摘要
为了研究干湿交替下土壤中铁和锰的淋溶淀积特征,以亚热带的黄棕壤为土柱材料,用pH 3.5的0~0.08 mol/L的FeSO4和MnCl2单一或混合溶液(浓度比分别为4︰1、2︰1和1︰1)淋溶土柱40次(每次间隔7 d),分析淋出液的pH和铁锰含量、土壤中铁锰含量和钙镁含量的变化。结果显示,随着淋溶次数增加,铁锰淋溶处理的土柱淋出液的pH总体降低1.10~2.68,甚至低于淋溶液的pH值;淋出液中的铁含量要低于淋溶液中的,而淋溶7次之后淋出液中的锰含量则相反;淋溶第一阶段(20次)和第二阶段(40次)土壤中铁和锰的全量、铁的游离态和非晶质态的含量有所增加,铁锰浓度高的淋溶液淋溶后土壤中铁锰氧化物含量升高,游离铁含量最高为89.14 mg/g,游离锰含量最高为13.35 mg/g;干湿交替淋溶下铁氧化物比锰氧化物更易形成,铁氧化物含量在上层(5 cm)土壤中较高,锰氧化物含量在下层(25 cm)土壤中较高;淋溶后土壤中钙、镁含量分别降低0.45~4.89、8.68~14.45 g/kg。
铁和锰是土壤中非常重要的金属元素,其化学性质活跃,吸附能力强,能吸附土壤中的重金属及养分元
土壤pH、Eh、空气、水分等因素影响铁和锰的淋溶与淀
本研究以亚热带的黄棕壤为材料,采用土柱淋溶试验,用化学性质活跃的不同浓度F
供试黄棕壤取自湖北孝感市孝昌县季店乡莲花村某荒地,位于北纬31°15′11.9″,东经113°55′33.7″,为第四纪Q3母质发育的淋溶土纲,采样深度为123~221 cm。土壤质地为黏土,容重1.47 g/c
制备长和宽各为10 cm、高为40 cm的透明玻璃柱。柱子三面固定,另外一面可拆卸,便于打开取样。在柱子底部垫上纱网,填入玻璃珠,将块状大小约为2 c
淋溶液为1.5 L的FeSO4(0~0.08 mol/L)和MnCl2(0~0.08 mol/L)混合溶液,浓度比分别为4︰1、2︰1和1︰1(如
处理 Treatments | FeSO4 | MnCl2 |
---|---|---|
CK-1 | 0 | 0 |
CK-2 | 0.04 | 0 |
CK-3 | 0.08 | 0 |
CK-4 | 0 | 0.08 |
A1 | 0.04 | 0.02 |
A2 | 0.04 | 0.04 |
B1 | 0.08 | 0.02 |
B2 | 0.08 | 0.04 |
B3 | 0.08 | 0.08 |
土壤样品中,有机质采用重铬酸钾-外加热法测定;pH值用pH计测定(水土质量比为2.5︰1);土壤机械组成采用沉降法测
根据黄棕壤土柱淋出液pH的变化可以看出(

图1 黄棕壤土柱淋出液的pH变化
Fig.1 pH in leaching liquor of yellow brown columns
1)淋出液中的铁离子含量。由

图2 黄棕壤土柱不同阶段淋出液中铁含量
Fig.2 The content of Fe in leachate of yellow brown soil column at different stages
A~D:分别为淋溶1~10、11~20、21~30和31~40次的选择性取样结果,下图同。A-D: The selective sampling results of 1-10 times, 11-20 times, 21-30 times and 31-40 times of leaching, respectively.The same as below.
当铁、锰浓度比为2︰1时,A1和B2淋出液中铁离子含量分别在0.031~0.038 mol/L和0.071~0.079 mol/L,即B2淋出液中铁离子含量约为A1的2倍左右。当铁、锰浓度比为1︰1时,A2和B3淋出液中铁离子含量分别在0.034~0.039 mol/L和0.073~0.079 mol/L,即B3淋出液中铁离子含量约为A2的2倍。
2)淋出液中的锰离子含量。如

图3 黄棕壤土柱不同阶段淋出液中锰含量
Fig.3 The content of Mn in leachate of yellow brown soil column at different stages
当铁、锰离子浓度比为2︰1时,A1和B2的淋出铁离子含量分别为0.001~0.022和0.023~0.048 mol/L,即B2淋出液中锰离子含量约为A1的2倍。当铁、锰离子浓度比为1︰1时,A2和B3淋出液中锰离子含量分别在0.022~0.046和0.054~0.093 mol/L,即B3淋出液中锰离子含量约为A2的2倍。
1)不同形态的铁。从
处理 Treatments | 层次 Layer | 第一阶段The first stage | 第二阶段The second stage | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
全铁/(mg/g) Total iron | 游离铁/(mg/g) Free iron oxide | 游离度/% Free degree | 非晶质铁/(mg/g) Amorphous iron | 活化度/% Activation grade | 全铁/(mg/g) Total iron | 游离铁/(mg/g) Free iron oxide | 游离度/% Free degree | 非晶质铁/(mg/g) Amorphous iron | 活化度/% Activation grade | |||
CK-1 | U | 68.06g | 53.02g | 77.90 | 0.89g | 1.68 | 100.05f | 47.68f | 47.66 | 0.94h | 1.97 | |
L | 67.17e | 49.24f | 73.31 | 0.82h | 1.67 | 98.51f | 44.68f | 45.35 | 0.58h | 1.30 | ||
CK-2 | U | 79.19f | 76.65a | 96.79 | 27.22b | 35.51 | 151.05a | 89.14a | 59.01 | 58.44a | 65.56 | |
L | 71.68d | 66.55b | 92.84 | 13.33g | 20.03 | 136.30b | 73.09b | 53.62 | 19.74g | 27.01 | ||
CK-3 | U | 91.21a | 74.74b | 78.66 | 30.99a | 41.46 | 153.58a | 84.12b | 54.78 | 65.25a | 77.56 | |
L | 95.02a | 74.65a | 81.84 | 29.23a | 39.16 | 149.54a | 82.05a | 54.43 | 53.16c | 65.31 | ||
CK-4 | U | 64.30h | 46.73h | 72.67 | 0.79g | 1.69 | 98.46f | 40.76g | 41.40 | 0.79h | 1.94 | |
L | 61.53f | 43.44g | 70.60 | 0.95h | 2.19 | 96.63f | 42.32g | 43.80 | 0.97h | 2.29 | ||
A1 | U | 86.32cd | 67.85d | 78.60 | 23.87d | 35.18 | 128.63d | 68.29e | 53.09 | 38.33e | 56.13 | |
L | 73.91cd | 64.98c | 87.92 | 16.63e | 25.59 | 126.60d | 65.50d | 51.74 | 26.46e | 40.40 | ||
A2 | U | 87.87bc | 65.22f | 74.22 | 21.47f | 32.92 | 123.69e | 67.46e | 54.54 | 30.23g | 44.81 | |
L | 75.57c | 62.00d | 82.04 | 15.97f | 25.76 | 119.03e | 63.25e | 53.14 | 21.11f | 33.38 | ||
B1 | U | 84.36de | 65.38f | 77.50 | 25.22c | 38.57 | 139.22b | 76.65c | 55.06 | 50.47c | 65.84 | |
L | 83.24b | 63.48c | 78.51 | 21.65c | 33.13 | 138.59b | 71.74b | 51.76 | 41.54b | 57.90 | ||
B2 | U | 90.60ab | 68.72c | 75.85 | 26.88b | 39.12 | 139.30b | 70.94d | 50.93 | 49.04d | 69.13 | |
L | 76.53c | 64.29c | 84.01 | 22.76b | 35.40 | 137.18b | 68.93c | 50.25 | 35.44c | 51.41 | ||
B3 | U | 82.37ef | 66.28e | 80.47 | 22.79e | 34.38 | 135.09c | 66.28e | 49.06 | 35.56f | 53.65 | |
L | 74.96c | 59.87e | 79.87 | 18.22d | 30.43 | 131.38c | 62.46e | 47.54 | 30.79d | 49.30 |
注Note:U:上层 Upper layer;L:下层Lower layer.不同小写字母表示相同层次不同处理间的显著性差异(P <0.05)。下同。Different small letters indicate the significant difference among different treatments at the same level (P <0.05). The same as below.
与第一阶段结果相比,除CK-1、CK-4外,第二阶段各处理土壤游离铁含量呈增加的趋势,且总体看上层土壤的游离铁含量要高于下层,且整体高于原土。A1和A2的游离铁含量均低于对照CK-2。与CK-3相比,B1、B2和B3呈现相同的规律。而各处理铁的游离度随着淋溶次数的增加而减小,且变化较大,在第一阶段和第二阶段分别在70.6%~96.79%和41.40%~72.47%,降幅较明显。
除CK-1和CK-4外,其他处理土壤中非晶质铁的含量高于黄棕壤未淋溶的原土,第二阶段比第一阶段的非晶质铁含量有明显增加,且上层土壤的非晶质铁含量高于下层的。A1和A2的非晶质铁含量低于对照CK-2,随着锰离子含量的增加整体变化趋势为A1>A2。除 CK-1、CK-4的活化度较低且变化不大外,其他处理第一阶段的活化度在20.03%~41.46%,第二阶段的活化度在27.01%~77.56%,上层土壤的活化度及其增量均高于下层土壤的。当淋溶液中铁离子浓度相同时,随着锰离子浓度的增加,其整体变化规律不一致。如铁离子浓度同为0.04 mol/L的A1,其第一阶段和第二阶段的活化度整体高于A2的。而铁离子浓度同为0.08 mol/L的B1、B2和B3处理,活化度整体变化趋势为B2>B1>B3(除第二阶段的下层外)。
2)不同形态的锰。未淋溶原土中全锰的含量为0.58 mg/g, CK-1、CK-2和CK-3的全锰含量较低(
处理 Treatments | 层次 Layer | 第一阶段The first stage | 第二阶段The second stage | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
全锰/(mg/g) Total manganese | 游离锰/(mg/g) Free manganese | 游离度/% Free degree | 非晶质锰/(mg/g) Amorphous manganese | 活化度/% Activation grade | 全锰/(mg/g) Total manganese | 游离锰/(mg/g) Free manganese | 游离度/% Free degree | 非晶质锰/(mg/g) Amorphous manganese | 活化度/% Activation grade | |||
CK-1 | U | 0.54g | 0.51g | 94.44 | 0.37g | 72.55 | 0.31g | 0.10g | 32.26 | 0.07g | 70.00 | |
L | 0.61g | 0.52g | 85.25 | 0.39g | 75.00 | 0.26g | 0.16g | 61.54 | 0.09g | 56.25 | ||
CK-2 | U | 0.39g | 0.38g | 97.44 | 0.04h | 10.53 | 0.24g | 0.07g | 29.17 | 0.04g | 57.14 | |
L | 0.51gh | 0.49g | 96.08 | 0.04g | 8.16 | 0.21g | 0.08g | 38.10 | 0.01g | 12.50 | ||
CK-3 | U | 0.22h | 0.20h | 90.91 | 0.13h | 65.00 | 0.27g | 0.13g | 48.15 | 0.08g | 61.54 | |
L | 0.29h | 0.25h | 86.21 | 0.12g | 48.00 | 0.23g | 0.09g | 39.13 | 0.08g | 88.89 | ||
CK-4 | U | 13.05a | 12.80a | 98.08 | 12.64a | 98.75 | 13.29a | 12.47a | 93.83 | 11.64a | 93.34 | |
L | 13.55a | 13.35a | 98.52 | 12.18a | 91.24 | 14.06a | 13.10a | 93.17 | 12.18a | 92.98 | ||
A1 | U | 3.06e | 3.03e | 99.02 | 3.01e | 99.34 | 3.21e | 3.19e | 93.77 | 2.76e | 91.69 | |
L | 3.19e | 3.18e | 99.69 | 3.03e | 95.28 | 3.47e | 2.88e | 83.00 | 2.31e | 80.21 | ||
A2 | U | 4.67c | 4.66c | 99.79 | 4.52c | 97.00 | 4.79c | 4.60c | 96.03 | 4.28c | 93.04 | |
L | 5.21c | 5.17c | 99.23 | 4.90c | 94.78 | 5.34c | 4.40c | 82.40 | 4.00c | 90.91 | ||
B1 | U | 2.08f | 2.07f | 99.52 | 2.02f | 97.58 | 2.25f | 2.19f | 97.33 | 2.02f | 92.24 | |
L | 2.09f | 2.08f | 99.52 | 2.05f | 98.56 | 2.47f | 2.14f | 86.64 | 1.72f | 80.37 | ||
B2 | U | 3.82d | 3.80d | 99.48 | 3.75d | 98.68 | 3.96d | 3.67d | 92.68 | 3.34d | 91.01 | |
L | 4.66d | 4.41d | 94.64 | 4.30d | 97.51 | 4.84d | 3.42d | 70.66 | 2.90d | 84.80 | ||
B3 | U | 6.41b | 6.36b | 99.22 | 6.25b | 98.27 | 6.60b | 6.47b | 98.03 | 5.51b | 85.16 | |
L | 7.14b | 6.70b | 93.84 | 6.64b | 99.10 | 7.24b | 6.44b | 88.95 | 5.33b | 82.76 |
由
第二阶段与第一阶段相比,土壤非晶质锰的含量整体有所降低。除对照外大部分在1.72~6.64 mg/g变化,CK-4处理土壤中的非晶质锰含量最高,为11.64~12.64 mg/g。当淋溶液中铁离子浓度相同时,随着锰离子浓度的增加,土壤中非晶质锰的含量逐渐增加。当淋溶液中锰离子浓度相同时,随铁离子浓度增加,土壤非晶质锰含量降低,如锰离子浓度同为0.02 mol/L的B1土壤非晶质锰的含量低于A1的;锰离子浓度同为0.04 mol/L的B2土壤非晶质锰的含量低于A2的。B3土壤非晶质锰含量为5.33~6.64 mg/g,约为CK-4的50%。对淋溶黄棕壤锰的活化度分析可知,A1、A2、B1、B2、B3和CK-4处理的第二阶段活化度都比第一阶段有小幅降低。CK-2处理上、下层土壤的锰活化度大幅提高,CK-3的下层土壤锰活化度由48.00%提升至88.89%。
3)全量钙、镁。未淋溶黄棕壤中全钙含量为5.00 g/kg、全镁含量为18.43 g/kg,淋溶后黄棕壤中全钙、全镁含量(
处理 Treatments | 层次Layer | 全钙Total calcium | 全镁Total magnesium | ||
---|---|---|---|---|---|
第一阶段 The first stage | 第一阶段 The second stage | 第一阶段 The first stage | 第一阶段 The second stage | ||
CK-1 | U | 4.42 | 3.53 | 9.07 | 9.05 |
L | 4.55 | 3.85 | 9.75 | 9.46 | |
CK-2 | U | 2.13 | 0.67 | 4.99 | 4.41 |
L | 2.26 | 1.75 | 4.43 | 3.98 | |
CK-3 | U | 2.05 | 0.89 | 6.40 | 5.98 |
L | 2.16 | 1.26 | 6.40 | 5.94 | |
CK-4 | U | 1.05 | 0.55 | 6.71 | 6.12 |
L | 3.35 | 0.32 | 7.06 | 6.80 | |
A1 | U | 1.32 | 0.57 | 6.21 | 5.57 |
L | 1.72 | 1.51 | 6.87 | 6.35 | |
A2 | U | 1.28 | 0.47 | 7.79 | 6.31 |
L | 1.82 | 0.88 | 6.15 | 6.15 | |
B1 | U | 1.46 | 1.48 | 6.94 | 6.08 |
L | 3.27 | 1.82 | 6.97 | 7.27 | |
B2 | U | 1.13 | 0.96 | 6.77 | 5.61 |
L | 3.72 | 1.50 | 6.93 | 6.13 | |
B3 | U | 1.11 | 0.11 | 6.43 | 6.28 |
L | 3.68 | 2.60 | 7.08 | 6.79 |
对土壤中各种形态铁、锰氧化物进行相关性分析(

图4 2个阶段黄棕壤中不同形态铁、锰氧化物的相关性
Fig.4 Correlation between different forms of iron and manganese oxides in yellow brown soil at two stages
*代表P <0.05; Fetn、Fedn、Feon、Mntn、Mndn、Mnon分别表示第 n=1或2阶段的全铁、游离铁、非晶质铁、全锰、游离锰、非晶质锰。 * stands for P<0.05; Fetn,Fedn,Feon,Mntn,Mndn and Mnon respectively represent the total iron, free iron, amorphous iron, total manganese, free manganese and amorphous manganese in stage n=1 or 2.
由淋出液中铁、锰含量变化发现,黄棕壤淋出液中铁离子的含量低于淋溶液的,锰离子含量则稍高于淋出液的。造成该现象的原因一方面是由于铁离子比锰离子在空气中更容易被氧化,二价铁水解产物在空气中的氧化速度要高于其他离子的速度,羟基可作为铁离子与空气中氧气作用的中介,加快二价铁的氧化速
随着淋溶次数的增加,土壤中全量铁锰、游离铁和非晶质铁的含量是逐渐增加的,游离锰和非晶质锰含量则逐渐减小。土壤中游离铁和非晶质铁含量变化趋势为上层>下层,而游离锰和非晶质锰含量在第一阶段变化趋势为下层>上层,而第二阶段为上层>下层。可能是因为下层黄棕壤长期处于湿润状态,上层则与空气接触使其铁离子易氧化淀积,导致上层的铁氧化物含量较多。锰在第一阶段活化度较高,上层主要以离子态存在,在淋溶过程中迁移到下层,受氧化作用影响,锰氧化物淀积在下层表面;第二阶段可能是因为其活化度降低,随着淋溶次数的增加有较多的锰离子在土壤表面氧
从土柱试验中可以看出,铁和锰淋溶淀积与干湿交替、淋溶次数、铁和锰浓度、铁和锰之间及其与盐基离子的相互作用相关。在自然条件下,土壤中的铁、锰通过运移淀积在土壤结构体的裂隙上,它们主要以弱结晶氧化物的形式淀积胶结在原生矿物表
参考文献References
BARCELLOS D,QUEIROZ H M,FERREIRA A D,et al.Short-term Fe reduction and metal dynamics in estuarine soils impacted by Fe-rich mine tailings[J/OL].Applied geochemistry,2022,136:105134[2022-06-15]. https://doi.org/10.1016/j.apgeochem.2021.105134. [百度学术]
GASPARATOS D.Sequestration of heavy metals from soil with Fe-Mn concretions and nodules[J].Environmental chemistry letters,2013,11(1):1-9. [百度学术]
QUEIROZ H M,FERREIRA T O,BARCELLOS D,et al.From sinks to sources:the role of Fe oxyhydroxide transformations on phosphorus dynamics in estuarine soils[J/OL].Journal of environmental management,2021,278:111575[2022-06-15].https://doi.org/10.1016/j.jenvman.2020.111575. [百度学术]
彭瑾,连霞,李惠平,等.黄土高原南缘S5-1古土壤中胶膜的特征及其环境意义[J].华中农业大学学报,2021,40(1):195-201.PENG J,LIAN X,LI H P,et al. Characteristics and environmental significance of cutan in S5-1 paleosol on southern Chinese Loess Plateau[J].Journal of Huazhong Agricultural University,2021,40(1):195-201(in Chinese with English abstract). [百度学术]
HUANG L,LIU F,WANG M K,et al.Factors influencing the elemental distribution in iron-manganese cutans of three subtropical soils[J].Soil science,2011,176(1):48-56. [百度学术]
ETTLER V,CHREN M,MIHALJEVIČ M,et al.Characterization of Fe-Mn concentric nodules from Luvisol irrigated by mine water in a semi-arid agricultural area[J].Geoderma,2017,299:32-42. [百度学术]
王秋兵,蒋卓东,孙仲秀.中国北方第四纪黄土发育土壤铁锰结核形成环境及空间分布[J].土壤学报,2019,56(2):288-297.WANG Q B,JIANG Z D,SUN Z X.Distribution and formation environment of Fe-Mn nodules in soils derived from quaternary loess in North China[J].Acta pedologica sinica,2019,56(2):288-297 (in Chinese with English abstract). [百度学术]
HUANG L,LIU F,TAN W F,et al.Geochemical characteristics of trace elements in argillans of alfisols in central China[J].Pedosphere,2015,25(3):415-427. [百度学术]
GASPARATOS D,MASSAS I,GODELITSAS A.Fe-Mn concretions and nodules formation in redoximorphic soils and their role on soil phosphorus dynamics:current knowledge and gaps[J/OL].Catena,2019,182:104106[2022-06-15].https://doi.org/10.1016/j.catena.2019.104106. [百度学术]
MASSCHELEYN P H,DELAUNE R D,PATRICK W H J.Methane and nitrous oxide emissions from laboratory measurements of rice soil suspension:effect of soil oxidation-reduction status[J].Chemosphere,1993,26(1/2/3/4):251-260. [百度学术]
SNYDER G H,JONES D B,COALE F J.Occurrence and correction of manganese deficiency in histosol-grown rice[J].Soil Science Society of America journal,1990,54(6):1634-1638. [百度学术]
谢忠雷,郭平,刘鹏,等.茶园土壤锰的形态分布及其影响因素[J].农业环境科学学报,2007,26(2):645-650.XIE Z L,GUO P,LIU P,et al.Fractionation and its affecting factors of manganese in tea garden soils[J].Journal of agro-environment science,2007,26(2):645-650 (in Chinese with English abstract). [百度学术]
许中坚,徐冬梅,刘广深,等.红壤中铝、锰和铁在酸雨作用下的释放特征[J].水土保持学报,2004,18(3):20-23,27.XU Z J,XU D M,LIU G S,et al.Release of Al,Mn and Fe from red soils under influence by simulated acid rain[J].Journal of soil water conservation,2004,18(3):20-23,27 (in Chinese with English abstract). [百度学术]
曾祥峰,王祖伟,于晓曼,等.铁锰氧化物在碱性条件下对镉的吸附特征研究[J].中国地质,2011,38(1):212-217.ZENG X F,WANG Z W,YU X M,et al.The adsorption of cadmium by goethite and manganite under alkaline conditions[J].Geology in China,2011,38(1):212-217 (in Chinese with English abstract). [百度学术]
黄长生,周耘,张胜男,等.长江流域地下水资源特征与开发利用现状[J].中国地质,2021,48(4):979-1000.HUANG C S,ZHOU Y,ZHANG S N,et al.Groundwater resources in the Yangtze River Basin and its current development and utilization[J].Geology in China,2021,48(4):979-1000 (in Chinese with English abstract). [百度学术]
杨松,夏彪,顾沛,等.黄棕壤土柱中铁锰的淋溶淀积及其对P
阳运秀,张斌,夏彪,等.不同淋溶方式下石英砂柱中铁锰的运移淀积特征[J].中国科技论文,2013,8(12):1282-1290.YANG Y X,ZHANG B,XIA B,et al.Characteristics of migration and deposition of iron and manganese in quartz sand columns under different leaching conditions[J].China sciencepaper,2013,8(12):1282-1290 (in Chinese with English abstract). [百度学术]
鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.BAO S D.Soil and agricultural chemistry analysis[M].3rd ed.Beijing:China Agriculture Press,2000(in Chinese). [百度学术]
鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.LU R K.Agricultural chemical analysis method of soil[M].China Agriculture Scientech Press,2000(in Chinese). [百度学术]
樊后保,林德喜.模拟酸雨对福建四种山地土壤的淋溶与风化作用[J].山地学报,2002,20(5):570-577.FAN H B,LIN D X.Leaching and weathering effects of simulated acid rain on four types of mountain soils in Fujian,China[J].Journal of mountain research,2002,20(5):570-577 (in Chinese with English abstract). [百度学术]
廖柏寒,蒋青.酸沉降与我国南方森林土壤的酸化[J].农业环境保护,2002,21(2):110-114.LIAO B H,JIANG Q.Acid deposition and acidification of forest soils in Southern China[J].Agro-environmental protection,2002,21(2):110-114 (in Chinese with English abstract). [百度学术]
王朋顺,刘莉,李忠意,等.电渗析与酸淋洗模拟紫色土酸化的效果比较[J].水土保持学报,2020,34(2):348-353.WANG P S,LIU L,LI Z Y,et al.Effect of electrodialysis and acid leaching on the acidification of purple soil[J].Journal of soil and water conservation,2020,34(2):348-353 (in Chinese with English abstract). [百度学术]
赵秀芬,刘学军,吕世华,等.水肥状况对土壤中铁的移动及水稻吸铁的影响[J].中国农业大学学报,2003,8(5):74-78.ZHAO X F,LIU X J,LÜ S H,et al.Effects of water and fertilization conditions on Fe movement and its uptake by rice[J].Journal of China Agricultural University,2003,8(5):74-78 (in Chinese with English abstract). [百度学术]
SUNG W,MORGAN J J.Oxidative removal of Mn(II) from solution catalysed by the γ-FeOOH (lepidocrocite) surface[J].Geochimica et cosmochimica acta,1981,45(12):2377-2383. [百度学术]
YU X L,WANG Y F,ZHOU G Z,et al.Paleoclimatic fingerprints of ferromanganese nodules in subtropical Chinese soils identified by synchrotron radiation-based microprobes[J/OL].Chemical geology,2020,531:119357[2022-06-15].https://doi. org/10.1016/j.chemgeo.2019.119357. [百度学术]
ŠEGVIĆ B,GIRARDCLOS S,ZANONI G,et al.Origin and paleoenvironmental significance of Fe-Mn nodules in the Holocene perialpine sediments of Geneva Basin,western Switzerland[J].Applied clay science,2018,160:22-39. [百度学术]
季文兵,杨忠芳,尹爱经,等.地质高背景地区土壤中铁锰结核形成机理——以广西桂中地区为例[J].生态学杂志,2021,40(8):2302-2314.JI W B,YANG Z F,YIN A J,et al.Formation mechanisms of iron-manganese nodules in soils from high geological background area of central Guangxi[J].Chinese journal of ecology,2021,40(8):2302-2314 (in Chinese with English abstract). [百度学术]
SUN Z X,JIANG Y Y,WANG Q B,et al.Fe-Mn nodules in a southern Indiana loess with a fragipan and their soil forming significance[J].Geoderma,2018,313:92-111. [百度学术]