摘要
根系分泌物是作物与土壤交流的主要媒介,对于土壤养分活化、作物养分吸收、作物生长等均有重要作用。为探究根系分泌物与作物、土壤和微生物之间的关系,利用不同的根系分泌物来实现种间促进、提高自然资源利用率和农业生产力,本文归纳总结了根系分泌物的分类、功能及对土壤养分(氮、磷、钾和铁)的活化、作物养分吸收和作物生长的影响,讨论了有关作物应对养分胁迫的不同机制,并提出研究展望:一是加强根系分泌物的鉴定手段,实现根系分泌物组分的原位无损伤鉴定和分析;二是运用多学科交叉知识进一步揭示根系分泌物所介导的作物养分高效利用的根土界面生物互作过程;三是加强验证根系分泌物影响植物应对生物和非生物胁迫的目标基因和微生物的功能定位研究,利用基因工程手段达到有效改善植物健康的目的;四是推进研究成果向科技应用转化的进程,利用仿生学原理将有益的根系分泌物应用到实际生产中。
根系分泌物是指在作物生长过程中,根系向外界环境分泌的各种无机离子和有机化合物,根据种类的不同可以分为糖、氨基酸、有机酸、脂肪酸和生长因子等几类。根系分泌物是决定作物与土壤环境相互作用的重要因素,是作物与土壤交流的主要媒介,在作物生长发育中也起着关键作用。
近年来,随着新兴技术和方法的出现,根系分泌物的研究得以丰富和发展,多数学者围绕作物-土壤-微生物的根际互作过程与调控机制进行了大量研究,表明根系分泌物具有多种重要功能,例如改变土壤结
根系分泌物介导的作物-土壤-微生物间的相互作用是当前植物营养学科的研究热点之一,尤其是根系分泌物所影响的土壤养分有效性,以及作物吸收、转运和利用养分更是重要研究内容。近年来有不少关于根系分泌物对土壤养分活化和作物养分吸收的研究,但由于技术手段的限制,多数关于根系分泌物的认识往往集中于宏观层面上的初步分析,缺乏机制层面的深入讨论,同时也缺少对根系分泌物介导作物养分高效利用研究系统的梳理总结。因此,本文围绕根系分泌物对养分的影响来进行综述,归纳总结了根系分泌物的分类及功能、对土壤养分活化、作物养分吸收和作物生长的影响,讨论了有关作物应对养分胁迫的不同机制,并提出研究展望,以期为养分资源高效利用领域的研究和根系分泌物的应用提供参考。
根系分泌物种类繁多且成分较为复杂,大体上可以分为三大类:一类为大分子有机物,如酶、糖、氨基酸等;第二类为小分子酸、酚、酮等物质;第三类为甾醇类、生长因子、核苷酸等。目前鉴定出的各种根系分泌物见
种类 Type | 有机化合物 Organic compounds | 参考文献 References |
---|---|---|
酶类 Enzymes | 转化酶、淀粉酶、蛋白酶、磷酸酯酶、硝酸还原酶、脲酶、硫酸酶、木聚糖酶、吲哚乙酸氧化酶 Invertase, amylase, protease, phosphatase, nitrate reductase, urease, sulfatase, xylanase, indoleacetic acid oxidase |
[ |
糖类Carbohydrates | 阿拉伯糖、果糖、麦芽糖、半乳糖、核糖、木糖、葡萄糖、鼠李糖、蔗糖、岩藻糖、乙酰葡萄糖胺、己糖、戊糖 Arabinose, fructose, maltose, galactose, ribose, xylose, glucose, rhamnose, sucrose, fucose, acetylglucosamine, hexose, pentose |
[ |
氨基酸类 Amino acids | 谷氨酸、苏氨酸、丙氨酸、异亮氨酸、胱氨酸、天冬氨酸、天冬酰胺、丝氨酸、脯氨酸、精氨酸、甲硫氨酸、半胱氨酸、色氨酸、亮氨酸、甘氨酸、γ-氨基丁酸、阿凡酸、麦根酸 Glutamic acid, threonine, alanine, isoleucine, cystine, aspartic acid, asparagine, serine, proline, arginine, methionine, cysteine, tryptophan, leucine, glycine,γ- aminobutyric acid, avanic acid, ergic acid |
[ |
有机酸Organic acids | 柠檬酸、苹果酸、丙酸、丁酸、反丁烯二酸、羟基乙酸、乳酸、顺丁烯二酸、戊二酸、乙酸、己二酸、琥珀酸、乌头酸、马来酸、2-羟基丙酸、丁二酸 Citric acid, malic acid, propionic acid, butyric acid, fumaric acid, hydroxyacetic acid, lactic acid, maleic acid, glutaric acid, acetic acid, adipic acid, succinic acid, aconitic acid, maleic acid, 2-hydroxypropionic acid, succinic acid |
[ |
脂肪酸Fatty acids | 亚油酸、硬脂酸、棕榈酸、亚麻酸、花生酸、十八烯酸、软脂酸、豆蔻酸 Linoleic acid, stearic acid, palmitic acid, linolenic acid, arachidic acid, octadecenoic acid, palmitic acid, myristic acid |
[ |
酚酸类 Phenolic acids | 邻羟基香豆酸、对羟基香豆酸、4-羟基苯乙酸、杏仁酸、阿魏酸、对羟基苯甲酸、丁香酸、原儿茶酸、水杨酸、3,4-二羟基甲酸、咖啡酸、肉桂酸、香豆素、4-羟基-3-甲氧基苯甲酸、肉桂酸、藜芦酸 o-Hydroxycoumaric acid, p-hydroxycoumaric acid, 4-hydroxyphenylacetic acid, almond acid, ferulic acid, p-hydroxybenzoic acid, eugenoic acid, protocatechuic acid, salicylic acid, 3,4-dihydroxyformic acid, caffeic acid, cinnamic acid, coumarin, 4-hydroxy-3-methoxybenzoic acid, cinnamic acid, veramarin acid |
[ |
黄酮类Flavonoids | 芹黄、槲皮素、伞形酮、异黄酮、山奈酚、木犀草素、芹菜素 Celery yellow, quercetin, umbelline, isoflavone, kaempferol, luteolin, apigenin |
[ |
甾醇类Sterols | 豆甾醇、油菜甾醇、谷甾醇、胆甾醇、1,9-癸二醇、2-十四醇 Stigmasterol, brassinol, sitosterol, cholesterol, 1,9-decanediol, 2-tetradecanol |
[ |
生长因子 Growth factor | 对氨基苯甲酸、生长激素、胆碱、肌醇、烟酸、泛酸 p-Aminobenzoic acid, growth hormone, choline, inositol, nicotinic acid, pantothenic acid |
[ |
核苷酸Nucleotide | 腺嘌呤、鸟嘌呤、尿嘧啶 Adenine, guanine, uracil |
[ |
低分子质量根系分泌物(如碳水化合物、有机酸和氨基酸)能够为土壤氮转化提供碳源,参与土壤有机质的分解并增强根际土壤氮素的利用率,称为根际激发效应。早期的研究表明,来自根际激发效应的有效氮含量占非根际土壤总有效氮的6%~100

图1 根系分泌物对土壤氮矿化的影响(改自Sun
Fig.1 Effects of root exudates on soil nitrogen mineralization(modified from the reference [
此外,根系分泌物还可以通过调节土壤环境促进土壤氮的矿化,例如具有强黏结力的多糖可以通过改善土壤微团聚体的稳定性及大小分布来影响土壤氮矿
磷在植物生长发育中是必不可少的,尽管许多土壤含有大量的磷,但磷的移动性差,易被吸附固定,难以被植物吸收利用。此时,根系分泌物调节土壤磷养分的有效性就尤为重要,作物在磷缺乏时会产生相应的机制来应对,主要包括分泌质子、有机酸、磷酸酶、酚类物质以及调控根际促生菌如PGPR等(

图2 根系分泌物对土壤磷活化及作物磷吸收的影响(改自Chai
Fig.2 Effects of root exudates on soil phosphorus activation and crop phosphorus uptake modified from the reference [
酸性磷酸酶和碱性磷酸酶是根系分泌物中普遍存在的酶,能够水解有机磷酸盐(Po)以释放无机磷(Pi)。不同作物间分泌酸性磷酸酶的数量差异很大,以往研究表明番茄和白羽扇豆分泌酸性磷酸酶数量较多,高于禾本科作物(如小麦、玉米和水稻等
作物生长所吸收利用的钾主要来自含钾矿物的风化,石灰性土壤的钾储量丰富,但多数易被固定为无效态钾,影响作物对土壤钾素的吸收利用。在土壤钾素缺乏条件下,根系分泌的低分子质量有机酸(如柠檬酸、苹果酸等)能够活化土壤中的部分矿物钾和非交换性钾,使之成为植物可利用的
铁在土壤中含量丰富,但常以不溶的氧化物和氢氧化物形式存在,难以被作物直接吸收利用,作物有2种策略来调节体内铁的营养状况。策略Ⅰ是双子叶植物和非禾本科单子叶植物通过外排质子以及通过质膜结合的铁螯合物还原酶将Fe(Ⅲ)还原为Fe(Ⅱ),同时根系响应酸化环境释放还原物质(例如酚类),策略Ⅰ的效率主要取决于铁螯合物还原酶的活性,根际中的高浓度HCO

图3 根系分泌物对土壤铁活化及植物铁吸收的影响(改自Chai
Fig.3 Effects of root exudates on soil iron activation and plant iron absorption(modified from the reference [
策略Ⅱ是在缺铁诱导禾本科单子叶植物释放植物铁载体(phytosiderophore, PS)。植物铁载体的分泌是由TOM1转运蛋白所介导,植物铁载体通过螯合Fe(Ⅲ)形成稳定的无机Fe(Ⅲ)化合物,所得Fe(Ⅲ)-植物铁载体化合物通过YS/YSL转运蛋白转运到根中,供植物吸收利用,策略Ⅱ的效率取决于螯合物的稳定性,高底物pH值会减少禾本科植物铁载体的释
不同种类作物的根系分泌物对不同作物养分吸收的影响不同,主要表现在两个方面:根系分泌物促进或抑制作物对土壤养分的吸收(
根系分泌物种类 Root exudates type | 有机化合物 Organic compounds | 供体作物 Donor plant | 受体作物 Recipient plant | 作用 Effect | 养分Nutrient | 参考文献 Reference |
---|---|---|---|---|---|---|
有机酸类Organic acids | 柠檬酸 Citric acid | 木豆、白羽扇豆 Pigeon bean, white feather fan bean | 小麦 Wheat | 促进 Promote 50.0% | P |
[ |
苹果酸、柠檬酸 Malic acid, citric acid | 蚕豆 Broad bean | 玉米 Corn | 促进 Promote | P |
[ | |
苹果酸、柠檬酸 Malic acid, citric acid | 大豆 Soybean | 玉米 Corn | 促进 Promote(35.0%~75.0%) | P |
[ | |
苹果酸 Malic acid | 烤烟 Flue-cured tobacco | 烤烟 Flue-cured tobacco | 促进 Promote | P |
[ | |
草酸、柠檬酸Oxalic acid, citric acid | 黑麦豆 Rye bean | 黑麦豆 Rye bean | 促进 Promote | Zn |
[ | |
2-羟基丙酸、丁二酸2-Hydroxypropionic acid, succinic acid | 烤烟Flue-cured tobacco | 烤烟 Flue-cured tobacco | 抑制 Inhibit | N,P,K |
[ | |
甾醇类 Sterols |
1,9-癸二醇 1,9-Decanediol | 水稻 Rice | 水稻 Rice | 促进 Promote |
NH |
[ |
氨基酸类 Amino acids | 麦根酸类铁载体Malonic acid iron carrier | 小麦、燕麦、大麦Wheat, oats, barley | 花生 Peanut | 促进 Promote | Zn,Fe |
[ |
脱氧麦根酸 Deoxymarginic acid | 玉米 Corn | 花生 Peanut | 促进 Promote | Fe |
[ | |
谷氨酸、精氨酸 Glutamic acid, arginine | 甜菜 Beet | 甜菜 Beet | 促进 Promote | N |
[ | |
生长因子 Growth factor | 乙烯 Ethylene | 木薯 Cassava | 花生 Peanut | 促进 Promote | N,P |
[ |
糖类 Carbohydrates | 葡萄糖 Glucose | 甜菜 Beet | 甜菜 Beet | 促进 Promote |
NH |
[ |
酚酸类 Phenolic acids | 香豆素 Coumarin | 红三叶草 Red clover | 红三叶草 Red clover | 促进 Promote | Fe |
[ |
N-苯基-2-萘胺、邻苯二甲酸 N-phenyl-2-naphthylamine, Phthalic acid | 辣椒 Pepper | 生菜 Romaine lettuce | 抑制 Inhibit(22.3%~51.0%) | N |
[ | |
抑制Inhibit(20.1%~38.1%) | P | |||||
促进 Promote(4.9%~11.1%) | K | |||||
促进 Promote(15.5%~38.6%) | Ca | |||||
对羟基苯甲酸p-Hydroxybenzoic acid | 花生 Peanut | 花生 Peanut | 抑制 Inhibit | N,P,K |
[ | |
脂肪酸类 Fatty acids | 棕酮酸 Palmyruvic acid | 马铃薯 Potato | 马铃薯 Potato | 抑制 Inhibit | N,P,K |
[ |
黄酮类 Flavonoids |
大豆异黄酮 Soybean isoflavone | 蚕豆 Broad bean | 小麦 Wheat | 促进 Promote | N |
[ |
基于根系分泌物对土壤氮、磷、钾、铁等元素的活化作用,被活化出的养分可供作物吸收利用。有机酸在豆科作物吸收磷养分中发挥着重要作用,木豆、白羽扇豆、蚕豆和大豆通过分泌不同类型的有机酸促进自身或相邻作物对土壤磷的吸
根系分泌的酸类物质(有机酸、酚酸、脂肪酸等)含量过多时,会在土壤中积累,降低土壤养分的有效性,从而抑制作物的养分吸收(
根系分泌物可以作为化学信号或解毒物质来提高作物抗逆性和抗病性以及减轻金属毒害等间接地调控作物生长,或作为化感物质直接地对受体作物生长产生影响,包括异种和同种作物间的化感作用。
在作物多样性种植体系中,根系分泌物对作物生长发育起到重要的调控作用。在间作体系中,与花生连作相比,玉米花生间作具有明显的增产增收优势;蚕豆、玉米间作体系的产量较单作产量更高。桃树的连作障碍能够通过合理的种间搭配来缓解,在其行间种植豌豆和小葱等可以起到缓解桃树自毒的作用,还能够提高果树对养分的吸收利用,促进其生长。根系分泌物介导的植物-微生物互作关系也影响着植物的生长发育,对于提高植物抗逆性和抗病性起着重要作用。例如,受到病菌侵染的拟南芥可通过分泌苹果酸和水杨酸来调控根际微生物群落组成,促进枯草芽孢杆菌FB17在根际定殖,增强自身的抗病能
在酸性土壤中,作物易受到铝毒害,而有机酸能够与A
1)自毒作用。在连作体系中,一些忌连作植物的连作障碍与根系分泌物密切相关,如黄瓜、大豆、烟草等。目前,许多学者提出发生连作障碍的植物根系分泌物中都存在酚酸类化感物质(主要是阿魏酸、对羟基苯甲酸、肉桂酸和香草醛等
2)异毒作用。野燕麦根系分泌物中含有对羟基苯甲酸、香草酸、香豆素等酚酸类物质,对春小麦胚根和胚芽的生长有明显的抑制作用。胡桃树的根系分泌物中含有化感物质萘醌和胡桃醌,能够抑制相邻植物的生
综上所述,近年来根系分泌物研究取得了长足的进展,基本明确了不同种类的根系分泌物对土壤养分的作用不同,根系分泌物通过活化土壤养分,促进作物对土壤养分的吸收,对于提高贫瘠土壤的农业生产力具有重要意义。同时,根系分泌物通过直接和间接作用来影响自身或相邻作物的生长发育,根据这一特性来进行种植体系中的作物种类选择很有必要,对于减缓作物的自毒作用、减少病害和提高产量尤为关键。目前根系分泌物及其化感作用已成为作物-土壤-微生物互作的研究热点,相关研究结果对于改良土壤和维持作物健康具有重要作用。但还存在很多值得关注的问题,现提出以下几点展望:
1)充分利用高科技手段精确鉴定根系分泌物及其功能。由于根际过程的复杂性和研究技术手段的限制,目前很多根系分泌物无法准确鉴定,根系分泌物的分泌不仅取决于土壤条件和植物生长状况,采样条件的差异也会影响根系分泌物的渗出。若收集到根系损伤情况下的根系渗出液,将会和实际分泌结果有很大的差异,导致难以区分根系分泌物复杂体系中物质的精确种类和数量。未来需要加强根系分泌物的鉴定手段研究,研发高效的分子探针技术,优化利用代谢组学来实现根系分泌物组分的原位无损伤鉴定和分
2)进一步加强根系分泌物对土壤养分活化和作物养分吸收的机制研究。根系分泌物对养分的影响是复杂的综合作用,根系分泌物对土壤环境(养分、酶、微生物等)产生作用,土壤环境又会影响植物根系的生长发育,进而影响根系分泌物的释放和养分吸收,在这些过程中根系分泌物、土壤微生物、土壤养分和根系状态相互关联。这些复杂的相互作用过程共同改善了植物养分状况,植物往往有多种机制来应对养分胁迫,例如在低磷胁迫下植物会分泌有机酸和磷酸酶等,在铁胁迫下,禾本科作物和非禾本科作物有着不同的缓解铁胁迫机制,但这些机制之间是如何协调、相互作用并不明确。尽管大量研究已证明了根系分泌物能够促进植物获取养分,但这其中具体复杂的相互作用生理生化过程并不明确。因此,需要利用学科交叉知识及研究来系统地揭示植物养分高效利用的根土界面生物互作过程机制,尤其需要重点关注根系分泌物作为信号物质所参与的养分周转与利用过程和各种生物互作过程。
3)加强验证根系分泌物影响植物应对生物和非生物胁迫的目标基因和微生物的功能定位研究。大量研究表明根系分泌物能够保护植物免受有害物质(如重金属和化感物质)、病原菌的侵害,但不同种类植物在受到胁迫时所分泌的根系分泌物的数量和组成有所不同,转运蛋白和有益微生物的功能多样性所诱导植物产生的抗病和抗逆能力也存在差异。所以,使用基因工程增强植物合成某些根系分泌物或表达转运蛋白的能力具有挑战性,若能明确不同类型根系分泌物应对胁迫的潜在机制以及所匹配的植物品种或基因型,则有利于基因工程对物种进行改良,能够有效改善植物健康,提高农业生产力。
4)加快科技研究成果转化进程。不同的植物及环境条件可以诱导根系分泌物的产生,在阐明诱导根系分泌物种类和含量的条件及机制基础上,就有望根据需求去配置植物类型和环境条件,定向诱导根系分泌物的产生去活化土壤中的必需营养元素(如土壤中大量存在而有效性较低的磷、钾、铁等),解决植物的隐性养分缺乏问题。此外,在明确土壤养分活化的根系分泌物种类及剂量的基础上,就有可能利用仿生学原理将有益根系分泌物应用到实际生产中去,例如开发相应的化合物创制新型肥料增效剂或植物生长调节剂类产品,以达到充分利用土壤养分减少化肥投入和提高植物产量的目的。
参考文献References
MOREL J L,HABIB L,PLANTUREUX S,et al.Influence of maize root mucilage on soil aggregate stability[J].Plant and soil,1991,136(1):111-119. [百度学术]
CHEN J,SHAFI M,WANG Y,et al.Organic acid compounds in root exudation of Moso Bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals[J].Environmental science and pollution research,2016,23(20):20977-20984. [百度学术]
LIU Y,EVANS S E,FRIESEN M L,et al.Root exudates shift how N mineralization and N fixation contribute to the plant-available N supply in low fertility soils[J/OL].Soil biology and biochemistry,2022,165:108541[2022-12-06].https://doi.org/10.1016/j.soilbio.2021.108541. [百度学术]
YUAN Y S,ZHAO W Q,ZHANG Z L,et al.lmpacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots [J].Soil biology and biochemistry,2018,121:16-23. [百度学术]
LO PRESTI E,BADAGLIACCA G,ROMEO M,et al.Does legume root exudation facilitate itself P uptake in intercropped wheat?[J].Journal of soil science and plant nutrition,2021,21(4):3269-3283. [百度学术]
WEN Z H,LI H B,SHEN J B,et al.Trade-offs among root morphology,exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species[J].New phytologist,2019,223:882-895. [百度学术]
ADNANE B,NOYCE G L,CARLSSON G,et al.Species interactions enhance root allocation,microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency[J].Applied soil ecology,2017,120:179-188. [百度学术]
胡露,陈奇,李云霞,等.柠檬酸对纳米氧化铁诱导水稻根表铁膜形成及对水稻铁吸收转运的影响[J].农业环境科学学报,2017,36(11):2185-2191.HU L,CHEN Q,LI Y X,et al.The effect of citric acid on iron plaque formation on root surface and iron uptake/translocation in rice after Fe2O: NPs exposure[J].Journal of agro-environment science,2017,36(11):2185-2191(in Chinese with English abstract). [百度学术]
潘恒艳,崔晶晶,韩卓君,等.甜菜根系对根际土壤化学性质的影响[J].中国糖料,2022,44(2):37-43.PAN H Y,CUI J J,HAN Z J,et al.Effect of sugar beet root system on the chemical properties of rhizosphere soil[J].Sugar crops of China,2022,44(2):37-43(in Chinese with English abstract). [百度学术]
ZHOU T,DU Y L,AHMED S,et al.Genotypic differences in phosphorus efficiency and the performance of physiological characteristics in response to low phosphorus stress of soybean in southwest of China[J/OL].Frontiers in plant science,2016,7:1776[2022-12-06].https://doi.org/10.3389/fpls.2016.01776. [百度学术]
LI B,LI Y Y,WU H M,et al.Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J].PNAS,2016,113(23):6496-6501. [百度学术]
MOMMER L,KIRKEGAARD J,VAN RUIJVEN J.Root-root interactions:towards a rhizosphere framework[J].Trends in plant science,2016,21(3):209-217. [百度学术]
LAKSHMANAN V,SELVARAJ G,BAIS H P.Functional soil microbiome:belowground solutions to an aboveground problem[J].Plant physiology,2014,166(2):689-700. [百度学术]
吕丰娟,张志华,汪瑞清,等.不同生育期芝麻根系分泌物对连作障碍的响应及其自毒作用[J].中国油料作物学报,2021,43(6):1087-1098.LÜ F J,ZHANG Z H,WANG R Q,et al.Response of sesame root exudates at different growing stages to continuous cropping and its autotoxicity[J].Chinese journal of oil crop sciences,2021,43(6):1087-1098 (in Chinese with English abstract). [百度学术]
BAKKER P A H M,DOORNBOS R F,ZAMIOUDIS C,et al.Induced systemic resistance and the rhizosphere microbiome[J].The plant pathology journal,2013,29(2):136-143. [百度学术]
LI L L,ZHAO H H,KONG C H.(-)-Loliolide,the most ubiquitous lactone,is involved in barnyardgrass-induced rice allelopathy[J].Journal of experimental botany,2020,71(4):1540-1550. [百度学术]
宋日,刘利,马丽艳,等.作物根系分泌物对土壤团聚体大小及其稳定性的影响[J].南京农业大学学报,2009,32(3):93-97.SONG R,LIU L,MA L Y,et al.Effect of crop root exudates on the size and stability of soil aggregate[J].Journal of Nanjing Agricultural University,2009,32(3):93-97 (in Chinese with English abstract). [百度学术]
SAO EMANI C,GALLANT J L,WIID I J,et al.The role of low molecular weight thiols in Mycobacterium tuberculosis[J].Tuberculosis (Edinburgh,Scotland),2019,116:44-55. [百度学术]
COSKUN D,BRITTO D T,SHI W M,et al.How plant root exudates shape the nitrogen cycle[J].Trends in plant science,2017,22(8):661-673. [百度学术]
李晶,阮维斌,陈永智,等.天然脂肪酸类物质对温室连作黄瓜和番茄幼苗生长的影响[J].农业环境科学学报,2008,27(3):1022-1028.LI J,RUAN W B,CHEN Y Z,et al.Effects of natural fatty acids on the growth of cucumber(Cucumis sativus L.) and tomato(Lcopersicum esculentum Mill.) seedlings in the continuously mono-cropped soil in greenhouse[J].Journal of agro-environment science,2008,27(3):1022-1028 (in Chinese with English abstract). [百度学术]
徐国伟,李帅,赵永芳,等.秸秆还田与施氮对水稻根系分泌物及氮素利用的影响研究[J].草业学报,2014,23(2):140-146.XU G W,LI S,ZHAO Y F,et al.Effects of straw returning and nitrogen fertilizer application on root secretion and nitrogen utilization of rice[J].Acta prataculturae sinica,2014,23(2):140-146 (in Chinese with English abstract). [百度学术]
HUGHES M,DONNELLY C,CROZIER A,et al.Effects of the exposure of roots of Alnus glutinosa to light on flavonoids and nodulation[J].Canadian journal of botany,1999,77(9):1311-1315. [百度学术]
MOSCATIELLO R,SQUARTINI A,MARIANI P,et al.Flavonoid-induced calcium signalling in Rhizobium leguminosarum bv.viciae[J].The new phytologist,2010,188(3):814-823. [百度学术]
SUN L,LU Y F,YU F W,et al.Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency[J].The new phytologist,2016,212(3):646-656. [百度学术]
刘欣宇,霍姗姗,陈歆,等.植物根系分泌物的组成及分析方法研究进展[J].中国热带农业,2015(3):100-106,99.LIU X Y,HUO S S,CHEN X,et al.Research progress on composition and analysis methods of plant root exudates[J].China tropical agriculture,2015(3):100-106,99 (in Chinese with English abstract). [百度学术]
CHEN Y,BONKOWSKI M,SHEN Y,et al.Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants[J/OL].Microbiome,2020,8(1):4[2022-12-06].https://doi.org/10.1186/s40168-019-0775-6. [百度学术]
FRANK D A,GROFFMAN P M.Plant rhizospheric N processes:what we don't know and why we should care[J].Ecology,2009,90(6):1512-1519. [百度学术]
MORRIS K A,STARK J M,BUGBEE B,et al.The invasive annual cheatgrass releases more nitrogen than crested wheatgrass through root exudation and senescence[J].Oecologia,2016,181(4):971-983. [百度学术]
MEIER I C, FINZI A C,PHILLIPS R P.Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools[J].Soil biology and biochemistry,2017,106:119-128. [百度学术]
AVERILL C.Divergence in plant and microbial allocation strategies explains continental patterns in microbial allocation and biogeochemical fluxes[J].Ecology letters,2014,17(10):1202-1210. [百度学术]
YIN H, WHEELER E, PHILLIPS R P .Root-induced changes in nutrient cycling in forests depend on exudation rates[J].Soil biology and biochemistry,2014,78:213-221. [百度学术]
DE GRAAFF M A,CLASSEN A T,CASTRO H F,et al.Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates[J].The new phytologist,2010,188(4):1055-1064. [百度学术]
CHENG Y ,WANG J,MARY B,et al.Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta,Canada[J].Soil biology and biochemistry,2013,57:848-857. [百度学术]
SUN L,ATAKA M,KOMINAMI Y,et al.A constant microbial C/N ratio mediates the microbial nitrogen mineralization induced by root exudation among four co-existing canopy species[J/OL].Rhizosphere,2021,17:100317[2022-12-06].https://doi.org/10.1016/j.rhisph.2021.100317. [百度学术]
CARVALHAIS L C,DENNIS P G,FEDOSEYENKO D,et al.Root exudation of sugars,amino acids,and organic acids by maize as affected by nitrogen,phosphorus,potassium,and iron deficiency[J].Journal of plant nutrition and soil science,2011,174(1):3-11. [百度学术]
NURUZZAMAN M,LAMBERS H,BOLLAND M D A,et al.Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes[J].Plant and soil,2006,281(1):109-120. [百度学术]
ASLAM M M,PUEYO J J,PANG J Y,et al.Root acid phosphatases and rhizobacteria synergistically enhance white lupin and rice phosphorus acquisition[J].Plant physiology,2022,190(4):2449-2465. [百度学术]
WANG Y,LUO D,XIONG Z,et al.Changes in rhizosphere phosphorus fractions and phosphate-mineralizing microbial populations in acid soil as influenced by organic acid exudation[J/OL].Soil and tillage research,2023,225:105543[2022-12-06].https://doi.org/10.1016/j.still.2022.105543. [百度学术]
RAHMAN M K U,WANG X X,GAO D M,et al.Root exudates increase phosphorus availability in the tomato/potato onion intercropping system[J].Plant and soil,2021,464(1):45-62. [百度学术]
CHAI Y N,SCHACHTMAN D P.Root exudates impact plant performance under abiotic stress[J].Trends in plant science,2022,27(1):80-91. [百度学术]
何冰,薛刚,张小全,等.有机酸对土壤钾素活化过程的化学分析[J].土壤,2015,47(1):74-79.HE B,XUE G,ZHANG X Q,et al.Analysis on chemical mechanism of potassium release process from soil as influenced by organic acids[J].Soils,2015,47(1):74-79 (in Chinese with English abstract). [百度学术]
王东升,王君.低分子量有机酸作用下土壤矿物钾释放机制[J].辽宁工程技术大学学报(自然科学版),2009,28(S2):259-261.WANG D S,WANG J.Mechanism of soil mineral potassium release extracted by low-molecular-weight organic acids[J].Journal of Liaoning Technical University (natural science),2009,28(S2):259-261 (in Chinese with English abstract). [百度学术]
王瑾,李小坤,鲁剑巍,等.不同酸提取条件下几种含钾矿物中钾释放动力学研究[J].中国农业科学,2012,45(22):4643-4650.WANG J,LI X K,LU J W,et al.Study on potassium release kinetics of several K-bearing minerals by sequential extraction of different acid solution[J].Scientia agricultura sinica,2012,45(22):4643-4650 (in Chinese with English abstract). [百度学术]
朱丹丹,王瑾,丛日环,等.低分子量有机酸对含钾矿物钾素释放及其动力学模型的影响[J].生态学杂志,2017,36(10):2910-2916.ZHU D D,WANG J,CONG R H,et al.Effects of low-molecular-weight organic acids on potassium release from different K-bearing minerals using kinetic models[J].Chinese journal of ecology,2017,36(10):2910-2916 (in Chinese with English abstract). [百度学术]
MARSCHNER H,RÖMHELD V.Strategies of plants for acquisition of iron[J].Plant and soil,1994,165(2):261-274. [百度学术]
HSIEH E J,WATERS B M.Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue:implications for iron deficiency chlorosis[J].Journal of experimental botany,2016,67(19):5671-5685. [百度学术]
AE N,ARIHARA J,OKADA K,et al.Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent[J].Science,1990,248(4954):477-480. [百度学术]
CU S T T,HUTSON J,SCHULLER K A.Mixed culture of wheat (Triticum aestivum L.) with white lupin (Lupinus albus L.) improves the growth and phosphorus nutrition of the wheat[J].Plant and soil,2005,272(1):143-151. [百度学术]
LI L,LI S M,SUN J H,et al.Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J].PNAS,2007,104(27):11192-11196. [百度学术]
ZHANG D S,ZHANG C C,TANG X Y,et al.Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize[J].The new phytologist,2016,209(2):823-831. [百度学术]
农玉琴,陆金梅,骆妍妃,等.不同磷水平下玉米-大豆间作对根系有机酸分泌特征及磷吸收的影响[J].中国土壤与肥料,2022(7):41-48.NONG Y Q,LU J M,LUO Y F,et al.Effects of maize and soybean intercropping on root exudation of organic acids and phosphorus uptake under different phosphorus rates[J].Soil and fertilizer sciences in China,2022(7):41-48 (in Chinese with English abstract). [百度学术]
刘英超,肖靖秀,汤利,等.施氮量对间作小麦蚕豆根系分泌大豆异黄酮的影响[J].中国生态农业学报,2018,26(6):799-806.LIU Y C,XIAO J X,TANG L,et al.Effect of nitrogen application rate on root soy isoflavone exudate of wheat/faba bean intercropping system[J].Chinese journal of eco-agriculture,2018,26(6):799-806 (in Chinese with English abstract). [百度学术]
JIN C W,HE Y F,TANG C X,et al.Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.)[J].Plant,cell & environment,2006,29(5):888-897. [百度学术]
肖如武,黄楚龙,宗钊辉,等.低磷胁迫对烤烟根系有机酸含量及土壤磷酸酶活性的影响[J].广东农业科学,2021,48(8):74-82.XIAO R W,HUANG C L,ZONG Z H,et al.Effects of low phosphorus stress on root organic acid content and soil phosphatase activity of flue-cured tobacco[J].Guangdong agricultural sciences,2021,48(8):74-82(in Chinese with English abstract). [百度学术]
李欣雨,刘函亦,薛少琪,等.几种绿肥的根系分泌物对土壤锌的活化效应[J].中国土壤与肥料,2022(1):81-89.LI X Y,LIU H Y,XUE S Q,et al.Zinc mobilization effect by root exudates of different green manure[J].Soil and fertilizer sciences in China,2022(1):81-89 (in Chinese with English abstract). [百度学术]
李廷轩,马国瑞,张锡洲,等.籽粒苋不同富钾基因型根系分泌物中有机酸和氨基酸的变化特点[J].植物营养与肥料学报,2005,11(5):647-653.LI T X,MA G R,ZHANG X Z,et al.Change characteristics of organic acid and amino acid in root exudates in different grain amaranth genotypes[J].Plant nutrition and fertilizing science,2005,11(5):647-653(in Chinese with English abstract). [百度学术]
郭伟,孙海燕,王炎.N-苯基-2-萘胺和邻苯二甲酸对生菜抗氧化系统及矿质养分吸收的影响[J].植物生理学报,2017,53(1):71-78.GUO W,SUN H Y,WANG Y.Effect of N-phenyl-2-naphthylamine and phthalic acid on antioxidant system and mineral nutrient uptake of lettuce[J].Plant physiology journal,2017,53(1):71-78 (in Chinese with English abstract). [百度学术]
李庆凯,刘苹,赵海军,等.玉米根系分泌物缓解连作花生土壤酚酸类物质的化感抑制作用[J].中国油料作物学报,2019,41(6):921-931.LI Q K,LIU P,ZHAO H J,et al.Maize root exudates alleviated allelopathic inhibttion of phenolic acids in soil of continuous cropping peanut[J].Chinese journal of oil crop sciences,2019,41(6):921-931 (in Chinese with English abstract). [百度学术]
谭雪莲,郭天文,马明生,等.马铃薯根系分泌物组分对不同种植模式的响应[J].干旱地区农业研究,2018,36(4):80-87.TAN X L,GUO T W,MA M S,et al.Response of potato root exudate components to different planting patterns[J].Agricultural research in the arid areas,2018,36(4):80-87 (in Chinese with English abstract). [百度学术]
LEBEIS S L,PAREDES S H,LUNDBERG D S,et al.Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa[J].Science,2015,349(6250):860-864. [百度学术]
JOUSSET A,ROCHAT L,LANOUE A,et al.Plants respond to pathogen infection by enhancing the antifungal gene expression of root-associated bacteria[J].Molecular plant-microbe interactions:MPMI,2011,24(3):352-358. [百度学术]
STRINGLIS I A,YU K,FEUSSNER K,et al.MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health[J].PNAS,2018,115(22):E5213-E5222. [百度学术]
LIGABA A,KATSUHARA M,RYAN P R,et al.The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells[J].Plant physiology,2006,142(3):1294-1303. [百度学术]
LIANG C Y,PIÑEROS M A,TIAN J,et al.Low pH,aluminum,and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils[J].Plant physiology,2013,161(3):1347-1361. [百度学术]
YOKOSHO K,YAMAJI N,FUJII-KASHINO M,et al.Retrotransposon-mediated aluminum tolerance through enhanced expression of the citrate transporter OsFRDL4[J].Plant physiology,2016,172(4):2327-2336. [百度学术]
HUANG L F,SONG L X,XIA X J,et al.Plant-soil feedbacks and soil sickness:from mechanisms to application in agriculture[J].Journal of chemical ecology,2013,39(2):232-242. [百度学术]
VAN DE VOORDE T F J,RUIJTEN M,VAN DER PUTTEN W H,et al.Can the negative plant-soil feedback of Jacobaea vulgaris be explained by autotoxicity?[J].Basic and applied ecology,2012,13(6):533-541. [百度学术]
BERTIN C,YANG X H,WESTON L A.The role of root exudates and allelochemicals in the rhizosphere[J].Plant and soil,2003,256(1):67-83. [百度学术]
LUNDBERG D S,TEIXEIRA P J P L.Root-exuded coumarin shapes the root microbiome[J].PNAS,2018,115(22):5629-5631. [百度学术]