摘要
为修复四川某垃圾填埋场周边镉(Cd)和锌(Zn)复合污染土壤,选用生物炭和海泡石2种钝化材料,研究不同复配比例(质量比分别为1∶1、1∶2、2∶1)、施加量(1%、3%)和钝化时间(45、90 d)对污染土壤中Cd和Zn的钝化效果,分析复配钝化剂施加前后对污染土壤中Cd和Zn有效性和形态分布的影响,并通过其稳定性指数(IR值)和移动性指数(MF值)探究土壤Cd和Zn稳定性和移动性的变化。结果显示,土壤中Cd和Zn的钝化效果随钝化培养时间和施加量的增加而显著升高,其中在钝化培养90 d,3%施加量下,生物炭与海泡石复配比例为2∶1时,对土壤中Cd和Zn的钝化效果最好,其钝化率分别为31.1%和23.1%。施加复配钝化剂培养后,土壤中Cd和Zn的弱酸提取态和可还原态占比降低,而可氧化态和残渣态占比上升。与对照相比,复配钝化剂的施加使土壤中Cd和Zn的稳定性增强,移动性减弱;其中在3%施加量下,生物炭与海泡石复配比例为2∶1时土壤中Cd的MF值降低17.5%、IR值升高9.0%,土壤中Zn的MF值降低6.1%、IR值升高18.7%。结果表明,添加3%的生物炭和海泡石混合物(质量比2∶1)对复合污染土壤中Cd和Zn的修复效果最佳。
随着我国乡村振兴战略的实施,村镇人民生活水平不断提高,村镇生活垃圾的产量与日俱增。据统计,我国农村生活垃圾年产量可达3亿
原位钝化修复技术以其效果显著、操作简单、成本较低和绿色环保等特点广泛应用于土壤重金属污染修复领
垃圾填埋场周边环境较为复杂,土壤通常为复合重金属污染,且污染程度较高。采用单一钝化剂修复难以取得理想的效果,而施用不同的钝化材料进行复配可以规避单一材料的缺点,综合多种复配材料的优势,同时兼顾材料的经济效益和环境效
供试土壤采自四川省某废弃垃圾填埋场(北纬31°25′81.75″,东经105°36′48.78″),该垃圾填埋场位于某山坡(坡度53°)上,垃圾堆积年限已有15 a左右,自2003年后废弃使用。
供试土样采用五点取样法采集垃圾填埋场周边0~20 cm表层土壤,自然风干后,去除砾石和植物残体等异物,研磨后分别过孔径2.00、0.85、0.15 mm筛,备用。土壤质地为壤质砂土,pH 8.40,有机质为71.1 g/kg,碱解氮为767.8 mg/kg,速效钾为239.5 mg/kg,速效磷23.6 mg/kg,全镉(Cd)3.2 mg/kg,全铜(Cu)77.1 mg/kg,全铅(Pb)86.8 mg/kg,全锌(Zn)330.0 mg/kg。参照GB 15618-2018《土壤环境质量-农用地土壤污染风险管控标准(试行)》中农用地土壤污染风险筛选值(pH>7.5,Cd 0.6 mg/kg,Zn 300 mg/kg),供试土壤为Cd和Zn复合污染土壤。
试验所用钝化剂为秸秆生物炭(水稻、小麦和玉米等秸秆混合在500 ℃、限氧条件下10 h热解后制备)和海泡石,其分别购自南京智融联合科技有限公司和湖南湘潭海泡石科技有限公司,均过孔径0.15 mm筛,备用。
供试钝化剂的pH、重金属及钾(K)、钠(Na)、钙(Ca)、镁(Mg)的含量如
材料 Material | pH | Cd/(mg/kg) | Pb/(mg/kg) | Cu/(mg/kg) | Zn/(mg/kg) | K/(g/kg) | Na/(g/kg) | Ca/(g/kg) | Mg/(g/kg) |
---|---|---|---|---|---|---|---|---|---|
秸秆生物炭 Straw biochar | 9.21 | - | 7.34 | 21.71 | 144.28 | 36.69 | 3.15 | 17.20 | 5.01 |
海泡石 Sepiolite | 7.86 | 0.2 | 8.17 | 43.94 | 177.11 | 1.02 | 0.55 | 9.35 | 2.85 |
本试验采用秸秆生物炭(B)和海泡石(S),按照其质量比1∶1、1∶2、2∶1进行复配,分别记作复配钝化剂B1S1、B1S2和B2S1。复配钝化剂施加量分别为1%(0.9 g)和3%(2.7 g),以不施加复配钝化剂的供试土壤为对照(CK),共设置7个处理分别记为:CK、1B1S1、3B1S1、1B1S2、3B1S2、1B2S1、3B2S1。每个处理重复3次。
按照各处理水平将复配钝化剂分别施加到过0.85 mm筛的供试土壤(90 g)中,混和均匀后,装入200 mL聚乙烯塑料杯中,在室温下钝化培养,期间以称重法保持70%的土壤田间持水量。分别在培养的第45天和第90天时采集土壤样品,自然风干后,磨细过筛,备用。
秸秆生物炭和海泡石的表面形貌结构使用扫描电子显微镜观察(SEM,JSM-IT500,日本);表面官能团采用傅立叶变换红外光谱仪测定(FT-IR,VERTEX70,德国);比表面积及孔径分布采用比表面积与孔径分析测定仪(ASAP 2460,美国)测定。
土壤pH采用土水比1∶2.5(除CO2去离子水)浸提,pH计(FE-20,雷磁,中国)测定;土壤电导率(EC)采用土水比1∶10(去离子水),电导率仪(DDS-307,雷磁,中国)测定;土壤有机质采用重铬酸钾容量法-外加热法测定;土壤速效磷含量采用钼锑抗比色法测定;土壤速效钾含量采用火焰光度法测定;土壤碱解氮含量采用碱解扩散法测定。土壤重金属全量采用王水-高氯酸消
重金属在土壤中的稳定性常用IR指
MF指
土壤重金属钝化率可以反映钝化修复前后土壤有效态重金属的降低幅度,通过土壤钝化前后其重金属有效态(DTPA提取态)的差值与初始土壤重金属有效态的比值可以表征钝化剂的钝化效果。
由
材料 Material | 比表面积/( Specific surface area | 孔体积/(c Pore volume | 平均孔径/nm Average pore size |
---|---|---|---|
秸秆生物炭 Straw biochar | 16.840 | 0.267 9 | 5.999 |
海泡石 Sepiolite | 6.474 | 0.197 2 | 4.115 |
扫描电镜放大1 000倍,可以清晰看出由秸秆烧制的生物炭呈现层块状、片状和条状等(

图1 秸秆生物炭(A,B)和海泡石(C,D)的扫描电镜照片
Fig. 1 Scanning electron microscopy images of straw biochar (A,B) and sepiolite (C,D )
由生物炭、海泡石及两者复配的XRD图谱(

图2 生物炭、海泡石及复配钝化剂的XRD图谱(A)和傅立叶红外光谱图(B)
Fig. 2 XRD(A) and FTIR spectra(B) of biochar,sepiolite and composite passivator
B:生物炭;S:海泡石;B1S1:生物炭∶海泡石=1∶1(w/w);B1S2:生物炭∶海泡石=1∶2(w/w);B2S1:生物炭∶海泡石=2∶1(w/w)。下同。B: Biochar;S: Sepiolite;B1S1: Biochar ∶sepiolite= 1∶1(w/w);B1S2:Biochar ∶sepiolite =1∶2(w/w);B2S1: Biochar∶sepiolite=2∶1(w/w). The same as below.
由
培养45 d后,与CK相比,复配钝化剂对污染土壤pH(

图3 钝化培养45 d和90 d后土壤pH(A)和电导率(B)
Fig.3 Soil pH(A) and electrical conductivity(B) after 45 d and 90 d of passivation culture
CK:空白对照;1B1S1:添加1% B1S1;3B1S1:添加3% B1S1;1B1S2:添加1% B1S2;3B1S2:添加3% B1S2;1B2S1:添加1% B2S1;3B2S1:添加3% B2S1。不同小写字母表示培养45 d处理之间达到显著差异(P<0.05);不同大写字母代表培养90 d处理之间达到显著差异(P<0.05),下同。CK:The blank control ; 1B1S1:1% application of B1S1; 3B1S1: 3% application of B1S1; 1B1S2: 1% application of B1S2; 3B1S2: 3% application of B1S2; 1B2S1: 1% application of B2S1; 3B2S1: 3% application of B2S1. Different lowercase letters indicate significant differences between treatments at 45 d culture time (P<0.05) ; different capital letters represent significant differences between treatments at 90 d culture time (P<0.05). The same as below.
与CK相比,复配钝化剂施加后土壤电导率(
与CK相比,经过45 d的钝化培养,1B1S1、3B1S1和3B2S1处理显著降低了土壤中有效态Cd(DTPA-Cd)的含量(

图4 钝化培养45 d和90 d后土壤中Cd(A) 和Zn(B)的DTPA浸提态含量
Fig. 4 DTPA extractable contents of Cd(A) and Zn(B) in soil after 45 d and 90 d of passivation culture
综上分析结果,秸秆生物炭与海泡石2∶1复配(B2S1)对污染土壤的钝化效果最好,重金属DTPA有效态含量降幅最大,因此,选取CK、1B2S1和3B2S1处理培养90 d后的土壤用于分析重金属赋存形态。
由

图5 钝化培养90 d后土壤中Cd(A)和Zn(B)各赋存形态占比
Fig. 5 Fractions of Cd (A) and Zn (B) in soils after 90 d of passivation culture
由

图6 钝化培养后土壤中Cd(A)和Zn(B)的稳定性(IR)和移动性(MF)指数
Fig. 6 The stability (IR) and mobility (MF) indexes of Cd(A) and Zn(B) in cultivated soils
土壤中Cd和Zn的IR值变化趋势与MF值的相反,CK中Cd的IR值为0.645 6,Zn的IR值为0.353 6,表明供试土壤中Zn的稳定性弱于Cd;相比CK,1B2S1处理土壤中Cd和Zn的IR值升高,增幅分别为7.4%和30.9%,表明土壤中Cd和Zn的稳定性增加;3B2S1处理土壤中Cd的IR值进一步升高,增幅为9.0%,而土壤中Zn的IR值相比1B2S1处理有所降低。
从
条件因子 Factors | Cd | Zn |
---|---|---|
复配钝化剂施加量(A)The amount of compound passivator applied | * | *** |
钝化剂复配比例(B)Compound ratio of passivator | * | *** |
钝化培养时间(C)Passivation culture time | *** | *** |
A×B | ** | *** |
A×C | ns | ns |
B×C | ns | * |
A×B×C | ns | ns |
注Note:*:P <0.05,**:P<0.01,***:P<0.001,ns:P>0.05.
土壤pH是影响土壤重金属形态分布和土壤钝化效果的重要因素。本研究发现,秸秆生物炭和海泡石表面都含有大量的
大量研究表明,生物炭和海泡石由于其本身理化性质优异(碱性,大量的含氧官能团Si-OH,比表面积大,空隙结构突出等
因此,在本研究中复配钝化剂的钝化机制可以归结以下5个方面:(1)物理吸附,生物炭和海泡石复配后孔隙结构得到改善,可以附着大量的重金属离子;(2)矿物沉淀,复配钝化剂表面大量的矿物组分对重金属的沉淀作用;(3)π电子相互作用,生物炭表面大量的负电荷对重金属离子产生静电吸附;(4)离子交换,复配钝化剂上大量的
除钝化剂本身的理化性质外,复配钝化剂还通过改变土壤中Cd和Zn的赋存形态,从而降低土壤Cd和Zn的移动性和生物有效性。本研究中通过生物炭与海泡石2∶1配施钝化培养90 d,污染土壤中Cd的生物有效形态(弱酸提取态和可还原态)向残渣态转化,其残渣态Cd占比由49.4%提升至58.1%,随着施加量的增大而增大;土壤中Zn在1B2S1处理钝化培养下也有类似的趋势,其Zn的弱酸提取态和可还原态由22.6%和53.4%分别下降到16.0%和44.1%,残渣态Zn由16.2%提升至27.0%(
土壤中Cd和Zn的稳定性(IR)和移动性(MF)与其在土壤中的存在形态有密切关系,可以直观反映重金属在土壤中的形态变
综上,生物炭和海泡石以质量比2∶1复配、3%施加量(3B2S1处理),对污染土壤中Cd和Zn的钝化效果最好,可为村镇简易垃圾填埋场周边Cd和Zn复合污染土壤的治理提供一种有效的修复技术。但是钝化剂施入后对当地生态环境的影响、钝化效果的实效性仍需要进一步探究,以全面评估该技术的适用性。
参考文献References
颜蓓蓓,杨学忠,侯林桐,等.村镇生活垃圾热解处理技术综述[J].中国环境科学,2022,42(8):3755-3769.YAN B B,YANG X Z,HOU L T,et al.A review on pyrolysis of rural household garbage[J].China environmental science,2022,42(8):3755-3769 (in Chinese with English abstract). [百度学术]
王瑜堂,张军,岳波,等.村镇生活垃圾重金属含量及其土地利用中的环境风险分析[J].农业环境科学学报,2017,36(8):1634-1639.WANG Y T,ZHANG J,YUE B,et al.Heavy metal content of the rural solid waste and its land utilization environmental risk analysis[J].Journal of agro-environment science,2017,36(8):1634-1639 (in Chinese with English abstract). [百度学术]
XU Y,LIANG X F,XU Y M,et al. Remediation of heavy metal-polluted agricultural soils using clay minerals:a review[J]. Pedosphere,2017,27(2): 193-204. [百度学术]
刘雪梅,屈凌霄.土壤重金属污染钝化修复技术研究进展[J].应用化工,2022,51(6):1799-1803.LIU X M,QU L X.Research progress of passivation remediation technology for soil heavy metal pollution[J].Applied chemical industry,2022,51(6):1799-1803 (in Chinese with English abstract). [百度学术]
冯敬云,聂新星,刘波,等.镉污染农田原位钝化修复效果及其机理研究进展[J].农业资源与环境学报,2021,38(5):764-777.FENG J Y,NIE X X,LIU B,et al.Efficiency of in situ passivation remediation in cadmium-contaminated farmland soil and its mechanism:a review[J].Journal of agricultural resources and environment,2021,38(5):764-777(in Chinese with English abstract). [百度学术]
YAO Z,LI J,XIE H,et al.Review on remediation technologies of soil contaminated by heavy metals[J].Procedia environmental sciences,2012,16:722-729. [百度学术]
刘桃妹,叶伟,肖亿金,等.椰壳生物炭对多种重金属在广东水稻土中的吸附解吸特性影响[J].生态毒理学报,2021,16(4):342-350.LIU T M,YE W,XIAO Y J,et al.Adsorption and desorption of several heavy metals in paddy soils in Guangdong Province influenced by coconut shell biochar[J].Asian journal of ecotoxicology,2021,16(4):342-350 (in Chinese with English abstract). [百度学术]
曹健华,刘凌沁,黄亚继,等.原料种类和热解温度对生物炭吸附C
王玉婷,王紫玥,刘田田,等.钝化剂对镉污染土壤修复效果及青菜生理效应影响[J].环境化学,2020,39(9):2395-2403.WANG Y T,WANG Z Y,LIU T T,et al.Effects of amendments on remediation of cadmium-contaminated soil and physiological characteristics of pakchoi[J].Environmental chemistry,2020,39(9):2395-2403 (in Chinese with English abstract). [百度学术]
ZHOU R,LIU X C,LUO L,et al.Remediation of Cu,Pb,Zn and Cd-contaminated agricultural soil using a combined red mud and compost amendment[J].International biodeterioration & biodegradation,2017,118:73-81. [百度学术]
丁萍,贺玉龙,何欢,等.复合改良剂FZB对砷镉污染土壤的修复效果[J].环境科学,2021,42(2):917-924.DING P,HE Y L,HE H,et al.Remediation effect of compound modifier FZB on arsenic and cadmium contaminated soil[J].Environmental science,2021,42(2):917-924 (in Chinese with English abstract). [百度学术]
鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.LU R K.Methods of soil agrochemical analysis[M].China Agriculture Scientech Press,2000(in Chinese). [百度学术]
AYDIN F,GUNDUZ B,AYDIN I,et al.Application of modified BCR sequential extraction method for the fractionation and ICP-OES determination of copper in asphaltite combustion waste[J].Atomic spectroscopy,2013,34(4):140-145. [百度学术]
GUSIATIN Z M,KLIMIUK E.Metal (Cu,Cd and Zn) removal and stabilization during multiple soil washing by saponin[J].Chemosphere,2012,86(4):383-391. [百度学术]
MA L Q,RAO G N.Chemical fractionation of cadmium,copper,nickel,and zinc in contaminated soils[J].Journal of environmental quality,1997,26(1):259-264. [百度学术]
YIN X L,XU Y M,HUANG R,et al.Remediation mechanisms for Cd-contaminated soil using natural sepiolite at the field scale[J].Environmental science and processes impacts,2017,19(12):1563-1570. [百度学术]
崔红标,吴求刚,张雪,等.粉煤灰对污染土壤中铜镉的稳定化[J].土壤,2016,48(5):971-977.CUI H B,WU Q G,ZHANG X,et al.Immobilization of Cu and Cd in contaminated soil by coal fly ash[J].Soils,2016,48(5):971-977 (in Chinese with English abstract). [百度学术]
ZHANG D,DING A F.Effects of passivating agents on the availability of Cd and Pb and microbial community function in a contaminated acidic soil[J].Bulletin of environmental contamination and toxicology,2019,103(1):98-105. [百度学术]
陶玲,马奔,李中兴,等.污泥-凹凸棒石共热解生物炭对矿区重金属污染土壤的钝化修复效果研究[J].农业环境科学学报,2022,41(6):1251-1260.TAO L,MA B,LI Z X,et al.Stabilization remediation of soil polluted by heavy metals using biochar prepared by co-pyrolysis with sludge and attapulgite[J].Journal of agro-environment science,2022,41(6):1251-1260(in Chinese with English abstract). [百度学术]
裴楠,梁学峰,秦旭,等. 海泡石对镉污染稻田钝化修复效果的稳定性[J].农业环境科学学报,2022,41(2):277-284.PEI N,LIANG X F,QIN X,et al. Remediation and persistent stability effects of sepiolite on cadmium-contaminated paddy soil[J]. Journal of agro-environment science,2022,41(2): 277-284(in Chinese with English abstract). [百度学术]
辜娇峰,周航,贾润语,等.三元土壤调理剂对田间水稻镉砷累积转运的影响[J].环境科学,2018,39(4):1910-1917.GU J F,ZHOU H,JIA R Y,et al.Effects of a tribasic amendment on cadmium and arsenic accumulation and translocation in rice in a field experiment[J].Environmental science,2018,39(4):1910-1917 (in Chinese with English abstract). [百度学术]
BASTA N T,MCGOWEN S L.Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil[J].Environmental pollution,2004,127(1):73-82. [百度学术]
LIANG X F,HAN J,XU Y M,et al.in situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite[J].Geoderma,2014,235/236:9-18. [百度学术]
谢超然,王兆炜,朱俊民,等.核桃青皮生物炭对重金属铅、铜的吸附特性研究[J].环境科学学报,2016,36(4):1190-1198.XIE C R,WANG Z W,ZHU J M,et al.Adsorption of lead and copper from aqueous solutions on biochar produced from walnut green husk[J].Acta scientiae circumstantiae,2016,36(4):1190-1198 (in Chinese with English abstract). [百度学术]
UDOM B E,MBAGWU J S C,ADESODUN J K,et al.Distributions of zinc,copper,cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge[J].Environment international,2004,30(4):467-470. [百度学术]
HUSSAIN LAHORI A,ZHANG Z Q,GUO Z Y,et al.Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils[J].Ecotoxicology and environmental safety,2017,145:313-323. [百度学术]