摘要
为明确检疫实蝇害虫南亚果实蝇(Zeugodacus tau Walker)雌成虫的肠道优势菌株种类及它们对南亚果实蝇取食能力、营养状态和生殖力的影响,通过平板分离与分子鉴定技术进行可培养菌株的分离与菌种分析,进一步进行抗生素处理与肠道优势菌株回补处理,检测南亚果实蝇取食量、血淋巴氨基酸含量和产卵量。结果显示:清除肠道细菌可显著降低南亚果实蝇雌成虫的产卵量、取食量和血淋巴氨基酸含量,降至正常雌成虫(无抗生素处理,对照)水平的34.9%、43.2%和60.8%。鉴定出的9种可培养菌株,分别隶属于变形菌门(Proteobacteria)和厚壁菌门(Firmicutes),主要分布在肠球菌属(Enterococcus)、肠杆菌属(Enterobacter)和芽孢杆菌属(Bacillus);而其中的优势菌株为Enterococcus sp. ZYY 2-97(57.41%)和Bacillus sp. ZYY 1-83(17.59%)。回补ZYY 2-97和ZYY 1-83菌株后南亚果实蝇雌成虫的总产卵量分别显著恢复至对照的75.00%和86.98%,取食量显著恢复至对照水平的117.53%和117.85%,而血淋巴氨基酸含量显著恢复至对照水平的94.80%和87.81%。以上结果表明,肠道细菌可通过调控南亚果实蝇雌成虫的取食能力和营养状态而影响宿主生殖力,而且其中的优势菌株发挥了关键作用。
南亚果实蝇(Zeugodacus tau Walker) 又名南亚寡鬃实蝇,俗称南瓜实蝇、瓜蛆,属双翅目(Diptera)实蝇科(Trypetidae)寡鬃实蝇属(Zeugodacus),是一种严重、多食的世界性检疫害虫,主要危害16个科80余种瓜果植
昆虫的消化系统中存在丰富多样的细菌群落,在漫长的进化过程中,昆虫与肠道细菌相互影响,形成了相互依存的共生关
本研究首先通过抗生素清除细菌处理来验证肠道细菌对南亚果实蝇雌成虫生殖力的调节作用,同时分离筛选出肠道细菌中的优势菌株,进一步通过“抗生素-菌落回补”处理验证该优势菌株对雌成虫生殖力的调控作用与可能的调控机制,旨在阐明可培养肠道优势细菌在维持南亚果实蝇生殖力中的重要作用,并初步分析其调控机制。
试验所用南亚果实蝇取自华中农业大学园艺与城市昆虫研究所建立的实验种群,饲养方法如下:初羽化成虫供给足够水分与人工饲料,饲养至性成熟,将新鲜笋瓜放入笼中诱集产卵;幼虫在笋瓜内发育至第3龄老熟幼虫,待其自动跳入放置于笋瓜下的蛭石中化蛹;待其全部化蛹后,使用孔径1.7 mm筛网筛出虫蛹,并转入新的虫箱中羽化;成虫转入养虫笼(30 cm×30 cm×30 cm)内继续饲养,供给足够水分与人工饲料(质量配比为酵母粉∶蔗糖=1∶1),每3 d更换1次;环境条件控制为温度26~28 ℃,湿度70%~80%,光周期L∶D为14 h∶10 h。
将试验所需的镊子、培养皿预先高温消毒。取羽化7 d的南亚果实蝇雌成虫50头,放于75%乙醇中消毒3 min,用镊子将虫体放入灭菌纯水中搅动漂洗,然后放入培养皿中,加入少许PBS,并置于体视镜下进行解剖;分离出完整的肠道,放入装有1 mL PBS缓冲液的1.5 mL EP管内,研磨均匀后用于肠道细菌的分离培养。
将研磨样品按照标准的10倍微生物溶液梯度稀释方法分别稀释1
使用LB液体培养基培养获得的新鲜菌液进行单菌落的菌液PCR,使用引物27F (5′-AGAGTTTGATCCTGGCTCAG-3′)和1492R (5′-GGTTACCTTGTTACGACTT-3′)扩增16S rDNA序
测序获得的16S rDNA序列通过EzBioCloud在线分析工具(https://www.ezbiocloud.net/identify)比对 quality-controlled databases of 16S rDNA sequences
为了比较抗生素处理与肠道细菌回补效果,设置抗生素处理组、肠道细菌回补组、对照组。3组饲养情况如下:
对照组:使用人工饲料+无菌水饲喂南亚果实蝇雌成虫,按本文“1.1”所述方法正常饲养。
抗生素处理组:根据Raza
肠道细菌回补组:将初羽化南亚果实蝇雌成虫在正常饲养条件下饲养5 d,随后转移至正常人工饲料+抗生素无菌水的饲养条件下连续饲养5 d,再转移至添加肠道细菌的人工饲料(每克人工饲料100 μL菌液)+无菌水的饲养条件下连续饲养至虫体死亡,每天更换新饲料与无菌水。
为测定雌成虫产卵量,将同一批次南亚果实蝇雌雄虫分开后,初羽化雄成虫使用人工饲料+无菌水饲养13 d,初羽化雌成虫按照本文“材料与方法1.4”中的不同处理饲养至13 d,随后将2对同一批次的雌雄成虫转移到设置好的自制数卵器中,将笋瓜置于数卵器底部吸引雌虫,每2 d统计1次产卵量,并更换笋瓜和饲料,持续记录10 d数据。
取食量的检测方法参照Vijendravarma
血淋巴总氨基酸浓度测定使用基于比色法(650 nm)的总氨基酸测定试剂盒(A026-1-1,南京建成生物工程研究所)并参照使用说明书完成。
抗生素处理5 d后,南亚果实蝇雌成虫的肠道细菌数量显著降低至无抗生素对照组的5.99% (P<0.05, Student’s t-test;

图1 抗生素处理下南亚果实蝇雌成虫肠道细菌数量(A)、产卵量(B)、取食量(C)和血淋巴氨基酸含量(D)
Fig.1 The abundance of intestinal bacteria (A), oviposition (B), food consumption (C), and haemolymph amino acid contents (D) of female adults of Zeugodacus tau after the antibiotic-treatment
* 表示在抗生素组和对照组之间具有显著差异(P<0.05)。* Indicated the significant difference between antibiotics treatment and CK.
对平板分离培养获得的196个单菌落进行菌落形态、16S rDNA片段序列的EzBio Cloud在线分析和系统进化分析,结果发现196个单菌分别属于变形菌门Proteobacteria(75.93%)和厚壁菌门Firmicutes(24.08%)的9种菌株,包括6个属,其中主要菌属为肠球菌属Enterococcus(58.34%)、肠杆菌属Enterobacter(17.60%)、芽孢杆菌属Bacillus(17.59%)(
菌株 Strain | 占比/% Proportion | 基因序列号Genbank number | 门 Phylum | 属 Genus |
---|---|---|---|---|
ZYY 1-30 | 0.93 | ON428671 | Proteobacteria | Kluyvera |
ZYY 1-69 | 3.70 | ON428672 | Proteobacteria | Providencia |
ZYY 1-83 | 17.59 | ON428673 | Firmicutes | Bacillus |
ZYY 2-97 | 57.41 | ON428674 | Firmicutes | Enterococcus |
ZYY 2-67 | 0.93 | ON428675 | Firmicutes | Enterococcus |
ZYY 3-21 | 1.85 | ON428676 | Proteobacteria | Citrobacter |
ZYY 3-13 | 7.41 | ON428677 | Proteobacteria | Enterobacter |
ZYY 3-29 | 9.26 | ON428678 | Proteobacteria | Enterobacter |
ZYY 3-30 | 0.93 | ON428679 | Proteobacteria | Enterobacter |

图2 基于ZYY 2-97 (A)、ZYY 1-83 (B)及其相关菌种的16S rDNA 序列的系统进化树
Fig. 2 Phylogenetic analysis based on partial 16S rDNA sequence of ZYY 2-97 (A), ZYY 1-83 (B) and other homologous bacterial strains
与正常对照(CK)相比,抗生素清除肠道细菌后(抗生素组)南亚果实蝇雌成虫的总产卵量、取食量和血淋巴氨基酸含量皆显著降为对照组的31.00%、62.24%和59.69%(P<0.05, post-hoc Tukey’s honestly significant difference test;图

图3 回补ZYY 2-97和ZYY 1-83后南亚果实蝇雌成虫日产卵量(A)和总产卵量(B)
Fig. 3 The daily (A) and total laid eggs(B) of female adults of Z. tau after the supplementation of ZYY 2-97 and ZYY 1-83
不同小写字母表示在不同处理组之间具有显著差异(P < 0.05)。Different lowercase letters denote significant differences between different treatments (P < 0.05).

图4 回补ZYY 2-97和ZYY 1-83后南亚果实蝇雌成虫取食量
Fig. 4 Food consumption of female adults of Z. tau after the supplementation of ZYY 2-97 and ZYY 1-83

图5 回补ZYY 2-97和ZYY 1-83后南亚果实蝇雌成虫血淋巴氨基酸含量
Fig. 5 Amino acid contents of female adults of Z. tau after the supplementation of ZYY 2-97 and ZYY 1-83
而回补ZYY 2-97和ZYY 1-83后,雌成虫每2 d的产卵量均显著高于清除肠道细菌的抗生素组,同时绝大多数情况下显著低于对照组(除了回补ZYY 1-83组在第17天和第21天的产卵量与对照组无显著差异)(
相似地,回补ZYY 2-97和ZYY 1-83后雌成虫的血淋巴氨基酸水平均显著高于抗生素组(P<0.05, post-hoc Tukey’s honestly significant difference test),分别恢复至对照的94.80%和87.81%,但与对照均无显著差异(P>0.05, post-hoc Tukey’s honestly significant difference test)(
以上结果表明,优势可培养菌株ZYY 2-97和ZYY 1-83对于南亚果实蝇雌成虫的生殖、取食行为以及营养状态都具有显著的调控作用。
本研究分离培养的南亚果实蝇雌成虫可培养肠道微生物分别隶属于厚壁菌门(75.92%)和变形菌门(24.08%),其中肠球菌属(58.3%)、肠杆菌属(17.60%)、芽孢杆菌属(17.59%)为优势菌属。这与对其他南亚果实蝇或其他实蝇相关的研究结果有一定差
本研究发现抗生素清除雌成虫的肠道细菌之后南亚果实蝇雌成虫的取食量、氨基酸含量和产卵量均显著下降,这表明肠道细菌对于南亚果实蝇雌成虫的生殖能力具有重要的调节作用,且可能是通过影响取食从而调节营养状态(氨基酸的吸收与转化)而实现。在其他的实蝇害虫中也有类似的发现。例如,Goane
通过抗生素清除后菌株回补试验证明肠道菌群优势菌株Enterococcus sp. ZYY 2-97 (57.41%)、 Bacillus sp. ZYY 1-83 (17.59%)都可以显著恢复南亚果实蝇雌成虫的生殖力、取食能力和营养状态,表明这2个菌株在维持南亚果实蝇雌成虫正常取食和营养状态进而维持其生殖力的过程中发挥了重要作用。类似的现象也已在其他昆虫中得到证实。例如,包括肠球菌在内的肠道细菌可以影响鳞翅目昆虫的消化酶活
本研究筛选出了对南亚果实蝇雌成虫的生殖力具有重要作用的优势可培养菌株ZYY 2-97和 ZYY 1-83,然而根据16S rDNA序列仅能将其鉴定到属,不能鉴定到种。在未来,还需要进一步通过测定生化指标进行菌种鉴定。对于Bacillus属菌种,也可以通过gyrA (DNA gyrase subunit A)序列进行物种鉴
综上所述,本研究证明了肠道细菌对于维持南亚果实蝇雌成虫的正常取食、营养状态和生殖力都具有重要作用,而在可培养细菌中,隶属于肠球菌属和芽孢杆菌属的优势菌株在其中发挥了关键作用。该结果可为深入研究“肠道细菌-宿主营养-宿主生殖”的调控机制提供重要的可培养菌株和宿主体系,不仅有利于对该调控机制的深入探索,也为基于肠道微生物调控的实蝇类害虫绿色防控新策略提供了理论基础。
参考文献References
JALEEL W,LU L H,HE Y R.Biology,taxonomy,and IPM strategies of Bactrocera tau Walker and complex species (Diptera;Tephritidae) in Asia:a comprehensive review[J].Environmental science and pollution research,2018,25(20):19346-19361. [百度学术]
TAN M H,ZHANG R,XIANG C Y,et al.The complete mitochondrial genome of the pumpkin fruit fly,Bactrocera tau (Diptera:Tephritidae)[J].Mitochondrial DNA part A,2016,27(4):2502-2503. [百度学术]
LI H W,ZHAO C W,YANG Y,et al.The influence of gut Microbiota on the fecundity of Henosepilachna vigintioctopunctata (Coleoptera:Coccinellidae)[J/OL].Journal of insect science,2021,21(4):15[2022-10-17]. https://doi.org/10.1093/jisesa/ieab061. [百度学术]
JORDAN H R,TOMBERLIN J K. Microbial influence on reproduction,conversion,and growth of mass produced insects[J].Current opinion in insect science,2021,48:57-63. [百度学术]
FUSETTO R,DENECKE S,PERRY T,et al.Partitioning the roles of CYP6G1 and gut microbes in the metabolism of the insecticide imidacloprid in Drosophila melanogaster[J/OL].Scientific reports,2017,7:11339[2022-10-17]. https://www.nature.com/articles/s41598-017-09800-2. DOI: 10.1038/s41598-017-09800-2. [百度学术]
BEHAR A,YUVAL B, JURKEVITCH E,et al.Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity[J].Journal of insect physiology,2008,54(9):1377-1383. [百度学术]
NGUYEN B,THAN A,DINH H,et al.Parental Microbiota modulates offspring development,body mass and fecundity in a polyphagous fruit fly[J/OL].Microorganisms,2020,8(9):1289[2022-10-17].https://pubmed.ncbi.nlm.nih.gov/32846933/.DOI: 10.3390/microorganisms8091289. [百度学术]
MORIMOTO J,SIMPSON S J,PONTON F.Direct and trans-generational effects of male and female gut microbiota in Drosophila melanogaster[J/OL].Biology letters,2017,13(7):20160966[2022-10-17].https://pubmed.ncbi.nlm.nih.gov/28724687/.DOI: 10.1098/rsbl.2016.0966. [百度学术]
AKAMI M,REN X M,QI X W,et al.Symbiotic bacteria motivate the foraging decision and promote fecundity and survival of Bactrocera dorsalis (Diptera:Tephritidae) [J/OL].BMC microbiology,2019,19(1):229[2022-10-17].https://pubmed.ncbi.nlm.nih.gov/31640545/.DOI: 10.1186/s12866-019-1607-3. [百度学术]
RASHID M A,ANDONGMA A A,DONG Y C,et al.Effect of gut bacteria on fitness of the Chinese citrus fly,Bactrocera minax (Diptera:Tephritidae)[J].Symbiosis,2018,76(1):63-69. [百度学术]
AUGUSTINOS A A,KYRITSIS G A,PAPADOPOULOS N T,et al.Exploitation of the medfly gut Microbiota for the enhancement of sterile insect technique:use of Enterobacter sp. in larval diet-based probiotic applications[J/OL].PLoS One,2015,10(9):e0136459[2022-10-17].https://pubmed.ncbi.nlm.nih.gov/26325068/.DOI: 10.1371/journal.pone.0136459. [百度学术]
NOMAN M S,SHI G,LIU L J,et al.Diversity of bacteria in different life stages and their impact on the development and reproduction of Zeugodacus tau (Diptera:Tephritidae)[J].Insect science,2021,28(2):363-376. [百度学术]
LUO M J,ZHANG H H,DU Y G,et al.Molecular identification of cultivable bacteria in the gut of adult Bactrocera tau (Walker) and their trapping effect[J].Pest management science,2018,74(12):2842-2850. [百度学术]
RAZA M F,WANG Y C,CAI Z H,et al.Gut microbiota promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis[J/OL].PLoS pathogens,2020,16(4):e1008441[2022-10-17].https://doi.org/10.1371/journal.ppat.1008441. [百度学术]
YOON S H,HA S M,KWON S,et al.Introducing EzBioCloud:a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies[J].International journal of systematic and evolutionary microbiology,2017,67(5):1613-1617. [百度学术]
KUMAR S,STECHER G,TAMURA K.MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J].Molecular biology and evolution,2016,33(7):1870-1874. [百度学术]
VIJENDRAVARMA R K,NARASIMHA S,CHAKRABARTI S,et al.Gut physiology mediates a trade-off between adaptation to malnutrition and susceptibility to food-borne pathogens[J].Ecology letters,2015,18(10):1078-1086. [百度学术]
KHAN M,MAHIN A A,PRAMANIK M K,et al.Identification of gut bacterial community and their effect on the fecundity of pumpkin fly,Bactrocera tau (Walker)[J].Journal of entomology,2014,11(2):68-77. [百度学术]
WANG H X,JIN L,PENG T,et al.Identification of cultivable bacteria in the intestinal tract of Bactrocera dorsalis from three different populations and determination of their attractive potential[J].Pest management science,2014,70(1):80-87. [百度学术]
GOANE L,SALGUEIRO J, MEDINA PEREYRA P,,et al.Antibiotic treatment reduces fecundity and nutrient content in females of Anastrepha fraterculus (Diptera:Tephritidae) in a diet dependent way[J/OL].Journal of insect physiology,2022,139:104396[2022-10-17].https://doi.org/10.1016/j.jinsphys.2022.104396. [百度学术]
CAI Z H,YAO Z C,LI Y S,et al.Intestinal probiotics restore the ecological fitness decline of Bactrocera dorsalis by irradiation[J].Evolutionary applications,2018,11(10):1946-1963. [百度学术]
PANIAGUA VOIROL L R,FRAGO E,KALTENPOTH M,et al.Bacterial symbionts in Lepidoptera:their diversity,transmission,and impact on the host[J/OL].Frontiers in microbiology,2018,9:556[2022-10-17].https://doi.org/10.3389/fmicb.2018.00556. [百度学术]
BYAPPANAHALLI M N,NEVERS M B,KORAJKIC A,et al.Enterococci in the environment[J].Microbiology and molecular biology reviews,2012,76(4):685-706. [百度学术]
CHEN B S,MASON C J,PEIFFER,et al.Enterococcal symbionts of caterpillars facilitate the utilization of a suboptimal diet[J/OL].Journal of insect physiology,2022,138:104369[2022-10-17].https://doi.org/10.1016/j.jinsphys.2022.104369. [百度学术]
YADAV D S,RANADE Y,SAWANT I,et al.Isolation,identification and functional characterisation of bacteria associated with gut of wood feeding Stromatium barbatum (Fabr.) (Coleoptera:Cerambycidae) larvae[J].International journal of tropical insect science,2022,42(3):2603-2616. [百度学术]
CHUN J,BAE K S.Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences[J].Antonie van leeuwenhoek,2000,78(2):123-127. [百度学术]