只行为识别方法的研究;(5)基于边缘计算的猪只个体身份及行为识别的部署方法研究。
当前畜牧业发展正处于转型的关键时期,生猪产业逐渐由家庭生产向集约型大规模养殖转变。随着传感器技术、视频监控技术、信息通信技术、大数据和人工智能技术的发展,养猪业逐渐进入智能化养殖时
传统上,判断猪只健康状况主要根据饲养员的经验,方法耗时且费力,随着规模化猪场发展,需要更客观的智能养猪管理工具以快速判
猪只个体身份与行为识别方法,是利用在计算机视觉及深度学习领域中研究成熟的人的身份、行为检测及识别模型,结合生猪饲养的自身特征加以改进,或直接采用猪只图像及视频数据重新训练,以满足猪只个体身份与行为识别的需
计算机视觉技术最早是根据人类视觉系统、相机、投影及摄影测量法等基本原理,进行计算机视觉图像的处
下面对这些技术在人的个体身份和行为识别方面的一些典型研究工作进行简要介绍。
当前针对个体身份识别的深度学习研究,主要是基于人脸进行人的身份的识别。其基本思路为:首先检测目标,在一张图像里找到可能存在的目标对象,其次通过深度神经网络提取人脸或身体图片中的特征向量,再次根据特征向量间的欧式距离、球面距离等标准,计算特征向量间的相似度,最后根据相似度来判定这2张图片是否属于同一个体。具体如

图1 基于深度学习的个体身份识别方法
Fig.1 Identity recognition methods based on computer vision and deep learning
目标检测是身份及行为特征提取的前提与基础。其目的为获得能够覆盖目标对象的矩形边界框的4点坐标,并采用分类的方式得到目标类别。常用的模型与方法有SS
在检测到人脸的基础上,再通过特征向量提取及比对来进行人脸识别。2014年,Taigman
对于人体姿态的检测通常有自上而下与自下而上2种方法。自上而下的识别方式是首先检测出图片中的每个人体对象,再分别检测个体上的每个关键部位点,如

图2 自上而下的姿态识别方法
Fig.2 Top-to-down position recognition methods

图3 自下而上的姿态识别方法
Fig.3 Bottom-to-up position recognition methods
Cao
行为识别多是通过检测人体在一定时间段内姿态或动作变化的情况来评估人体的行为。行为识别与姿态识别十分类似,但却是2种不同的任
生猪养殖大多以群体方式,准确地识别猪只个体身份是检测猪只行为的前提。传统的猪只识别,主要采用标记、耳缺或射频识别(radio frequency identification,RFID)耳标的方式。采用耳缺的方式,是通过缺口的编码来标识猪只身份,这种方式一方面不利于动物福利,另一方面需要人工读取。采用RFID方式可以利用自动读取设备自动获得身份的ID,但目前没有获得广泛应用。原因是:RFID标签成本较高,安装耗时;同时RFID标签的复用造成了猪只ID全局不唯一的情况;更为关键的是,对于群养猪只,当多个猪只靠近RFID读卡器设备时,难以真正做到猪只个体身份的识别;此外,RFID标签的可分离特征,使猪肉溯源时容易被伪造。因此,采用基于生物特征的图像及视频方式来获取猪只身份,实时高效,不可伪造,且不需要在猪只身上使用额外设备就能够识别猪只身份并检测其行为,是未来猪只身份识别与行为检测的发展趋势。
通过视频来识别猪只身份最简单的方式是在猪只身上做标记,然后通过识别视频中的标记来获取猪只身
利用生物特征对猪只个体身份进行识别,通常分为2个阶段:首先通过猪脸或身体检测模型进行检测,然后用矩形边界框标注出猪脸或目标部位的位置,再通过深度网络提取猪脸或身体的特征向量,最后识别出猪只个体的身份。Hansen
对于猪只行为的识别,已有研究工作主要分为两大类,一类是针对某种具体行为的特定行为识别方法,另一类则是对于猪只多类型行为的通用行为识别方法。
由于采食及饮水行为是判断猪只健康状态的重要指标,有大量学者展开了相关的研究。Yang
此外,对于攻击、趴跨、哺乳等特定行为,学者都开展了相应的智能化方法的研究。如Chen
猪只多类型行为的识别方法具有更好的通用性,可以识别出猪只常见的各类动作与行为,是当前猪只行为识别的一个重要研究方向。
董力中
综上,精准定位到猪只个体的行为才符合未来规模化猪场的养殖需求。在猪场监管中,基于计算机视觉及深度学习的相关模型与算法在目标检测与识别上已取得很好的成果,归纳如下:
(1)猪只个体身份与行为识别,充分借鉴了人的身份识别领域相关的计算机视觉与深度学习的模型与方法。同时,各类新型的卷积神经网络能够快速地在猪只个体身份与行为识别领域得到应用。
(2)在计算机视觉与深度学习模型的基础上,针对猪只的特征进行相应的改进,进一步提升了猪只个体身份与行为识别的准确率。
(3)越来越多的研究表明猪只个体身份识别与行为识别之间存在紧密关系,基于猪只个体身份的行为识别能够准确定位到特定的猪只,为精准化养殖奠定了基础。
(4)通用型的猪只行为识别模型能够识别各种类型的猪只行为,适用于各类场景,已成为当前研究的一个热点问题。
基于计算机视觉与深度学习网络的猪只个体身份与行为识别研究,目前已取得了一定进展,因其独有特征,仍存在一些关键问题需要解决,具体如下:
(1)猪只运动随意,特征部位如面部等图像采集困难,且容易受到环境污染与挤压遮挡。因此,如何在猪只运动不可控及关键特征部位受到污染的情况下,准确提取其身份及行为特征,是影响动物身份准确识别与行为精准检测的关键问题。
(2)当前的猪只个体身份与行为识别方法所采用的人工神经网络模型,大多来自于人的身份及行为识别领域。很少有针对猪只身份及行为特征的基于计算机视觉的原创性深度学习模型的研究。从人转变到动物的领域,通过对于模型的改进或采用迁移学习的算法,能够在一定程度上识别出猪只身份与行为。但是,这些模型并没有对动物本身的习性与特征展开有针对性的设计,因此,针对猪只特征而设计有针对性的原创性深度学习模型意义重大。
(3)对于生猪的智能化养殖,个体身份识别与行为识别往往需要同时进行,而目前的方法大多是分别采用2个或多个深度神经网络,这无疑会带来额外的计算冗余。无论是身份识别还是行为识别,都是从图像或视频中提取生物属性特征,然后进行身份或行为的识别。因此,构建多任务检测网络,融合身份、姿态及行为的检测与识别功能,对于提升算法的性能,降低实际应用中部署的成本具有重要的价值。
(4)通用型的猪只识别模型是未来重要的研究方向之一。首先识别猪只的各类基本姿态及动作,然后根据对这些基本的姿态及动作进行时序关联分析等,进而识别出猪只的行为。通用型的识别模型的建立,可以满足不同场景下猪只行为的识别问题,具有一定的通用性,是未来猪只行为识别的关键。
(5)采用边缘计算进行猪只个体身份与行为的识别是深度模型部署与实现的关键。如何将开发出的猪只个体身份与行为识别模型部署在实际的场景中并能够真正解决应用问题,是将研究成果进行产业转化的关键。目前随着物联网及边缘计算的快速发展,将算法模型部署在边缘端,通过边缘计算的能力来实现深度学习模型的推理是一个主流方向。因此,基于边缘计算的猪只身份与行为识别模型的部署与应用是未来研究的关键,该问题的解决对于提升识别的效率具有重大意义。
解决上述问题,对于猪只身份、姿态与行为识别的准确度的提升,生猪精准养殖的自动化水平的提高,以及畜牧业智能化的发展具有重要的理论与实践意义。
参考文献 References
YANG Q M,XIAO D Q.A review of video-based pig behavior recognition[J/OL].Applied animal behaviour science,2020,233:105146[2022-10-31].https://doi.org/10.1016/j.applanim.2020.105146. [百度学术]
谭辉磊.基于机器视觉的猪个体身份和饮水行为识别方法[D].镇江:江苏大学,2017.TAN H L.Recognition method of identification and drinking behavior for individual pigs based on machine vision[D].Zhenjiang:Jiangsu University,2017 (in Chinese with English abstract). [百度学术]
史怀,陈峥,潘志针.基于机器视觉的猪个体身份和行为识别[J].福建畜牧兽医,2021,43(1):27-30.SHI H,CHEN Z,PAN Z Z.Identification of pig individual identity and behavior based on machine vision[J].Fujian journal of animal husbandry and veterinary medicine,2021,43(1):27-30 (in Chinese with English abstract). [百度学术]
YANG Q M,XIAO D Q,LIN S C.Feeding behavior recognition for group-housed pigs with the Faster R-CNN[J].Computers and electronics in agriculture,2018,155:453-460. [百度学术]
马娜,徐苗.基于卷积神经网络的猪只个体身份识别研究[J].计算机时代,2022(4):51-54.MA N,XU M.Research on pig individual identity based on convolutional neural networks[J].Computer era,2022(4):51-54 (in Chinese with English abstract). [百度学术]
OUYANG W L,ZENG X Y,WANG X G,et al.DeepID-net:object detection with deformable part based convolutional neural networks[J].IEEE transactions on pattern analysis and machine intelligence,2017,39(7):1320-1334. [百度学术]
DIBA A L,SHARMA V,PAZANDEH A,et al.Weakly supervised cascaded convolutional networks[C]//2017 IEEE conference on computer vision and pattern recognition (CVPR),July 21-26,2017,Honolulu,HI,USA.New York: IEEE,2017:5131-5139. [百度学术]
DOULAMIS N,VOULODIMOS A.FAST-MDL:fast adaptive supervised training of multi-layered deep learning models for consistent object tracking and classification[C]//2016 IEEE international conference on imaging systems and techniques (IST),October 4-6,2016,Chania,Greece.New York:IEEE,2016:318-323. [百度学术]
LIN L,WANG K Z,ZUO W M,et al.A deep structured model with radius-margin bound for 3D human activity recognition[J].International journal of computer vision,2016,118(2):256-273. [百度学术]
TOSHEV A,SZEGEDY C.DeepPose:human pose estimation via deep neural networks[C]//2014 IEEE conference on computer vision and pattern recognition,June 23-28,2014,Columbus,OH,USA.New York: IEEE,2014:1653-1660. [百度学术]
NOH H,HONG S,HAN B.Learning deconvolution network for semantic segmentation[C]//2015 IEEE international conference on computer vision(ICCV),December 7-13,2015,Santiago,Chile.New York:IEEE,2016:1520-1528. [百度学术]
VOULODIMOS A,DOULAMIS N,DOULAMIS A,et al.Deep learning for computer vision:a brief review[J/OL].Computational intelligence and neuroscience,2018:7068349[2022-10-31].https://doi.org/10.1155/2018/7068349. [百度学术]
BASTIEN F, LAMBLIN P, PASCANU R, et al. Theano: new features and speed improvements[J]. IEICE transactions on fundamentals of electronics, communications and computer sciences, 2012,1211:5590-5598. [百度学术]
KAKANI V,NGUYEN V H,KUMAR B P,et al.A critical review on computer vision and artificial intelligence in food industry[J/OL].Journal of agriculture and food research,2020,2:100033[2022-10-31].https://doi.org/10.1016/j.jafr.2020.100033. [百度学术]
安小松,宋竹平,梁千月,等.基于CNN-Transformer的视觉缺陷柑橘分选方法[J]. 华中农业大学学报,2022,41(4):158⁃169. AN X S,SONG Z H,LIANG Q Y,et al.A CNN-Transformer-based method for sortingcitrus with visual defects[J].Journal of Huazhong Agricultural University,2022,41(4):158⁃169(in Chinese with English abstract). [百度学术]
HARTLEY R,ZISSERMAN A.Multiple view geometry in computer vision[M].2nd ed.Cambridge,UK:Cambridge University Press,2003. [百度学术]
VEDALDI A,FULKERSON B.Vlfeat:an open and portable library of computer vision algorithms[C]//Proceedings of the 18th ACM international conference on Multimedia.New York:ACM,2010:1469-1472. [百度学术]
顾伟,王巧华,李庆旭,等.基于改进SSD的棉种破损检测[J].华中农业大学学报,2021,40(3):278-285. GU W, WANG Q H, LI Q X,et al.Improved SSD based detection of damaged cottonseed[J].Journal of Huazhong Agricultural University,2022,40(3):278-285(in Chinese with English abstract). [百度学术]
HOWARD A G,ZHU M L,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[DB/OL].arXiv,2020:1704.04861[2022-10-31].https://doi.org/10.48550/arXiv.1704.04861. [百度学术]
REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//2016 IEEE conference on computer vision and pattern recognition (CVPR),June 27-30,2016,Las Vegas,NV,USA.New York:IEEE,2016:779-788. [百度学术]
REDMON J,FARHADI A.YOLOv3:an incremental improvement[DB/OL].arXiv,2018:1804.02767[2022-10-31].https://doi.org/10.48550/arXiv.1804.02767. [百度学术]
BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[DB/OL].arXiv,2020:2004.10934[2022-10-31].https://doi.org/10.48550/arXiv.2004.10934. [百度学术]
ZHANG K P,ZHANG Z P,LI Z F,et al.Joint face detection and alignment using multitask cascaded convolutional networks[J].IEEE signal processing letters,2016,23(10):1499-1503. [百度学术]
GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE conference on computer vision and pattern recognition,June 23-28,2014,Columbus,OH,USA.New York:IEEE,2014:580-587. [百度学术]
GIRSHICK R.Fast R-CNN[C]//2015 IEEE international conference on computer vision (ICCV).December 7-13,2015,Santiago,Chile.New York:IEEE,2016:1440-1448. [百度学术]
REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Trans Pattern Anal Mach Intell,2017,39(6):1137-1149. [百度学术]
HE K M,GKIOXARI G,DOLLÁR P,et al.Mask R-CNN[C]//2017 IEEE international conference on computer vision (ICCV),October 22-29,2017,Venice,Italy. New York:IEEE,2017:2980-2988. [百度学术]
WANG X L,KONG T,SHEN C H,et al.SOLO:segmenting objects by locations[M]//Computer vision -ECCV 2020.Cham:Springer International Publishing,2020:649-665. [百度学术]
TAIGMAN Y,YANG M,RANZATO M,et al.DeepFace:closing the gap to human-level performance in face verification[C]//2014 IEEE conference on computer vision and pattern recognition,June 23-28,2014,Columbus,OH,USA.New York: IEEE,2014:1701-1708. [百度学术]
SCHROFF F,KALENICHENKO D,PHILBIN J.FaceNet:a unified embedding for face recognition and clustering[C]//2015 IEEE conference on computer vision and pattern recognition(CVPR),June 7-12,2015,Boston,MA,USA.New York:IEEE,2015:815-823. [百度学术]
ZHOU E J,CAO Z M,YIN Q.Naive-deep face recognition:touching the limit of LFW benchmark or not?[DB/OL].arXiv,2015:1501.04690[2022-10-31].https://doi.org/10.48550/arXiv.1501.04690. [百度学术]
LIU J T,DENG Y F,BAI T,et al.Targeting ultimate accuracy:face recognition via deep embedding[DB/OL].arXiv,2015:1506.07310[2022-10-31].https://doi.org/10.48550/arXiv.1506.07310. [百度学术]
LIU W Y,WEN Y D,YU Z D,et al.SphereFace:deep hypersphere embedding for face recognition[C]//2017 IEEE conference on computer vision and pattern recognition (CVPR),July 21-26,2017,Honolulu,HI,USA.New York:IEEE,2017:6738-6746. [百度学术]
CAO Z,SIMON T,WEI S H,et al.Realtime multi-person 2D pose estimation using part affinity fields[C]//2017 IEEE conference on computer vision and pattern recognition (CVPR),July 21-26,2017,Honolulu,HI,USA.New York:IEEE,2017:1302-1310. [百度学术]
CAO Z,HIDALGO G,SIMON T,et al.OpenPose:realtime multi-person 2D pose estimation using part affinity fields[J].IEEE transactions on pattern analysis and machine intelligence,2021,43(1):172-186. [百度学术]
CHEN Y L,WANG Z C,PENG Y X,et al.Cascaded pyramid network for multi-person pose estimation[C]//2018 IEEE/CVF conference on computer vision and pattern recognition,June 18-23,2018,Salt Lake City,UT,USA.New York:IEEE,2018:7103-7112. [百度学术]
WEI S H,RAMAKRISHNA V,KANADE T,et al.Convolutional pose machines[C]//2016 IEEE conference on computer vision and pattern recognition (CVPR),June 27-30,2016,Las Vegas,NV,USA.New York:IEEE,2016:4724-4732. [百度学术]
FANG H S,XIE S Q,TAI Y W,et al.RMPE:regional multi-person pose estimation[C]//2017 IEEE international conference on computer vision (ICCV),October 22-29,2017,Venice,Italy.New York:IEEE,2017:2353-2362. [百度学术]
NEWELL A,YANG K Y,DENG J.Stacked hourglass networks for human pose estimation[M]//Computer Vision - ECCV 2016.Cham:Springer International Publishing,2016:483-499. [百度学术]
SUN K,XIAO B,LIU D,et al.Deep high-resolution representation learning for human pose estimation[C]//2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR),June 15-20,2019,Long Beach,CA,USA.New York:IEEE,2020:5686-5696. [百度学术]
LUVIZON D C,PICARD D,TABIA H.2D/3D pose estimation and action recognition using multitask deep learning[C]//2018 IEEE/CVF conference on computer vision and pattern recognition,June 18-23,2018,Salt Lake City,UT,USA.New York:IEEE,2018:5137-5146. [百度学术]
CHU Q,OUYANG W L,LI H S,et al.Online multi-object tracking using CNN-based single object tracker with spatial-temporal attention mechanism[C]//2017 IEEE international conference on computer vision (ICCV),October 22-29,2017,Venice,Italy.New York:IEEE,2017:4846-4855. [百度学术]
SADEGHIAN A,ALAHI A,SAVARESE S.Tracking the untrackable:learning to track multiple cues with long-term dependencies[C]//2017 IEEE international conference on computer vision (ICCV),October 22-29,2017,Venice,Italy.New York:IEEE,2017:300-311. [百度学术]
JAOUEDI N,BOUJNAH N,BOUHLEL M S.A new hybrid deep learning model for human action recognition[J].Journal of King Saud University-computer and information sciences,2020,32(4):447-453. [百度学术]
KASHIHA M,BAHR C,OTT S,et al.Automatic identification of marked pigs in a pen using image pattern recognition[J].Computers and electronics in agriculture,2013,93:111-120. [百度学术]
HANSEN M F,SMITH M L,SMITH L N,et al.Towards on-farm pig face recognition using convolutional neural networks[J].Computers in industry,2018,98:145-152. [百度学术]
WANG J Z,LIU A Z,XIAO J.Video-based pig recognition with feature-integrated transfer learning[M]//PATO J N,MILLETT L I. Biometric recognition.Cham:Springer International Publishing,2018:620-631. [百度学术]
MARSOT M,MEI J Q,SHAN X C,et al.An adaptive pig face recognition approach using convolutional neural networks[J/OL].Computers and electronics in agriculture,2020,173:105386[2022-10-31].https://doi.org/10.1016/j.compag.2020.105386. [百度学术]
SHARIFARA A, RAHIM M, ANISI Y. A general review of human face detection including a study of neural networks and Haar feature-based cascade classifier in face detection[J]. Proceedings-ISBAST, 2014,2015:73-78. [百度学术]
WANG Z Y,LIU T H.Two-stage method based on triplet margin loss for pig face recognition[J/OL].Computers and electronics in agriculture,2022,194:106737[2022-10-31].https://doi.org/10.1016/j.compag.2022.106737. [百度学术]
TAN M X,PANG R M,LE Q V.EfficientDet:scalable and efficient object detection[C]//2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR),June 13-19,2020,Seattle,WA,USA.New York:IEEE,2020:10778-10787. [百度学术]
WANG R,SHI Z F,LI Q F,et al.Pig face recognition model based on a cascaded network[J].Applied engineering in agriculture,2021,37(5):879-890. [百度学术]
LI G B,JIAO J,SHI G L,et al.Fast recognition of pig faces based on improved YOLOv3[J/OL].Journal of physics:conference series,2022,2171(1):012005[2022-10-31].https://doi.org/10.1088/1742-6596/2171/1/012005. [百度学术]
LI S D,KANG X,FENG Y K,et al.Detection method for individual pig based on improved YOLOv4 convolutional neural network[C]//DSIT 2021:2021 4th international conference on data science and information technology,July 23-25,2021,Shanghai,China.New York:ACM,2021:231-235. [百度学术]
何屿彤,李斌,张锋,等.基于改进YOLOv3的猪脸识别[J].中国农业大学学报,2021,26(3):53-62.HE Y T,LI B,ZHANG F,et al.Pig face recognition based on improved YOLOv3[J].Journal of China Agricultural University,2021,26(3):53-62(in Chinese with English abstract). [百度学术]
张建龙,周康,庄晏榕,等.育肥猪生长过程中脸部变化对识别模型准确率的影响[J].中国农业大学学报,2021,26(6):180-186.ZHANG J L,ZHOU K,ZHUANG Y R,et al.Effect of facial changes on the accuracy of the recognition model during the growth of finishing pigs[J].Journal of China Agricultural University,2021,26(6):180-186 (in Chinese with English abstract). [百度学术]
KIM M,CHOI Y,LEE J N,et al.A deep learning-based approach for feeding behavior recognition of weanling pigs[J].Journal of animal science and technology,2021,63(6):1453-1463. [百度学术]
CHEN C,ZHU W X,STEIBEL J,et al.Recognition of feeding behaviour of pigs and determination of feeding time of each pig by a video-based deep learning method[J].Computers and electronics in agriculture,2020,176:105642[2022-10-31].https://doi.org/10.1016/j.compag.2020.105642. [百度学术]
CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//2017 IEEE conference on computer vision and pattern recognition (CVPR),July 21-26,2017,Honolulu,HI,USA.New York:IEEE,2017:1800-1807. [百度学术]
李菊霞,李艳文,牛帆,等.基于YOLOv4的猪只饮食行为检测方法[J].农业机械学报,2021,52(3):251-256.LI J X,LI Y W,NIU F,et al.Pig diet behavior detection method based on YOLOv4[J].Transactions of the CSAM,2021,52(3):251-256 (in Chinese with English abstract). [百度学术]
ZHU W X,GUO Y Z,JIAO P P,et al.Recognition and drinking behaviour analysis of individual pigs based on machine vision[J].Livestock science,2017,205:129-136. [百度学术]
ALAMEER A,KYRIAZAKIS I,BACARDIT J.Automated recognition of postures and drinking behaviour for the detection of compromised health in pigs[J/OL].Scientific reports,2020,10:13665[2022-10-31].https://doi.org/10.1038/s41598-020-70688-6. [百度学术]
CHEN C, ZHU W, GUO Y, et al. A kinetic energy model based on machine vision for recognition of aggressive behaviours among group-housed pigs[J].Livestock science,2018, 218:70-78. [百度学术]
YANG A Q,HUANG H S,ZHU X M,et al.Automatic recognition of sow nursing behaviour using deep learning-based segmentation and spatial and temporal features[J].Biosystems engineering,2018,175:133-145. [百度学术]
李丹,张凯锋,李行健,等.基于Mask R-CNN的猪只爬跨行为识别[J].农业机械学报,2019,50(S1):261-266,275.LI D,ZHANG K F,LI X J,et al.Mounting behavior recognition for pigs based on mask R-CNN[J].Transactions of the CSAM,2019,50(S1):261-266,275 (in Chinese with English abstract). [百度学术]
LI D,CHEN Y F,ZHANG K F,et al.Mounting behaviour recognition for pigs based on deep learning[J/OL].Sensors (Basel,Switzerland),2019,19(22):4924[2022-10-31]. https://doi.org/10.3390/s19224924. [百度学术]
董力中,孟祥宝,潘明,等.基于姿态与时序特征的猪只行为识别方法[J].农业工程学报,2022,38(5):148-157.DONG L Z,MENG X B,PAN M,et al.Recognizing pig behavior on posture and temporal features using computer vision[J].Transactions of the CSAE,2022,38(5):148-157 (in Chinese with English abstract). [百度学术]
涂淑琴,刘晓龙,梁云,等.基于改进DeepSORT的群养生猪行为识别与跟踪方法[J].农业机械学报,2022,53(8):345-352.TU S Q,LIU X L,LIANG Y,et al.Behavior recognition and tracking method of group-housed pigs based on improved DeepSORT algorithm[J].Transactions of the CSAM,2022,53(8):345-352 (in Chinese with English abstract). [百度学术]
高云,陈斌,廖慧敏,等.群养猪侵略性行为的深度学习识别方法[J].农业工程学报,2019,35(23):192-200.GAO Y,CHEN B,LIAO H M,et al.Recognition method for aggressive behavior of group pigs based on deep learning[J].Transactions of the CSAE,2019,35(23):192-200 (in Chinese with English abstract). [百度学术]
李光昌,刘飞飞,李嘉豪.基于改进OpenPose算法的猪只行为识别方法[J].河南农业大学学报,2022,56(3):460-470.LI G C,LIU F F,LI J H.Pig behavior recognition method based on improved OpenPose algorithm[J].Journal of Henan Agricultural University,2022,56(3):460-470 (in Chinese with English abstract). [百度学术]
杨秋妹.基于现场视频的猪只行为识别[D].广州:华南农业大学,2019.YANG Q M.Pig behavior recognition based on live video[D].Guangzhou:South China Agricultural University,2019 (in Chinese with English abstract). [百度学术]