摘要
为探究稻虾共作模式对稻田土壤和水稻中重金属含量的影响,以湘晚籼12号、黄华占、玉针香为试验材料,常规稻作模式为对照,在不同土壤背景条件下(试验地点分别位于湖北省荆门市掇刀区和黄冈市浠水县)开展大田试验。结果显示:在弱碱性土壤背景下,稻虾共作模式中稻田土壤中Cr、As、Cd、Pb和Hg的含量降低,水稻根、茎、穗以及糙米中Cd、Pb含量降低;在弱酸性土壤背景下,稻虾共作模式中稻田土壤中Cr、As、Cd、Pb和Hg的含量升高,水稻根中Cd、Pb含量升高,水稻茎叶穗中Cd含量升高,Pb含量降低,水稻糙米中Cd、Pb含量均降低。本研究结果表明,不同pH土壤背景下稻虾模式对土壤和水稻重金属含量的影响表现不一致,但稻虾模式均可明显降低稻米中Cd和Pb的含量。
近年来,由于采矿、化肥和农药的过度使用导致环境中的重金属含量增
本研究以稻虾共作模式(rice-crayfish co-culture system, RC)为研究对象,以常规稻作模式(rice monoculture system, RM)作为对照。分别在湖北省荆门市掇刀区谭店村以及湖北省黄冈市浠水县百寺河农场开展试验。荆门试验区土壤pH值为7.03,有机质含量为23.29 g/kg,阳离子交换量为17.25 cmol/kg,浠水试验区土壤pH值为5.45,有机质含量为43.28 g/kg,阳离子交换量为4.3 cmol/kg。水稻品种为黄华占、玉针香、湘晚籼12号(XWX),均属于常规籼稻品种。黄华占为湖北省面积较大的水稻品种,玉针香和湘晚籼12号为优质香稻品种。试验区水稻种植方式均为人工插秧,株行距为13 cm × 30 cm,每个处理3次重复。
使用土钻利用五点采集法采集稻虾田0~ 20 cm的土壤,每个点取3个重复,并挑出土壤中的根系,混匀后利用四分法收集土壤样品分为2份,并将其中一份装入密封袋放进-20 ℃冰箱中保存,另一份置于通风处,自然风干后过孔径0.85、0.15 mm筛并保存。
水稻样品为对应稻虾共作田块上生长正常的水稻。将水稻冲洗干净后分为根、茎、叶、穗并先将其于105 ℃杀青30 min,再放入80 ℃烘箱中烘干后进行粉碎,并保留能通过孔径0.15 mm筛的样品。在每个田块另收取一部分稻谷用砻谷机去壳,将其烘干后用球磨仪进行粉碎后保存为糙米样品。
1)土壤pH。采用土水质量比为1∶ 2.5混合摇匀后静置30 min,用Mettler Toledo FE28 pH计测定上清液的pH。土壤有机质(SOM)采用重铬酸钾容量法测定。阳离子交换量(CEC)采用三氯化六氨合钴浸提-分光光度法(HJ 889-2017)进行测定。
2)土壤中重金属的测定。称取过孔径0.15 mm筛的土壤样品0.200 0 g,利用微波消解法消解土壤,测定镉、铅元素的消解液为2 mL HCl-6 mL HNO3 -2 mL HF,测定砷元素的消解液为6 mL HCl-2 mL HNO3-2 mL HF,消解后160 ℃赶酸至溶液体积为1 mL,定容至25 mL,过0.45 μm滤膜后备测。其中镉、铅元素含量根据样品浓度选择石墨炉原子吸收光谱法或火焰原子吸收光谱法测定,砷元素采用氢化物发生原子荧光光谱法测定。
3)水稻中重金属的测定。称取过孔径0.15 mm筛的水稻各部位样品0.300 0 g(根系样品0.100 0 g),利用微波消解法消解水稻,消解液为8 mL HNO3-2 mL H2O2,消解后160 ℃赶酸至溶液体积为1 mL,定容至25 mL,过0.45 μm滤膜后备测。测定方法同土壤中重金属测定方法。
所有样品在微波消解和测定过程中均做3次重复并做1组空白和土壤(GBW07443)或植物(GBW(E)100348)标准样品。玻璃容器以及消煮管均使用20%硝酸浸泡过夜并用超纯水清洗,所用试剂均为优级纯,以保证不被污染。每测定40个样品随机选取其中1个做平行双样试验,确保测定结果在误差允许的范围内。
由

图1 不同地区不同时期的土壤pH
Fig.1 Soil pH in different regions and different periods
不同小写字母表示同一时期不同处理间差异显著(P<0.05)。Different lowercase letters indicate significant differences among different treatments in the same period (P<0.05).RM:常规稻作模式 Rice monoculture system;RC:稻虾共作模式 Rice-crayfish co-culture system.下同。The same as follows.
由
地点 Site(S) | 处理 Treatment(T) | Cr | As | Cd | Pb | Hg |
---|---|---|---|---|---|---|
荆门 Jingmen | 常规稻作模式 RM | 62.50±7.77a | 5.48±0.34a | 0.09±0.010a | 29.30±1.27a | 0.027±0.004a |
稻虾共作模式 RC | 61.50±3.87a | 3.71±0.91b | 0.07±0.001b | 25.90±0.78b | 0.022±0.003a | |
浠水 Xishui | 常规稻作模 RM | 47.10±0.80b | 0.25±0.01b | 0.09±0.004a | 31.60±1.75b | 0.048±0.004b |
稻虾共作模式 RC | 63.00±4.87a | 0.58±0.05a | 0.11±0.01a | 38.20±1.48a | 0.059±0.002a | |
地点 S | ns | ** | * | ** | ** | |
处理 T | ns | ns | ns | ns | ns | |
地点×处理 S×T | * | ** | ** | ** | * |
注: 同一列内同一地点不同小写字母表示不同处理间差异显著(P<0.05)。*表示在0.05水平差异显著;**表示在0.01水平差异显著;ns表示差异不显著。Note: Different lowercase letters in the same column indicate significant differences among different treatments in the same site(P<0.05);*P<0.05;**P<0.01;ns,no significant diffence.
1)水稻根部重金属含量的差异特征。由

图2 不同地区不同品种水稻根中Cd、Pb含量
Fig.2 Cd and Pb content in rice roots of different rice varieties in different regions
XWX: 湘晚籼12号 Xiangwanxian 12; HHZ:黄华占Huanghuazhan;YZX:玉针香Yuzhenxiang;A:荆门不同品种水稻根中Cd含量 Cd content of different varieties of rice roots in Jingmen;B:浠水不同品种水稻根中Cd含量 Cd content of different varieties of rice roots in Xishui;C:荆门不同品种水稻根中Pb含量 Pb content of different varieties of rice roots in Jingmen;D:浠水不同品种水稻根中Pb含量 Pb content of different varieties of rice roots in Xishui;不同小写字母表示不同品种不同处理间差异显著(P<0.05)。 Different lowercase letters indicate that there are significant differences between different varieties and different treatments(P<0.05).
2)水稻茎、叶、穗中重金属含量的差异特征。由

图3 不同地区不同品种水稻茎叶穗中Cd、Pb含量
Fig.3 Cd and Pb content in stems, leaves and spikes of different varieties of rice in different regions
A:荆门不同品种水稻茎叶穗中Cd含量;B:浠水不同品种水稻茎叶穗中Cd含量;C:荆门不同品种水稻茎叶穗中Pb含量;D:浠水不同品种水稻茎叶穗中Pb含量。不同小写字母表示不同品种相同部位不同处理间差异显著(P<0.05)。A: Cd content in stems, leaves and spikes of different varieties of rice in Jingmen; B:Cd content in stems, leaves and spikes of different varieties of rice in Xishui; C:Pb content in stems, leaves and spikes of different varieties of rice in Jingmen; D:Pb content in stems, leaves and spikes of different varieties of rice in Xishui. Different lowercase letters indicate that there are significant differences between different varieties and different treatments(P<0.05).
浠水试验区稻虾共作模式下,与常规稻作模式相比,不同品种水稻茎叶穗中Cd含量均呈升高趋势,茎、叶、穗中Pb含量均呈显著降低趋势,其中湘晚籼12号和玉针香茎中Cd含量分别增加了20.6%和35.5%,茎中Pb含量显著降低了9.6%和22.2%;湘晚籼12号和玉针香叶中Cd含量分别增加了100%和46.9%,叶中Pb含量与常规稻作模式相比显著降低了35.4%和26.7%;黄华占穗中Cd含量显著增加了13.6%,穗中Pb含量显著降低了17.0%(
3)糙米中重金属含量的差异特征。由

图4 不同地区不同品种水稻糙米中Cd、Pb含量
Fig.4 Cd and Pb content in brown rice of different rice varieties in different regions
A:荆门不同品种水稻糙米Cd含量;B:浠水不同品种水稻糙米Cd含量;C:荆门不同品种水稻糙米Pb含量;D:浠水不同品种水稻糙米Pb含量。不同小写字母表示不同品种不同处理间差异显著(P<0.05)。A: Cd content of different varieties of rice in Jingmen;B: Cd content of different varieties of rice in Xishui; C:Pb content of different varieties of rice in Jingmen; D:Pb content of different varieties of rice in Xishui.Different lowercase letters indicate that there are significant differences between different varieties and different treatments(P<0.05).
不同土壤背景条件下,稻虾共作模式对水稻收获后土壤中重金属的影响不同。土壤作为作物生长的主要介质,其成分和作物的生长密切相关。土壤pH、氧化还原电位(Eh)、有机质含量(SOM)、阳离子交换量(CEC)、碳酸钙、粘土矿物和铁锰化合物含量等是影响土壤中重金属的含量、形态的变化以及移动性的关键土壤理化因
在本研究中,弱碱性土壤(荆门试验区)条件下,由于土壤pH呈升高趋势,导致稻虾共作模式0~20 cm土壤中Cr、As、Cd、Pb和Hg含量与常规稻作模式相比呈降低趋势,其中As、Cd和Pb含量的降低达到显著水平;在弱酸性土壤(浠水试验区)条件下,土壤pH值降低,稻虾共作模式0~20 cm土壤中Cr、As、Cd、Pb和Hg含量与常规稻作模式相比呈升高趋势,其中Cr、As、Pb和Hg含量的升高达到显著水平。
稻虾共作模式对不同土壤背景下水稻不同部位中重金属含量的影响不同。许多研究表明,水稻不同部位中Cd和Pb的含量呈显著正相
本研究中,在弱碱性土壤(荆门试验区)条件下,与常规稻作模式相比,水稻根部对土壤中Cd、Pb吸收减少,根部Cd、Pb含量均呈显著降低趋势;在弱酸性土壤(浠水试验区)条件下,与常规稻作模式相比,根部Cd、Pb含量均呈显著上升趋势。这与土壤中Cd、Pb的变化是一致的。地上部通过根将土壤中重金属吸收转移进入地上部,重金属活性与水稻吸收能力决定了地上部含
本研究通过在不同酸碱背景地区进行大田试验,调查分析稻虾共作模式与稻单模式中3个不同水稻品种与不同重金属含量的差异。土壤pH是影响土壤重金属有效性的重要环境因
参考文献References
REFAEY Y,JANSEN B,PARSONS J R,et al.Effects of clay minerals,hydroxides,and timing of dissolved organic matter addition on the competitive sorption of copper,nickel,and zinc:a column experiment[J].Journal of environmental management,2017,187:273-285. [百度学术]
TAORAN S,MA J,ZHANG Y,et al,Status of lead accumulation in agricultural soils across China (1979-2016)[J].Environment international,2019,129:35-41. [百度学术]
李广云,曹永富,赵书民,等.土壤重金属危害及修复措施[J].山东林业科技,2011(6):96-101. LI G Y,CAO Y F,ZHAO S M,et al. Harm of soil heavy metals and remediation measure[J]. Shandong forestry science and technology,2011(6): 96-101 (in Chinese with English abstract). [百度学术]
周宗灿. 环境医学[M]. 北京: 中国环境科学出版社,2001:36-37. ZHOU Z C. Environmental medicine[M].Beijing:China Environmental Science Press,2001:36-37(in Chinese). [百度学术]
曹凑贵,江洋,汪金平,等.稻虾共作模式的“双刃性”及可持续发展策略[J].中国生态农业学报,2017,25(9):1245-1253.CAO C G,JIANG Y,WANG J P,et al.“Dual character” of rice-crayfish culture and strategies for its sustainable development[J].Chinese journal of eco-agriculture,2017,25(9):1245-1253 (in Chinese with English abstract). [百度学术]
JIANG Y,CAO C G.Crayfish-rice integrated system of production:an agriculture success story in China:a review[J/OL].Agronomy for sustainable development,2021,41(5):68[2022-04-30].https://doi.org/10.1007/s13593-021-00724-w. [百度学术]
李丽娜,闫淋淋, 曹凑贵,等.稻虾共作系统中水稻生长及养分吸收对秸秆还田与投食的响应[J]. 华中农业大学学报,2020,39(2):8-16.LI L N , YAN L L, CAO C G,et al.Effects of straw returning and crayfish feeding on rice growth and nutrient uptake in rice-crayfish ecosystem[J]. [J].Journal of Huazhong Agricultural University,2020,39(2):8-16(in Chinese with English abstract). [百度学术]
佀国涵.长期稻虾共作模式下稻田土壤肥力变化特征研究[D].武汉:华中农业大学,2017.SI G H.Study on change characteristics of soil fertility in paddy fields under long-term integrated rice-crayfish model[D].Wuhan:Huazhong Agricultural University,2017 (in Chinese with English abstract). [百度学术]
YUAN P L ,WANG J P,LI C F,et al. Soil quality indicators of integrated rice-crayfish farming in the Jianghan Plain,China using a minimum data set[J/OL]. Soil and tillage research,2020,204:104732[2022-04-30].https://doi.org/10.1016/j.still.2020.104732. [百度学术]
SUKREEYAPONGSE O,HOLM P E,STROBEL B W,et al.pH-dependent release of cadmium,copper,and lead from natural and sludge-amended soils[J].Journal of environmental quality,2002,31(6):1901-1909. [百度学术]
TAN Y F,PENG B,WU Y L,et al. Human health risk assessment of toxic heavy metal and metalloid intake via consumption of red swamp crayfish (Procambarus clarkii) from rice-crayfish co-culture fields in China[J/OL]. Food control,2021,128:108181[2022-04-30].https://doi.org/10.1016/j.foodcont.2021.108181. [百度学术]
YE X X,MA Y B,SUN B.Influence of soil type and genotype on Cd bioavailability and uptake by rice and implications for food safety[J].Journal of environmental sciences (China),2012,24(9):1647-1654. [百度学术]
KASHEM M A,SINGH B R.Metal availability in contaminated soils:I.Effects of floodingand organic matter on changes in Eh,pH and solubility of Cd,Ni and Zn[J].Nutrient cycling in agroecosystems,2001,61(3):247-255. [百度学术]
ANTONIADIS V,ROBINSON J S,ALLOWAY B J.Effects of short-term pH fluctuations on cadmium,nickel,lead,and zinc availability to ryegrass in a sewage sludge-amended field[J].Chemosphere,2008,71(4):759-764. [百度学术]
HONMA T,OHBA H,KANEKO-KADOKURA A,et al.Optimal soil eh,pH,and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J].Environmental science & technology,2016,50(8):4178-4185. [百度学术]
刘军,谢祥林,严维辉,等.克氏原螯虾稻田高效生态养殖试验总结[J].水产养殖,2011,32(5):37-38.LIU J,XIE X L,YAN W H,et al.Experimental summary on efficient ecological culture of Procambarus clarkii in paddy field[J].Journal of aquaculture,2011,32(5):37-38 (in Chinese with English abstract). [百度学术]
ZENG F R,ALI S,ZHANG H T,et al.The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J].Environmental pollution,2011,159(1):84-91. [百度学术]
杨秀敏,任广萌,李立新,等.土壤pH值对重金属形态的影响及其相关性研究[J].中国矿业,2017,26(6):79-83.YANG X M,REN G M,LI L X,et al.Effect of pH value on heavy metals form of soil and their relationship[J].China mining magazine,2017,26(6):79-83 (in Chinese with English abstract). [百度学术]
ZENG P,GUO Z H,XIAO X Y,et al.Response to cadmium and phytostabilization potential of Platycladus orientalis in contaminated soil[J].International journal of phytoremediation,2018,20(13):1337-1345. [百度学术]
孙花,谭长银,黄道友,等.土壤有机质对土壤重金属积累、有效性及形态的影响[J].湖南师范大学自然科学学报,2011,34(4):82-87.SUN H,TAN C Y,HUANG D Y,et al.Effects of soil organic matter on the accumulation,availability and chemical speciation of heavy metal[J].Journal of natural science of Hunan Normal University,2011,34(4):82-87 (in Chinese with English abstract). [百度学术]
黄昌勇.土壤学[M].北京:中国农业出版社,2000.HUANG C Y.Soil science[M].Beijing:China Agriculture Press,2000(in Chinese). [百度学术]
AMERY F,SMOLDERS E.Unlocking fixed soil phosphorus upon waterlogging can be promoted by increasing soil cation exchange capacity[J].European journal of soil science,2012,63(6):831-838. [百度学术]
赵迪.不同水稻品种对土壤铅镉吸收分配差异研究[D].武汉:华中农业大学,2016.ZHAO D.Study on the difference of absorption and distribution of lead and cadmium in soil by different rice varieties[D].Wuhan:Huazhong Agricultural University,2016 (in Chinese with English abstract). [百度学术]
ZHOU H,ZHU W,YANG W T,et al.Cadmium uptake,accumulation,and remobilization in iron plaque and rice tissues at different growth stages[J].Ecotoxicology and environmental safety,2018,152:91-97. [百度学术]
SIDDIQUE B A,RAHMAN M M,ISLA MR,et al.Influences of soil pH,iron application and rice variety on cadmium distribution in rice plant tissues[J/OL].Science of the total environment,2022,810:152296[2022-04-30].https://doi.org/10.1016/j.scitotenv.2021.152296. [百度学术]