摘要
为探索机插水稻一次性侧深基施的轻简高效栽培技术,以水稻品种“全两优鄂丰丝苗”为材料,设置不施肥(N0)、控释肥一次性侧深基施(N1)、控释肥减氮10%一次性侧深基施(N2)、控释肥减氮20%一次性侧深基施(N3)和传统施肥(CK)处理,测定水稻分蘖动态、主要生育期的叶面积指数与干物质积累量、齐穗期根系指标、氮素利用效率与产量,研究控释肥一次性侧深施对水稻生长、氮素吸收利用和产量的影响。结果显示:与CK相比,处理N1、N2显著增产12.99%~14.85%和5.47%~6.09%,处理N3产量与CK差异不显著,对施肥量和产量拟合后分析,在减氮18.72%时与CK产量持平。与CK相比,控释肥一次性侧深施处理显著提高了水稻的成穗率、提高了生育中后期的叶面积指数和干物质积累量、促进了根系的生长并扩大了根系的分布范围,处理N1、N2和N3与处理CK相比,分别提高氮素表观利用率1.21%~46.57%、氮素农学利用率18.85%~61.73%、氮素生理利用率8.90%~17.71%和偏生产力12.99%~23.61%。研究结果表明,控释肥一次性侧深施促进了根系生长,增加水稻有效穗数,提高了氮素利用效率且大幅较少施肥次数,在减氮18.72%的范围内,可实现水稻的高产、稳产。
目前水稻生产上的施肥方式仍以2次及以上的人工或机械撒施为主,虽满足了其生长发育各阶段的养分需求,促进了产量的提高,但面临人工短缺且费用高、施肥均匀度难以精确控制和肥料利用率低等问
缓控释肥可根据作物生长发育对养分的需求而将养分缓慢释放或控制释
前人针对侧深施肥的氮肥运筹和缓控释肥的施用种类及用量等问题开展了大量研究,但对侧深施肥和缓控释肥的合理减氮量,不同学者的研究存在差
试验于2020-2021年在湖北省荆州市华中农高区长江大学农业科技产业园进行(30°22′N,112°4′E)。
土壤类型为轻壤土,2020年水稻移栽前0~20 cm耕层土壤pH值7.68,碱解氮73.6 mg/kg,速效磷30.1 mg/kg,速效钾78.6 mg/kg,有机质18.93 g/kg。2021年水稻栽前0~20 cm耕层土壤pH值7.73,碱解氮86.6 mg/kg,速效磷31.1 mg/kg,速效钾98.2 mg/kg,有机质22.94 g/kg。
供试品种为杂交籼稻全两优鄂丰丝苗(湖北荃银高科种业有限公司生产)。试验氮肥为洋丰复合肥(新洋丰科技有限公司生产,N∶P2O5∶K2O=15∶15∶15),尿素(湖北潜江金华润化肥有限公司生产,N 46%),控释氮肥(中化集团临沂分公司生产,90 d控释包衣尿素,包衣3%,N 44.6%);磷肥为过磷酸钙(16% P2O5,湖北三峡生态肥业有限公司生产);钾肥为氯化钾(60%,K2O中化化肥有限公司生产)。
2020年,水稻5月13日播种,6月3日移栽。2021年,5月13日播种,6月4日移栽。移栽时使用带有侧深施肥装置的插秧机,三本栽插,行株距为30 cm×16 cm。以传统撒施(CK)为对照,设置全程不施肥(N0)、控释肥一次性侧深基施(N1)、控释肥减氮10%一次性侧深基施(N2)、控释肥减氮20%一次性侧深基施(N3),各处理3次重复,共15个小区。处理CK的总施氮量为195 kg/h
在分蘖期、孕穗期、齐穗期和成熟期根据各处理的平均茎蘖数选择具有代表性的植株,将处理的全展叶剪下,拍照,运用Imagej 1.51计算叶面积指数(LAI
在齐穗期时,各处理按平均茎蘖数取样,连带植株根系挖出深30 cm、长30 cm、宽16 cm的土块,用流水冲洗土块表面,待根系脉络清晰后,根据移栽时侧深施肥机器施肥的不对称性,将控释肥处理根系分为施肥侧与未施肥侧,将土块均分后,连带土块放入尼龙网袋中清洗,以获得较为完整的植株根系。用 Epson Expression 10000XL 扫描仪配合WinRHIZO软件测定根系数据。
将保存的成熟期茎、叶、穗干物质样粉碎,利用ECS 4024 CHNSO Classic分析仪测定各植株部分氮含量,参照文献[
由

图1 不同施肥方式下的水稻产量
Fig. 1 Rice yield under different fertilization methods
氮肥减量与产量之间的关系如

图2 氮肥减量与产量之间的相关性
Fig. 2 Correlation between nitrogen reduction and yield
不同施肥方式处理下水稻的构成因素如
年份 Year(Y) | 处理 Treatment(T) | 有效穗数/(×1 Valid panicle No. | 平均穗粒数 Spikelet per panicle | 结实率/% Seed-setting rate | 千粒重/g 1 000-grain weight |
---|---|---|---|---|---|
2020 | N0 | 170.14±2.41d | 196.01±2.64b | 78.51±2.28a | 24.38±0.62a |
N1 | 246.53±3.18a | 214.06±7.73a | 73.33±3.06b | 24.39±0.24a | |
N2 | 238.19±11.48ab | 218.40±8.36a | 72.67±3.06b | 24.51±0.06a | |
N3 | 226.39±8.42bc | 218.52±6.90a | 73.67±0.57b | 24.78±0.46a | |
CK | 225.00±2.08c | 221.00±7.80a | 71.67±1.53b | 24.57±0.07a | |
2021 | N0 | 179.86±3.18d | 192.34±7.13b | 87.17±0.85b | 24.79±0.24a |
N1 | 262.50±5.51a | 218.04±12.37a | 88.48±0.39a | 24.79±0.15a | |
N2 | 253.47±3.18b | 216.50±6.88a | 88.37±0.20a | 24.82±0.17a | |
N3 | 239.58±4.16c | 210.13±1.71a | 87.73±0.61ab | 24.85±0.07a | |
CK | 237.50±2.08c | 218.39±11.71a | 87.16±0.58b | 24.65±0.15a | |
Y | ** | ns | ** | * | |
T | ** | ** | * | ns | |
Y×T | ns | ns | ** | ns |
注: 小写字母和*表示差异显著(P<0.05),**表示差异极显著(P<0.01,ns表示差异不显著。下同。Note:Small letters and * in the table indicate significant difference (P<0.05), ** indicate extremely significant difference (P<0.01), ns represents no significant. The same as below.
由

图3 2020年(A)和2021年(B)不同施肥方式下的水稻茎蘖动态
Fig. 3 Tiller dynamics of rice under different fertilization methods in 2020(A) and 2021(B)
2020年,处理N1、N2、N3在前期的分蘖速度低于CK处理,其中CK茎蘖数最先达到峰值。处理N1的最高茎蘖数与CK差异不显著,但极显著高于其他处理。在生育后期,CK茎蘖数下降速率高于其他处理,成穗率显著低于其他处理,其他处理间差异不显著(
不同施肥方式下水稻的叶面积指数随时间的变化如

图4 2020年(A)和2021年(B)不同施肥方式下的水稻叶面积指数
Fig. 4 Leaf area index of rice under different fertilization methods in 2020(A) and 2021(B)
2020年,分蘖期处理CK的叶面积指数均值最大,显著高于处理N2和N3;孕穗期处理N1的叶面积指数均值最大,与除N2外其他处理间差异显著;齐穗期处理N1及N2比CK高15.31%和13.34%,CK与N3差异不显著;成熟期处理N1和N2间差异不显著,N3和CK差异不显著(
2021年各生育期的叶面积指数均值高于2020年。处理N2与N3在分蘖期差异显著,在齐穗期差异不显著(
由
年份(Y) Year | 处理(T) Treatment | 分蘖期 Tillering stage | 孕穗期 Booting stage | 齐穗期 Full heading stage | 成熟期 Mature stage | 分蘖-孕穗期 Tillering-booting | 孕穗-齐穗期 Booting-full heading | 齐穗-成熟期 Full heading-mature |
---|---|---|---|---|---|---|---|---|
2020 | N0 | 0.56±0.01d | 3.05±0.14c | 6.41±0.20d | 12.00±0.11d | 2.49±0.15c | 3.36±0.24b | 5.58±0.13c |
N1 | 1.05±0.02a | 5.47±0.16a | 10.92±0.06a | 22.00±1.28a | 4.43±0.14a | 5.45±0.14a | 11.05±1.28a | |
N2 | 0.96±0.03b | 5.21±0.28a | 10.28±0.12b | 20.15±2.25ab | 4.25±0.30a | 5.06±0.20a | 9.87±2.37ab | |
N3 | 0.91±0.02c | 4.81±0.05b | 9.80±0.21c | 17.41±0.16c | 3.89±0.05b | 5.00±0.21a | 7.61±0.06c | |
CK | 1.03±0.02a | 5.36±0.17a | 10.40±0.26b | 18.19±0.47bc | 4.33±0.17a | 5.04±0.43a | 7.79±0.31bc | |
2021 | N0 | 0.57±0.01d | 5.75±0.10d | 9.55±0.42d | 15.97±0.43c | 5.18±0.10d | 3.80±0.50b | 6.43±0.77c |
N1 | 1.04±0.02a | 9.41±0.14a | 14.77±0.38a | 25.93±1.58a | 8.37±0.15a | 5.35±0.46a | 11.16±1.31a | |
N2 | 0.97±0.02b | 8.68±0.52bc | 14.14±0.20b | 24.13±2.85ab | 7.71±0.50bc | 5.46±0.70a | 9.99±2.93ab | |
N3 | 0.89±0.03c | 8.40±0.08c | 13.62±0.09c | 21.34±0.17b | 7.50±0.07c | 5.22±0.10a | 7.73±0.25bc | |
CK | 1.03±0.03a | 9.09±0.36ab | 14.13±0.28b | 22.18±1.18b | 8.06±0.38ab | 5.04±0.40a | 8.05±1.09abc | |
Y | ns | ** | ** | ** | ** | ns | ns | |
T | ** | ** | ** | ** | ** | ** | ** | |
Y×T | ns | ** | ns | ns | ** | ns | ns |
2020年,分蘖期处理N1与CK间差异不显著,与其他处理差异达到显著水平;孕穗期处理N1、N2和CK间差异不显著;齐穗期处理N1的干物质积累量比CK高5.04%,差异达到显著水平,处理N2与CK间差异不显著,但显著高于N3;成熟期处理N1的干物质积累量比CK高20.81%,差异显著,处理CK的干物质积累量与N2和N3间差异均不显著。净干物质积累量中,在分蘖-孕穗期,处理N1、N2和CK间的净干物质积累量差异不显著,但显著高于其他处理;齐穗-成熟期,处理N1的净干物质积累量比CK高41.87%,差异达到显著水平,而CK与其他处理差异不显著。
2021年,在各时期干物质积累量中,在孕穗期处理N1与N2差异达到显著水平;在成熟期处理N2与N3未达显著水平。净干物质积累量中,在分蘖-孕穗期处理N1与N2差异达到显著水平;在齐穗-成熟期,处理N2与N3未达到显著水平。
由
处理 Treatments | 施肥区域Fertilizing area | 平均根长/cm Average root length | 平均根 表面积/c Average root surface area | 平均直径/mm Average diameter | 平均根体积/ ×(1 Average root volume | 施肥区总根数 Total number of roots of fertilizing area | 总根数 Total number of roots of treatments |
---|---|---|---|---|---|---|---|
N0 | \ | 14.62±0.78c | 2.77±0.01c | 0.53±0.02a | 2.29±0.16c | \ | 384.67±15.50c |
N1 | F | 21.84±0.21a | 3.77±0.16a | 0.53±0.02a | 4.39±0.10a | 397.00±20.22a | 617.00±9.54a |
NF | 18.78±0.38b | 3.27±0.18b | 0.53±0.03a | 3.26±0.13b | 220.00±27.78c | ||
N2 | F | 20.59±0.63a | 3.66±0.15a | 0.53±0.01a |
4.39±0.13a 3.24±0.07b | 370.33±14.01ab | 597.33±11.37a |
NF | 18.87±0.24b | 3.35±0.15b | 0.54±0.03a | 227.00±18.08c | |||
N3 | F | 21.40±1.65a | 3.75±0.05a | 0.54±0.01a | 4.36±0.12a | 352.67±15.53b | 553.00±21.93b |
NF | 18.51±0.30b | 3.36±0.05b | 0.53±0.03a | 3.31±0.06b | 200.33±6.66c | ||
CK | \ | 18.53±1.17b | 3.30±0.20b | 0.53±0.01a | 3.30±0.15b | \ | 551.33±22.59b |
注: F和NF分别代表侧深施肥的施肥区和未施肥区。Note: F and NF represent the fertilized side and the unfertilized side of deep side fertilization.
在一次性施肥方式的不同施肥梯度下,N1、N2和N3处理间在施肥区域内的平均根长无显著差异,但相比未施肥区域则分别高出16.29%、9.08%和15.63%;N1、N2和N3处理间在施肥区域内的平均根表面积无显著差异,但相比未施肥区域则分别高出15.33%、9.43%和11.65%;N1、N2和N3处理间在施肥区域内的平均根体积无显著差异,但相比未施肥区域则分别高出34.77%、35.41%和31.61%;N1和N2处理间在施肥区域内的总根数无显著差异,N2和N3处理间在施肥区域内的总根数无显著差异,但处理N1的总根数比N3高12.57%,差异达到显著水平。N1、N2和N3处理间在施肥区域内的总根数相比未施肥区域分别高出80.45%、63.14%和76.04%;侧深施肥处理的未施肥侧在根系的各项指标上差异均不显著。
由
年份(Y) Year | 处理(T) Treatment | 氮素积累量/(kg/h Nitrogen accumulation | 氮素表观 利用率/% ANUE | 氮素农学 利用率/(kg/kg) AE | 氮素生理 利用率/(kg/kg) PNUE | 氮素偏生 产力/(kg/kg) PFPN |
---|---|---|---|---|---|---|
2020 | N0 | 76.17±1.86d | / | / | / | / |
N1 | 148.87±5.01a | 37.28±2.38a | 16.27±1.41a | 46.74±1.72b | 48.22±0.73b | |
N2 | 132.61±3.76b | 32.25±2.33ab | 14.56±1.35ab | 45.16±0.83ab | 50.15±1.32b | |
N3 | 119.00±4.15c | 27.46±3.41bc | 12.82±1.37bc | 46.74±0.87a | 52.74±1.15a | |
CK | 128.37±6.42b | 26.77±2.38c | 10.73±1.14c | 40.05±1.60c | 42.67±0.82c | |
2021 | N0 | 79.73±3.05d | / | / | / | / |
N1 | 167.61±2.37a | 45.07±1.96a | 18.07±0.73a | 40.15±2.45ab | 56.40±1.07b | |
N2 | 144.16±3.18b | 36.72±0.12b | 15.30±0.44b | 41.67±1.30a | 57.89±0.86b | |
N3 | 128.28±10.02c | 31.12±5.24bc | 13.28±2.08c | 42.72±0.50a | 61.19±2.55a | |
CK | 139.69±6.65b | 30.75±3.83c | 11.17±1.84d | 36.29±3.27b | 49.50±2.23c | |
Y | ** | ** | ns | ** | ** | |
T | ** | ** | ** | ** | ** | |
Y×T | ns | ns | ns | ns | ns |
2020年,处理N1的氮素积累量显著高于其他处理,处理N2的氮素积累量与CK差异不显著;处理N1的氮素表观利用率比CK高10.51%,处理N2比CK高5.48%;N3与N2和CK间差异均不显著;处理CK在氮素农学利用率上与N3无显著差别,但显著低于N1和N2处理,N1和N2的氮素农学利用率差异不显著;处理N3的氮素生理利用率比CK高6.69%,比N1高3.12%,N2与N1、N3间差异不显著;处理CK的氮素偏生产力显著低于其他处理,其中N3最高,显著高于其他处理,N1与N2间氮素偏生产力差异不显著。2021年,处理N1的氮素表观利用率和氮素农学利用率显著高于N2;处理N2的氮素农学利用率显著高于N3,其他处理同2020年。
水稻产量主要由单位面积有效穗数、平均穗粒数和千粒重决定。通常单位面积有效穗数和平均穗粒数的增加有利于形成高产群
叶面积指数和干物质累积量能较好地反映作物群体大
施肥方式可影响根系周围的养分分布,进而对根部产生刺激作
传统撒施方式下,施肥形成的土壤养分中NH
本研究结果表明,控释肥一次性侧深施代替传统撒施能够促进根系生长,增加植株根量,增加水稻单位面积有效穗数,提高成穗率,同时提高生育中后期的叶面积指数和干物质积累量并提高氮素表观利用率、氮素农学利用率、氮素生理利用率和氮素偏生产力,从而提高水稻产量。在减氮10%以下,可显著增加机插水稻产量;在减氮18.72%时,可以稳产增效。
参考文献References
李红莉,张卫峰,张福锁,等.中国主要粮食作物化肥施用量与效率变化分析[J].植物营养与肥料学报,2010,16(5):1136-1143.LI H L,ZHANG W F,ZHANG F S,et al.Chemical fertilizer use and efficiency change of main grain crops in China[J].Plant nutrition and fertilizer science,2010,16(5):1136-1143 (in Chinese with English abstract). [百度学术]
钟雪梅,吴远帆,彭建伟,等.机插同步一次性精量施肥对双季稻产量及经济效益的影响[J].核农学报,2020,34(5):1079-1087.ZHONG X M,WU Y F,PENG J W,et al.Effects of machine-transplanting technique with synchronized one-time precision fertilization on grain yield and economic benefit of double-cropping rice[J].Journal of nuclear agricultural sciences,2020,34(5):1079-1087 (in Chinese with English abstract). [百度学术]
CONLEY D J,PAERL H W,HOWARTH R W,et al.Ecology.controlling eutrophication:nitrogen and phosphorus[J].Science,2009,323(5917):1014-1015. [百度学术]
易琼,逄玉万,杨少海,等.施肥对稻田甲烷与氧化亚氮排放的影响[J].生态环境学报,2013,22(8):1432-1437.YI Q,PANG Y W,YANG S H,et al.Methane and nitrous oxide emissions in paddy field as influenced by fertilization[J].Ecology and environmental sciences,2013,22(8):1432-1437 (in Chinese with English abstract). [百度学术]
莫钊文,潘圣刚,王在满,等.机械同步深施肥对水稻品质和养分吸收利用的影响[J].华中农业大学学报,2013,32(5):34-39.MO Z W,PAN S G,WANG Z M,et al.Effects of deeply mechanized fertilizer application on rice quality and nutrient absorption and utilization of direct seeding rice[J].Journal of Huazhong Agricultural University,2013,32(5):34-39 (in Chinese with English abstract). [百度学术]
朱从桦,张玉屏,向镜,等.侧深施氮对机插水稻产量形成及氮素利用的影响[J].中国农业科学,2019,52(23):4228-4239.ZHU C H,ZHANG Y P,XIANG J,et al.Effects of side deep fertilization on yield formation and nitrogen utilization of mechanized transplanting rice[J].Scientia agricultura sinica,2019,52(23):4228-4239 (in Chinese with English abstract). [百度学术]
沈欣,辛景树,殷广德,等.机插侧深施肥条件下不同减氮梯度对水稻产量及种植收益的影响[J].中国稻米,2020,26(5):62-65.SHEN X,XIN J S,YIN G D,et al.Effects of gradients of nitrogen reduction on yield components of rice and cost-benefit with applying side deep fertilization technology[J].China rice,2020,26(5):62-65 (in Chinese with English abstract). [百度学术]
鲁立明,陈少杰,蒋琪.侧深施肥技术在单季晚稻上的应用效果[J].中国稻米,2019,25(4):109-110.LU L M,CHEN S J,JIANG Q.Effects of side-deep fertilization technique on single cropping late rice[J].China rice,2019,25(4):109-110 (in Chinese with English abstract). [百度学术]
刘兆辉,吴小宾,谭德水,等.一次性施肥在我国主要粮食作物中的应用与环境效应[J].中国农业科学,2018,51(20):3827-3839.LIU Z H,WU X B,TAN D S,et al.Application and environmental effects of one-off fertilization technique in major cereal crops in China[J].Scientia agricultura sinica,2018,51(20):3827-3839 (in Chinese with English abstract). [百度学术]
王素萍,李小坤,鲁剑巍,等.控释尿素在水及不同类型土壤中的养分释放特征[J].植物营养与肥料学报,2014,20(3):636-641.WANG S P,LI X K,LU J W,et al.Nutrient release characteristics of controlled-release urea in water and different soils[J].Journal of plant nutrition and fertilizer,2014,20(3):636-641 (in Chinese with English abstract). [百度学术]
唐拴虎,徐培智,张发宝,等.一次性全层施用控释肥对水稻根系形态发育及抗倒伏能力的影响[J].植物营养与肥料学报,2006,12(1):63-69.TANG S H,XU P Z,ZHANG F B,et al.Influence of single basal application controlled-release fertilizer on morphologic development of root system and lodging resistance of rice[J].Plant nutrition and fertilizer science,2006,12(1):63-69 (in Chinese with English abstract). [百度学术]
谢春生,唐拴虎,徐培智,等.一次性施用控释肥对水稻植株生长及产量的影响[J].植物营养与肥料学报,2006,12(2):2177-2182.XIE C S,TANG S H,XU P Z,et al.Effects of single basal application of controlled-release fertilizers on growth and yield of rice[J].Plant nutrition and fertilizer science,2006,12(2):2177-2182 (in Chinese with English abstract). [百度学术]
张小翠,戴其根,胡星星,等.不同质地土壤下缓释尿素与常规尿素配施对水稻产量及其生长发育的影响[J].作物学报,2012,38(8):1494-1503.ZHANG X C,DAI Q G,HU X X,et al.Effects of slow-release urea combined with conventional urea on rice output and growth in soils of different textures[J].Acta agronomica sinica,2012,38(8):1494-1503 (in Chinese with English abstract). [百度学术]
李世发,刘元英,范立春,等.缓释肥对水稻生长发育及产量的影响[J].东北农业大学学报,2008,39(7):38-43.LI S F,LIU Y Y,FAN L C,et al.Effects of slow-release fertilizer on growth and yield of rice[J].Journal of Northeast Agricultural University,2008,39(7):38-43 (in Chinese with English abstract). [百度学术]
GRANTC A,WU R,SELLES F,et al.Crop yield and nitrogen concentration with controlled release urea and split applications of nitrogen as compared to non-coated urea applied at seeding[J].Field crops research,2012,127:170-180. [百度学术]
季雅岚,吴文革,孙雪原,等. 机插秧同步侧深施肥技术对水稻产量及肥料利用率的影响[J]. 中国稻米,2019,25(3):101-104. JI Y L,WU W G,SUN X Y,et al. Effects of fertilizer application rate of synchronized side-deep fertilization technology on yield and fertilizer use efficiency of machine-transplanted rice[J]. China rice,2019,25(3):101-104 (in Chinese with English abstract). [百度学术]
TANG J,ZHANG R,LI H,et al. The combination of different nitrogen fertilizer types could promote rice growth by alleviating the inhibition of straw decomposition[J/OL]. Food and energy security,2021,10(3):298[2022-07-13].https://doi.org/10.1002/fes3.298. [百度学术]
张洪程,吴桂成,戴其根,等.粳型杂交水稻超高产形成规律与栽培途径的探讨[J].杂交水稻,2010,25(S1):346-353.ZHANG H C,WU G C,DAI Q G,et al.Formulation of and cultural approach to super-high yielding in japonica hybrid rice[J].Hybrid rice,2010,25(S1):346-353 (in Chinese with English abstract). [百度学术]
王强,姜丽娜,潘建清,等.长江下游单季稻一次性施肥产量效应及影响因子研究[J].浙江农业学报,2017,29(11):1875-1881.WANG Q,JIANG L N,PAN J Q,et al.Yield effect and influence factors of one-time fertilization on single-cropping rice in the lower reaches of Yangtze River[J].Acta agriculturae Zhejiangensis,2017,29(11):1875-1881 (in Chinese with English abstract). [百度学术]
怀燕,陈照明,张耿苗,等.水稻侧深施肥技术的氮肥减施效应[J].浙江大学学报(农业与生命科学版),2020,46(2):217-224.HUAI Y,CHEN Z M,ZHANG G M,et al.Nitrogen reduction effect of side-deep placement of fertilizer on the rice production[J].Journal of Zhejiang University (agriculture and life sciences),2020,46(2):217-224 (in Chinese with English abstract). [百度学术]
魏海燕,李宏亮,程金秋,等.缓释肥类型与运筹对不同穗型水稻产量的影响[J].作物学报,2017,43(5):730-740.WEI H Y,LI H L,CHENG J Q,et al.Effects of slow/controlled release fertilizer types and their application regime on yield in rice with different types of panicle[J].Acta agronomica sinica,2017,43(5):730-740 (in Chinese with English abstract). [百度学术]
周亮,荣湘民,谢桂先,等.不同氮肥施用对双季稻产量及氮肥利用率的影响[J].土壤,2014,46(6):971-975.ZHOU L,RONG X M,XIE G X,et al.Effects of different nitrogen fertilizers on rice yield and nitrogen use efficiency[J].Soils,2014,46(6):971-975 (in Chinese with English abstract). [百度学术]
黄峰伟.高产水稻群体发展规律及其调控途径[J].中国稻米,2005,11(5):30-32.HUANG F W.Development law of high-yield rice population and its regulation approach[J].China rice,2005,11(5):30-32 (in Chinese with English abstract). [百度学术]
徐英,周明耀,薛亚锋.水稻叶面积指数和产量的空间变异性及关系研究[J].农业工程学报,2006,22(5):10-14.XU Y,ZHOU M Y,XUE Y F.Spatial variability and relationships of rice leaf area index and yield[J].Transactions of the Chinese society of agricultural engineering,2006,22(5):10-14 (in Chinese with English abstract). [百度学术]
周亮.控释氮肥减量施用对双季稻生长、氮素养分吸收利用及稻田氨挥发的影响[D].长沙:湖南农业大学,2014.ZHOU L.Effects of reduction application of controlled-release nitrogen fertilizer on growth,nitrogen uptake-utilization of rice and ammonia volatilization in paddy soil[D].Changsha:Hunan Agricultural University,2014 (in Chinese with English abstract). [百度学术]
程建平,赵锋,曾山,等.机械旱直播播种密度对水稻群体光合和产量形成的影响[J].湖北农业科学,2012,51(23):5275-5278.CHENG J P,ZHAO F,ZENG S,et al.Effect of mechanical dry direct sowing seeding density on photosynthesis and yield formation of rice population[J].Hubei agricultural sciences,2012,51(23):5275-5278 (in Chinese with English abstract). [百度学术]
王晓丹,向镜,张玉屏,等.水稻机插同步侧深施肥技术进展及应用[J].中国稻米,2020,26(5):53-57.WANG X D,XIANG J,ZHANG Y P,et al.Research advances and application of rice mechanized transplanting with side deep fertilization technology[J].China rice,2020,26(5):53-57 (in Chinese with English abstract). [百度学术]
SU W,LIU B,LIU X,et al. Effect of depth of fertilizer banded-placement on growth,nutrient uptake and yield of oilseed rape (Brassica napus L.)[J]. European journal of agronomy,2015,62: 38-45. [百度学术]
SHEN J B,LI C J,MI G H,et al.Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China[J].Journal of experimental botany,2013,64(5):1181-1192. [百度学术]
彭玉,马均,蒋明金,等.缓/控释肥对杂交水稻根系形态、生理特性和产量的影响[J].植物营养与肥料学报,2013,19(5):1048-1057.PENG Y,MA J,JIANG M J,et al.Effects of slow/controlled release fertilizers on root morphological and physiological characteristics of rice[J].Journal of plant nutrition and fertilizer,2013,19(5):1048-1057 (in Chinese with English abstract). [百度学术]
NKEVIWE P M,WEINMANN M,BAR-TAL A,et al.Fertilizer placement to improve crop nutrient acquisition and yield:a review and meta-analysis[J].Field crops research,2016,196:389-401. [百度学术]
侯朋福,薛利祥,俞映倞,等.缓控释肥侧深施对稻田氨挥发排放的控制效果[J].环境科学,2017,38(12):5326-5332.HOU P F,XUE L X,YU Y L,et al.Control effect of side deep fertilization with slow-release fertilizer on ammonia volatilization from paddy fields[J].Environmental science,2017,38(12):5326-5332 (in Chinese with English abstract). [百度学术]
柯健.氮肥种类和施肥方式对水稻产量及氮素去向的影响[D].南京:南京农业大学,2017.KE J.Effects of different nitrogen fertilizer and placement on grain yield and the fate of nitrogen in paddy soil of machine-transplanted rice[D].Nanjing:Nanjing Agricultural University,2017 (in Chinese with English abstract). [百度学术]
段然,汤月丰,王亚男,等.不同施肥方法对双季稻区水稻产量及氮素流失的影响[J].中国生态农业学报,2017,25(12):1815-1822.DUAN R,TANG Y F,WANG Y N,et al.Effects of different fertilization modes on rice yield and nitrogen loss in paddy soils under double cropping rice[J].Chinese journal of eco-agriculture,2017,25(12):1815-1822 (in Chinese with English abstract). [百度学术]