摘要
为提升玉米油乳液的稳定性和应用潜力,采用非可溶性柑橘纤维作为稳定剂构建了玉米油皮克林乳液,并对乳液流变性、形态结构、稳定性等性质进行表征分析。结果显示:随着玉米油皮克林乳液中非可溶性柑橘纤维含量增多,黏度、储能模量和损耗模量呈上升趋势,乳液表现为假塑性非牛顿流体性质;非可溶性柑橘纤维在体系中形成的网络结构导致体系粒径逐渐增大;当非可溶性柑橘纤维含量为0.2%和0.3%时,皮克林乳液的电位绝对值超过30 mV,乳化效果较好;乳液的离心稳定性和冻融稳定性随非可溶性柑橘纤维含量增多逐渐增强,且当乳液中非可溶性柑橘纤维含量大于0.1%时,乳液30 d内均未发生分层现象。结果表明,非可溶性柑橘纤维具有良好的乳化稳定作用,0.2%~0.3%的非可溶性柑橘纤维可以与玉米油乳液混合构建稳定的皮克林乳液。
皮克林乳液是由固体颗粒作为乳化剂稳定油水界面形成的一种乳液体
柑橘纤维是柑橘加工的重要副产物,拥有高表面活性、高持水力、高表观黏度、抗消化和乳化稳定性等特
玉米油中的亚油酸含量丰富,具有预防心脑血管疾病、抗氧化、抗衰老等功效,但玉米油在加工生产过程中存在不易均匀分散、稳定性不好等问题。近年来,稳定玉米油皮克林乳液的研究多采用复合体系,柑橘纤维稳定玉米油皮克林乳液的报道较少,柑橘纤维由于其天然、环保、健康等特性更易被消费者所接受。因此,引入柑橘纤维构建玉米油皮克林乳液可以使其均匀分散到食品中,强化乳液体系的稳定性,提升消费兴趣,拓宽其应用范
AR522CN电子天平,奥豪斯仪器(上海)有限公司;5804R型高速冷冻离心机,德国Eppendorf有限公司;HunterLab UltraScan VIS色差仪,韵鼎(香港)集团有限公司;ZM2000超微粉碎机,德国耐驰仪器制造有限公司;Eclipse E100型光学显微镜,日本Nikon股份有限公司;Mastersizer2000激光颗粒度分析仪,美国马尔文仪器有限公司;NanoZS90纳米粒度电位分析仪,美国马尔文仪器有限公司;DHR2旋转流变仪,美国TA仪器有限公司;XHF-D高速剪切机,宁波新芝生物科技股份有限公司;UH-24高压均质机,上海永联生物科技有限公司。
1)非可溶性柑橘纤维的制备。非可溶性柑橘纤维的制备参照文献[
2)非可溶性柑橘纤维-玉米油皮克林乳液的制备。参考Yu
乳液种类 Emulsion type | 玉米油 Corn oil | 非可溶性柑橘纤维 Insoluble citrus fiber | 水 Water |
---|---|---|---|
ES-1 | 30 | 0.1 | 69.9 |
ES-2 | 30 | 0.2 | 69.8 |
ES-3 | 30 | 0.3 | 69.7 |
ES-4 | 30 | 0.4 | 69.6 |
ES-5 | 30 | 0.5 | 69.5 |
注: 玉米油、非可溶性柑橘纤维和水的含量均为质量分数。下同。Note: The content of corn oil, insoluble citrus fiber and water are all weight percentage. The same as below.
采用旋转流变仪进行黏度测定,剪切速率范围设定为0.1~100
使用色差仪对皮克林乳液颜色进行测定,测量前先用黑板和白板进行校正。取样品于无色玻璃皿,色度值用
参考Yu
(1) |
式中,ni为相同直径的粒子数;di为颗粒大小。
1)热稳定性。分别取皮克林乳液10 mL置于离心管中,分别在4、25、50和80 ℃的温度条件下放置1 h,观察乳液状态。
2)储藏稳定性。分别取皮克林乳液15 mL置于玻璃管中,在4 ℃条件下放置1、15和30 d,观察乳液状态。
3)离心稳定性。分别取皮克林乳液10 mL置于离心管中,在离心机中以3 000 r/min的速度离心5 min,观察乳液状态。
4)冻融稳定性。分别取皮克林乳液10 mL置于离心管中,放置在-20 ℃的冰箱里冷冻24 h后,放置在25 ℃条件下融化4 h,观察乳液状态。
如

图1 不同非可溶性柑橘纤维-玉米油皮克林乳液流变特性曲线
Fig. 1 Rheological characteristics of different insoluble citrus fiber-corn oil Pickering emulsion
A:乳液的黏度随剪切速率变化的曲线;B:储存模量随角频率变化的曲线;C:损耗模量随角频率变化的曲线。A:The curve of the viscosity of the emulsion with shear rate; B:The curve of the modulus of emulsion with angular frequency;C: The curve of loss modulus changing with angular frequency.
由皮克林乳液体系的电位测定结果(

图2 不同非可溶性柑橘纤维-玉米油皮克林乳液的电位
Fig. 2 Zeta-potential of different insoluble citrus fiber-corn oil Pickering emulsion
由
乳液种类 Emulsion type | |||
---|---|---|---|
ES-1 | 80.79±0.16c | -0.46±0.03b | 5.12±0.10a |
ES-2 | 86.37±0.56a | -0.69±0.04d | 4.26±0.16c |
ES-3 | 86.04±0.40a | -0.54±0.01c | 3.89±0.15d |
ES-4 | 84.47±0.08b | -0.40±0.02a | 4.39±0.07c |
ES-5 | 84.94±0.47b | -0.37±0.03a | 4.63±0.14b |
注: 同列中不同字母表示存在显著性差异(P<0.05)。Note: Different letters in the same column in the table indicate significant differences(P<0.05).
由于非水溶性柑橘纤维制备时采用超微粉碎并过粒径38 μm筛,纤维颗粒粒径较小,从皮克林乳液的微观形态图(

图3 不同非可溶性柑橘纤维-玉米油皮克林乳液的乳液微观形态
Fig. 3 Emulsion micromorphology of different insoluble citrus fiber-corn oil Pickering emulsions

图4 不同非可溶性柑橘纤维-玉米油皮克林乳液的粒径分布
Fig. 4 Particle size distribution of different insoluble citrus fiber-corn oil Pickering emulsions

图5 不同温度下皮克林乳液体系的稳定性
Fig. 5 Stability of Pickering emulsion system at different temperature
由

图6 不同储藏时间下皮克林乳液体系的稳定性
Fig. 6 Stability of Pickering emulsion system under different storage times

图7 皮克林乳液体系的离心稳定性(A)和冻融稳定性(B)
Fig. 7 Centrifugal stability(A) and freeze-thaw stability(B) of Pickering emulsion system
非可溶性柑橘纤维可以均匀分散在水相中吸水膨胀形成稳定的网络结构,有利于增强乳液的悬浮稳定性和聚并稳定性。随着体系中非可溶性柑橘纤维含量增多,体系黏度迅速增大,表现出良好的增稠效果。非可溶性柑橘纤维稳定的玉米油皮克林乳液存在明显的剪切变稀现象,表明非可溶性柑橘纤维可以赋予皮克林乳液假塑性非牛顿流体的性质,这主要是由于纤维在剪切的作用下空间结构重排导致的,这与ZHAO
非可溶性柑橘纤维可以吸附在油滴界面,并利用负电荷阻止液滴的聚集,使得乳液体系更加稳定。但这种稳定作用跟其浓度关系密切。结果显示,当非可溶性柑橘纤维含量小于0.2%时,随着非可溶性柑橘纤维含量的增多,乳液中未吸附的粒子增多,则体系电位值降低。当纤维含量大于0.2%时,随着纤维的增多,更多的水结合或吸附在纤维表面,-COOH难以在在水中溶解形成-CO
非水溶性柑橘纤维分子稳定的玉米油乳液在不同环境中都具备良好的稳定性,为其进一步应用提供了便
本研究以非可溶性柑橘纤维为稳定剂构建了玉米油皮克林乳液,结果表明添加0.2%~0.3%非可溶性柑橘纤维的玉米油皮克林乳液具有良好的流变特性和稳定性,具备拓宽玉米油乳液在食品产业中应用的潜力。
参考文献References
JIANG Y,WANG D,LI F,et al.Cinnamon essential oil Pickering emulsion stabilized by zein-pectin composite nanoparticles:characterization,antimicrobial effect and advantages in storage application[J].International journal of biological macromolecules,2020,148:1280-1289. [百度学术]
KIM W,WANG Y,SELOMULYA C.Dairy and plant proteins as natural food emulsifiers[J].Trends in food science & technology,2020,105:261-272. [百度学术]
XUE X,DONG J,HE H,et al.Emulsification and stabilization of diacylglycerol-in-water Pickering emulsions stabilized by ultrafine grinding oat bran insoluble fiber-gelatinized starch hybrid granules[J/OL].Food hydrocolloids,2021,112:106322[2022-11-25].https://doi.org/10.1016/j.foodhyd.2020.106322. [百度学术]
孙哲浩,李巧玲,吕广,等.柑橘纤维研究进展[J].食品工业,2020,41(11):282-286.SUN Z H,LI Q L,LÜ G,et al.Research progress on citrus fiber[J].The food industry,2020,41(11):282-286 (in Chinese with English abstract). [百度学术]
HUANG L,LIU J E,ADDY M,et al.Physicochemical and emulsifying properties of orange fibers stabilized oil-in-water emulsions[J/OL].LWT,2020,133:110054[2022-11-25].https://doi.org/10.1016/j.lwt.2020.110054. [百度学术]
张欢,戴宏杰,陈媛,等.纳米纤维素的制备及其在Pickering乳液中的应用研究进展[J].食品研究与开发,2020,41(15):173-181.ZHANG H,DAI H J,CHEN Y,et al.Research progress in nanocellulose preparation and its application in Pickering emulsions[J].Food research and development,2020,41(15):173-181 (in Chinese with English abstract). [百度学术]
DONG H,DING Q,JIANG Y F,et al. Pickering emulsions stabilized by spherical cellulose nanocrystals[J/OL]. Carbohydrate polymers,2021,265:118101[2022-11-25].https://doi.org/10.1016/j.carbpol.2021.118101. [百度学术]
周敬阳,李术芝,苏倩,等.纳米微晶纤维素-棕榈油的Pickering乳化液的制备及体外消化行为[J].食品工业科技,2019,40(9):18-23.ZHOU J Y,LI S Z,SU Q,et al.Preparation and in vitro digestion of nanocrystalline cellulose-palm oil Pickering emulsion[J].Science and technology of food industry,2019,40(9):18-23(in Chinese with English abstract). [百度学术]
贾迪,吴秀英,陈伟,等.柑橘纤维在长货架期酸乳中的应用[J].食品科技,2018,43(4):247-250.JIA D,WU X Y,CHEN W,et al.Application of citrus fiber in pasteurized yogurt of long shelf life[J].Food science and technology,2018,43(4):247-250 (in Chinese with English abstract). [百度学术]
YU B,TANG Q,FU C,et al. Effects of different particle-sized insoluble dietary fibre from citrus peel on adsorption and activity inhibition of pancreatic lipase[J/OL].Food chemistry,2023,398:133834[2022-11-25].https://doi.org/10.1016/j.foodchem.2022.133834. [百度学术]
YU B,ZENG X,WANG L F,et al.Preparation of nanofibrillated cellulose from grapefruit peel and its application as fat substitute in ice cream[J/OL].Carbohydrate polymers,2021,254:117415[2022-11-25].https://doi.org/10.1016/j.carbpol.2020.117415. [百度学术]
余奔.不同粒径柑橘非水溶性纤维理化特性及其对脂肪体外消化的影响[D].武汉:华中农业大学,2021.YU B. Physicochemical properties of citrus insoluble fibers with different particle sizes and their effects on fat digestion in vitro[D]. Wuhan: Huazhong Agricultural University,2021(in Chinese with English abstract). [百度学术]
MIKULCOVÁ V,BORDES R,KAŠPÁRKOVÁ V.On the preparation and antibacterial activity of emulsions stabilized with nanocellulose particles[J].Food hydrocolloids,2016,61:780-792. [百度学术]
ZHAO Y,CHEN H H,WANG Y S,et al.Effect of sodium alginate and its guluronic acid/mannuronic acid ratio on the physicochemical properties of high-amylose corn starch[J].Starch - stärke,2016,68(11/12):1215-1223. [百度学术]
WINUPRASITH T,SUPHANTHARIKA M.Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind:preparation,characterization,and evaluation as an emulsion stabilizer[J].Food hydrocolloids,2013,32(2):383-394. [百度学术]
AUGUSTO P E D,IBARZ A,CRISTIANINI M.Effect of high pressure homogenization (HPH) on the rheological properties of tomato juice:time-dependent and steady-state shear[J].Journal of food engineering,2012,111(4):570-579. [百度学术]
QI J R,SONG L W,ZENG WEI Q,et al. Citrus fiber for the stabilization of O/W emulsion through combination of Pickering effect and fiber-based network[J/OL].Food chemistry,2021,343:128523[2022-11-25].https://doi.org/10.1016/j.foodchem.2020.128523. [百度学术]
MENESES R B,SILVA M S,MONTEIRO M G,et al.Effect of dairy by-products as milk replacers on quality attributes of ice cream[J].Journal of dairy science,2020,103(11):10022-10035. [百度学术]
RUAN Q,YANG X,ZENG L,et al.Physical and tribological properties of high internal phase emulsions based on citrus fibers and corn peptides[J].Food hydrocolloids,2019,95:53-61. [百度学术]
HARINI K,RAMYA K,SUKUMAR M.Extraction of nano cellulose fibers from the banana peel and bract for production of acetyl and lauroyl cellulose[J].Carbohydrate polymers,2018,201:329-339. [百度学术]
BAI L,GRECA L G,XIANG W C,et al.Adsorption and assembly of cellulosic and lignin colloids at oil/water interfaces[J].Langmuir,2019,35(3):571-588. [百度学术]