摘要
为探究FIP-fve基因在金针菇本体的生物学功能,构建了pCAMBIA1301-pGPD-FIP-fve超表达载体并将其转化至农杆菌LBA4404中,采用农杆菌介导的金针菇转化法,最终获得了FIP-fve基因超表达的金针菇;进行FIP-ve基因沉默(RNAi: FIP-fve)、FIP-fve超表达(pGPD: FIP-fve)和野生金针菇(CK)菌丝体培养和子实体栽培,并记录菌丝体和子实体时期的生物学性状。结果显示:pGPD: FIP-fve金针菇菌丝生长速度最快,CK金针菇次之,而RNAi: FIP-fve金针菇生长速度最为缓慢;子实体出菇栽培后,在子实体数量、菌柄长度、子实体产量和生物学效率方面,pGPD: FIP-fve金针菇都明显优于CK金针菇,而RNAi: FIP-fve金针菇的子实体生长状况最差。研究结果表明,FIP-fve基因能够促进金针菇菌丝体的生长,并对金针菇原基形成具有促进作用,最终影响金针菇的产量。
金针菇(Flammulina filiformis)是伞菌纲(Agaricomycetes)、伞菌目(Agaricales)、白蘑科(Tricholomataceae)、金针菇属(Flammulina)真菌,富含各种必需氨基酸、维生素、矿物质、纤维、不饱和脂肪酸和蛋白质等多种营养成
真菌免疫调节蛋白(fungal immunomodulatory protein,FIP)是从食用和药用蘑菇中发现的一类结构与免疫球蛋白重链可变区相似的小分子蛋白,例如灵芝中的FIP-lz8、小孢子灵芝中的FIP-gmi、草菇中的FIP-vvo等。随着生物技术的发展,可通过同源克隆、基因组挖掘、蛋白质纯化和定向进化的手段从不同食用菌中发现FIP。由于结构和序列上相似,FIP构成了一个独特的蛋白质家
FIP-fve基因沉默的金针菇菌丝体、pCAMBIA1301载体为笔者所在实验室保存,农杆菌LBA4404感受态细胞、大肠杆菌TOP10感受态细胞、质粒小提试剂盒、胶回收试剂盒、植物基因组DNA提取试剂盒、pGM-T试剂盒均购自天根生化科技有限公司。
氨苄青霉素、利福平、卡那霉素、X-Gal、IPTG、乙酰丁香酮、头孢霉素和PMSF购自天根生化科技有限公司;潮霉素B购自北京索莱宝科技有限公司;限制性内切酶和T4连接酶购自大连TaKaRa公司。
LB培养基、YPG培养基;共培养基:蛋白胨10 g/L、葡萄糖20 g/L、KH2PO4 0.6 g/L、MgSO4 0.5 g/L、盐酸噻胺5~10 mg/L,固体培养基添加琼脂粉15 g/L,于110 ℃灭菌30 min;PDA加富培养基:去皮马铃薯250 g/L、葡萄糖20 g/L、KH2PO4 3 g/L、MgSO4 11.5 g/L、盐酸噻胺20~30 mg/L,固体培养基添加琼脂粉15 g/L,纱布过滤,于110 ℃灭菌30 min。
根据已知基因序列,通过Primier 5.0设计引物(
引物名称 Primer name | 序列 Sequence(5´-3´) |
---|---|
FIP-fve-F | AGGATCCATGTCCGCCACGTCGCTCAC |
FIP-fve-R | TGAAGCTTTTACTTCTTCCACTCAGCGATG |
pGPD-F | TGAATTCCTAGACTCTTGGCTGGTACTGGG |
pGPD-R | GAGCTCGATTGTAGATGAGGAGATGG |
HYG-F | ATGAAAAAGCCTGAACTCACCGCGAC |
HYG-R | CTATTTCTTTGCCCTCGGACGAG |
提取野生型金针菇(白色金针菇,沈农金001)子实体基因组,用FIP-fve上下游引物扩增FIP-fve基因。反应程序:94 ℃预变性3 min,94 ℃变性30 s,60 ℃退火30 s,72 ℃延伸30 s,30个循环;72 ℃延伸10 min。用金针菇内源启动子pGPD基因的上下游引物扩增pGPD基因,反应程序:94 ℃预变性3 min,94 ℃变性30 s,60 ℃退火30 s,72 ℃延伸30 s,30个循环;72 ℃延伸10 min。PCR产物进行琼脂糖凝胶电泳检测。
将FIP-fve基因和启动子pGPD基因分别与T载体连接,测序。载体pGM-T-pGPD和pCAMBIA1301分别用EcoR Ⅰ和SaC Ⅰ进行双酶切,回收、连接、转化。用BamHⅠ和HindⅢ分别对重组载体pCAMBIA1301-pGPD和pGM-T-FIP-fve进行双酶切,回收、连接、转化获得pCAMBIA1301-pGPD-FIP-fve。 进行琼脂糖凝胶电泳检测。将重组载体转入农杆菌LBA4404,菌落PCR检测潮霉素基因,提取阳性转化子质粒回转大肠杆菌TOP10验证。
参照文献[
取传代培养后金针菇转化子0.2 g用植物DNA提取试剂盒提取基因组,进行潮霉素基因PCR检测,反应程序:94 ℃预变性3 min,94 ℃变性30 s,56 ℃退火30 s,72 ℃延伸30 s,30个循环;72 ℃延伸10 min。PCR产物进行琼脂糖凝胶电泳检测。统计阳性转化子数,计算农杆菌LBA4404介导转化金针菇的转化效率。根据已知基因序列,通过Primier 5.0设计qPCR引物,上海生工公司合成(
引物名称 Primer name | 序列 Sequence(5´-3´) |
---|---|
Gap-RBP2-F | GAATGGCGTTTGGATGGG |
Gap-RBP2-R | TGTCACGGACGACGGATA |
Gap-β-tub-F | CGATACCGTCGTTGAGCC |
Gap-β-tub-R | TGAGCGTCCTGAAGCAAA |
Fve-18s Rrna-F | TGATGTGTTGTTCGGCAC |
Fve-18s Rrna-R | AGTTATGTCTGGACCTGG |
FIP-fve基因的编码序列长为342 bp,无内含子,编码113个氨基酸残基的蛋白质(GenBank登录号ADB24832.1),具有典型的FIP家族蛋白质的保守序列,包括DYT、YID、VYV等(

图1 担子菌门不同真菌的FIP序列比对
Fig.1 FIP sequence alignment of different fungi in Basidiomycetes
3KCW_A、UOF75531.1、P14945.2、AAX98241.1、AJD79556.1、KAI1793471.1、AEP68179.1、AKU37620.1、RPD64156.1、KAF8641977.1、FIP-fve和KAI0063119.1分别来自小孢子灵芝、薄树芝、赤灵芝、紫灵芝、黑灵芝、白肉灵芝、树舌灵芝、血红铆钉菇、虎皮香菇、草菇、金针菇和杯珊瑚菌。相同的氨基酸残基用黑色阴影标记,而相似的氨基酸残基用灰色阴影标记。 3KCW_A,UOF75531.1,P14945.2,AAX98241.1,AJD79556.1,KAI1793471.1,AEP68179.1,AKU37620.1,RPD64156.1,KAF8641977.1,FIP-fve,KAI0063119.1 are from Ganoderma microsporum,G. capense,G. lucidum,G. japonicum,G. atrum,G. leucocontextum,G. applanatum,Chroogomphidius rutilus,Lentinus tigrinus, Volvariella volvacea,F. velutipes and Artomyces pyxidatus,respectively. The same amino acid residues are marked with black shadow, while similar amino acid residues are marked with gray shadow.

图2 FIP的系统发育进化树
Fig.2 The phylogenic tree of FIP
将克隆的内源启动子pGPD基因和FIP-fve基因分别连接到pGM-T载体上,测序证明正确后,将重组载体pGM-T-pGPD和pCAMBIA1301载体同时用EcoRⅠ和SaCⅠ进行双酶切,回收目的片段,连接,转化,对长出的菌落进行菌落PCR鉴定和摇菌、抽提质粒后用EcoRⅠ和SaCⅠ双酶切检测。酶切结果显示,与已知克隆片段大小一致,成功获得pCAMBIA1301-pGPD载体(

图3 表达载体的酶切检测
Fig.3 Restriction analysis of expression vector
A:表达载体pCAMBIA1301-pGPD鉴定(M:DL2000 DNA marker;1:表达载体pCAMBIA1301-pGPD酶切检测); B:表达载体pCAMBIA1301-pGPD-FIP-fve鉴定(M:DL2000 DNA marker; 1:表达载体pCAMBIA1301-pGPD-FIP-fve)。A: Expression vector pCAMBIA1301-pGPD identification map(M:DL2000 DNA marker;1:Restriction analysis of expression vector pCAMBIA1301-pGPD);B:Expression vector pCAMBIA1301-pGPD-FIP-fve identification map(M:DL2000 DNA marker; 1: Restriction analysis of expression vector pCAMBIA1301-pGPD-FIP-fve.

图4 表达载体pCAMBIA1303-pGPD-FIP-fve 构建
Fig. 4 pCAMBIA 1303-pGPD-FIP-fve vector construction
分别将重组载体pCAMBIA1301-pGPD-FIP-fve转入农杆菌LBA4404,对长出的菌落用潮霉素基因进行菌落PCR鉴定,筛选出阳性转化子。摇菌抽提质粒回转大肠杆菌,提取质粒酶切验证。将农杆菌阳性转化子摇菌保存,用于介导金针菇菌丝体。
使用农杆菌LBA4404侵染的金针菇菌丝体在含有12 µg/mL潮霉素固体YPG培养基筛选出拟转化子,提取拟转化子基因组DNA,进行PCR反应,检测潮霉素基因(

图5 金针菇转化子潮霉素基因PCR检测结果
Fig.5 PCR results of hygromycin gene transformed from Flammulina filiformis
M:DL2000 DNA marker; 1:阳性对照;2:阴性对照;3~15:转pCAMBIA1303-pGPD-FIP-fve的金针菇拟转化子 。M: DL2000 DNA marker;1: Positive control; 2: Negative control; 3-15: Transformation of Flammulina filiformis with pCAMBIA1303-pGPD-FIP-fve.

图6 野生菌株、过表达菌株和沉默菌株中的FIP-fve的转录水平
Fig.6 Transcription levels of FIP-fve in the wild,overexpressing and silent strains
误差线表示来自3个独立样本的标准偏差, 与野生型样品的显著性统计结果(*** P<0.000 5;** P<0.005;* P<0.05)。Error lines indicate standard deviations from three independent samples, statistically significant compared to wild-type samples(***P<0.000 5;** P <0.005;* P<0.05).
1)金针菇菌丝体。金针菇菌丝体接种于YPG培养基,于25 ℃培养8 d ,观察发现金针菇菌丝体生长速度存在明显差异(

图7 FIP-fve正向调控金针菇的生长发育
Fig.7 FIP-fve positively regulates the growth and development of Flammulina velutipes
A:金针菇在YPG培养基生长第1、4、8天的形态; B:金针菇菌棒生长30 d的形态; C:金针菇培养40 d后的子实体情况。CK:野生型菌株;pGPD:FIP-fve:过表达菌株;RNAi: FIP-fve沉默菌株。A:The morphology of Flammulina filiformis in YPG medium on the 1st, 4th and 8th day; B:The morphology of Flammulina filiformis rod growing for 30 days; C: The morphology of fruiting bodies after forty days.CK:Wild-type strain;pGPD:FIP-fve:FIP-fve overexpression strain;RNAi: FIP-fve: FIP-fve silent strains.

图8 FIP-fve过表达和沉默对菌丝体生长的影响
Fig.8 Effect of FIP-fve overexpression and silent on mycelium growth
试验有5次独立重复,不同小写字母表示处理间有显著差异。The experiment was repeated five times independently.Lowercase letters indicate significant differences between treatments(P<0.05,Duncan’s multiple range test).
2)金针菇菌棒。金针菇菌丝体接种于相同的菌棒中于恒温黑暗的条件下生长30 d,发现菌棒之间生长高度存在明显差异(
菌株 Strains | 菌棒长度/cm Length of sticks | 子实体数量 Number of fruiting bodies | 菌柄长度/cm Length of fruiting bodies | 子实体质量/g Weight of fruiting bodies | 生物学效率/% Biological efficiency |
---|---|---|---|---|---|
CK | 6.75±0.45b |
134± 12b | 8.78±0.15b | 104.44±5.59b | 53.56±2.85b |
pGPD: FIP-fve | 8.12±0.56a |
175± 7a | 9.56±0.16a | 161.66±20.70a | 82.9±10.62a |
RNAi: FIP-fve | 5.62±0.59c |
62± 4c | 6.98±0.19c | 47.68±5.14c | 24.45±2.64c |
3)金针菇子实体。培养40 d后的金针菇子实体表型观察(
称取每个培养瓶中全部金针菇子实体质量(
农杆菌介导的遗传转化已经成功地用于多种丝状真菌的转化,并可用于基因的沉默或过表达的研
有研究表明,小G蛋白Ran编码基因FvRan1、寡肽转运蛋白编码基因fvopt1和fvopt2、转运蛋白编码基因fv-msf1等基因在金针菇的菌丝、原基以及子实体不同生长阶段中起调控作
参考文献 References
AL-KHALIFA H.Immunological techniques in avian studies[J].World’s poultry science journal,2016,72(3):573-584. [百度学术]
MAHFUZ S,HE T F,MA J Y,et al.Mushroom (Flammulina velutipes) stem residue on growth performance,meat quality,antioxidant status and lipid metabolism of broilers[J].Italian journal of animal science,2020,19(1):803-812. [百度学术]
ADAMS S,CHE D S,JIANG H L,et al.Effects of pulverized oyster mushroom (Pleurotus ostreatus) on diarrhea incidence,growth performance,immunity,and microbial composition in piglets[J].Journal of the science of food and agriculture,2019,99(7):3616-3627. [百度学术]
GHIMIRE P S,JIN C.Genetics,molecular,and proteomics advances in filamentous fungi[J].Current microbiology,2017,74(10):1226-1236. [百度学术]
LI D D,TANG Y,LIN J,et al.Methods for genetic transformation of filamentous fungi[J].Microbial cell factories,2017,16(1):1-13. [百度学术]
LI Q Z, ZHENG Y Z ,ZHOU X W.Fungal immunomodulatory proteins:characteristic,potential antitumor activities and their molecular mechanisms[J].Drug discovery today,2019,24(1):307-314. [百度学术]
LI L D,MAO P W,SHAO K D,et al.Ganoderma proteins and their potential applications in cosmetics[J].Applied microbiology and biotechnology,2019,103(23):9239-9250. [百度学术]
EJIKE U C,CHAN C J,OKECHUKWU P N,et al.New advances and potentials of fungal immunomodulatory proteins for therapeutic purposes[J].Critical reviews in biotechnology,2020,40(8):1172-1190. [百度学术]
KO J L,HSU C I,LIN R H,et al.A new fungal immunomodulatory protein,FIP-fve isolated from the edible mushroom,Flammulina velutipes and its complete amino acid sequence[J].European journal of biochemistry,1995,228(2):244-249. [百度学术]
LEE Y T, WU C T, SUN H L,et al..Fungal immunomodulatory protein-fve could modulate airway remodel through by affect IL17 cytokine[J].Journal of microbiology,immunology and infection,2018,51(5):598-607. [百度学术]
张昕,夏雪,段作文,等.FIP-fve基因沉默载体构建和金针菇的遗传转化[J].分子植物育种,2017,15(11):4491-4497.ZHANG X,XIA X,DUAN Z W,et al.Construction of silencing vector for FIP-fve gene and genetic transformation of enoki mushroom(Flammulina velutipes)[J].Molecular plant breeding,2017,15(11):4491-4497 (in Chinese with English abstract). [百度学术]
ZHOU J S,BAI Y,DAI R J,et al.Improved polysaccharide production by homologous co-overexpression of phosphoglucomutase and UDP glucose pyrophosphorylase genes in the mushroom Coprinopsis cinerea[J].Journal of agricultural and food chemistry,2018,66(18):4702-4709. [百度学术]
MICHIELSE C B,HOOYKAAS P J J,VAN DEN HONDEL C A M J J,et al.Agrobacterium-mediated transformation as a tool for functional genomics in fungi[J].Current genetics,2005,48(1):1-17. [百度学术]
黄亚丽,潘玮,蒋细良,等.根癌农杆菌介导丝状真菌遗传转化的研究进展[J].生物技术通报,2007(3):111-114.HUANG Y L,PAN W,JIANG X L,et al.Transformation in filamentous fungi mediated by Agrobacterium tumefaciens[J].Biotechnology bulletin,2007(3):111-114 (in Chinese with English abstract). [百度学术]
KIM S,HA B S,RO H S.Current technologies and related issues for mushroom transformation[J].Mycobiology,2015,43(1):1-8. [百度学术]
CHENG M,LOWE B A,SPENCER T M,et al.Factors influencing Agrobacterium-mediated transformation of monocotyledonous species[J].In vitro cellular & developmental biology-plant,2004,40(1):31-45. [百度学术]
张磊,仝宗军,严俊杰,等.金针菇小G蛋白Ran的序列特征与表达分析[J].食用菌学报,2018,25(1):13-19,127.ZHANG L,TONG Z J,YAN J J,et al.Characterization and expression analysis of a FvRan1 gene from Flammulina velutipes[J].Acta edulis fungi,2018,25(1):13-19,127 (in Chinese with English abstract). [百度学术]
仝宗军,严俊杰,张磊,等.金针菇转运蛋白基因fv-mfs1的序列与表达分析[J].食用菌学报,2017,24(3):1-6,107.TONG Z J,YAN J J,ZHANG L,et al.Sequence and expression analysis of transporter protein gene fv-mfs1 in Flammulina velutipes[J].Acta edulis fungi,2017,24(3):1-6,107 (in Chinese with English abstract). [百度学术]
WU T J,HU C C,XIE B G,et al.A single transcription factor (PDD1) determines development and yield of winter mushroom (Flammulina velutipes)[J/OL].Applied and environmental microbiology,2019,85(24):e01735-19[2022-08-03].https://doi.org/10.1128/AEM.01735-19. [百度学术]
WU T J,ZHANG Z Y,HU C C,et al.A WD40 protein encoding gene Fvcpc2 positively regulates mushroom development and yield in Flammulina velutipes[J/OL].Frontiers in microbiology,2020,11:498[2022-08-03].https://doi.org/10.3389/fmicb.2020.00498. [百度学术]