摘要
为探究土壤质地对天然湿地土壤有机碳含量的影响,以鄱阳湖泗洲头湿地为研究对象,利用激光粒度分析仪测定苔草(Carex cinerascens)、南荻(Triarrhena lutarioriparia)、芦苇(Phragmites australis)、荻(Miscanthus sacchariflorus)和狗牙根(Cynodon dactylon)5种优势植被下的表层(0~20 cm)和下层(20~40 cm)土壤粒度组成,采用Folk-Ward公式计算土壤粒度参数,分析土壤粒度分布特征,利用结构方程模型(structural equation model,SEM)和Pearson相关性探讨土壤粒度组成与土壤有机碳的关系。结果表明,鄱阳湖泗洲头湿地土壤质地以粉黏土和砂壤土为主,分选性较差。粉黏土质地组成主要以粉粒(67.76%~79.28%)为主,平均粒径(Mz)为6.91 Φ,粒度频率曲线为双峰或三峰分布;砂壤土质地组成主要以细砂(32.90%~56.55%)为主,Mz为3.00 Φ,粒度频率曲线为单峰分布。粉黏土土壤有机碳含量为(10.52±3.86) g/kg,显著高于砂壤土土壤有机碳含量((1.67±1.66) g/kg)。土壤质地对土壤有机碳含量具有直接影响,黏粒、粉粒和砂粒均是影响土壤有机碳含量的重要影响因子。研究区黏粒与粉粒对土壤有机碳的固持能力显著高于砂粒,因此,对鄱阳湖湿地进行保护时应重视土壤质地对固碳的影响。
土壤粒径分布特征是影响土壤吸附能力和土壤有机碳变化的重要因素,细小的矿物颗粒与有机质相结合能减缓有机质的分解,其吸附能力强弱直接对土壤有机碳含量产生影
鄱阳湖是中国最大淡水湖泊,受到流域内五河来水与长江顶托的共同作用,年内水位变化幅度约8~22 m,其独特的水文节律形成了大片水陆交替的洲滩湿
因此,本研究以鄱阳湖泗洲头湿地为研究对象,研究不同植被下的土壤粒度组成,揭示土壤粒度分布特征及其对土壤有机碳的影响,以期为泗洲头湿地固碳能力提升和湿地生态保护和修复提供科学依据。
研究区泗洲头湿地位于以吴城为中心的鄱阳湖国家自然保护区,气候属亚热带季风气候,年降水量超过1 500 m
选取鄱阳湖泗洲头湿地的5种典型优势植被:苔草、南荻、芦苇、荻和狗牙根。每种植被设置4个样方,每个样方范围约200
土壤样本预处理:根据土质称取一定量的土样,粉黏土取0.2 g,砂壤土取5 g;每份样本加入10 mL 10% H2O2去除土壤有机质,直至反应至不产生气泡为止;随后加入10 mL 10%的盐酸,反应至不产生气泡以去除无机盐;反应结束后放入由纯水机制得的纯水对样品进行洗涤(清洗过程重复3次),并静置12 h;最后向每个放有样品的烧杯中加入10 mL 0.05 mol/L六偏磷酸钠溶液,摇匀后进行粒径测试。
土壤粒度测定和分级:土样预处理后,采用Mastersizer 2000激光粒度分析仪进行粒度分析,测量范围0.02~2 000 μm。每个样品重复测试3次,取其平均值作为结果,土壤粒径分级采用美国制土壤粒级标
土壤理化性质的分析测试参考文献[
将粒度测量结果转换为等比制粒级Ф,Ф值计算公式为:
(1) |
式中:D为各土壤粒度累积体积分数对应的颗粒直径。
采用Folk-Ward公
(2) |
(3) |
(4) |
(5) |
式中:为粒度累积到所对应的粒径。
Mz是反映土壤粒度平均状况的参数,Mz越大则细物质越多;Sd反映土壤粒径分布的分散程度,分为7个分选级别,分选极好(Sd≤0.35)、分选好(0.35<Sd≤0.50)、分选较好(0.50<Sd≤0.71)、分选中等(0.71<Sd≤1.00)、分选较差(1.00<Sd≤2.00)、分选差(2.00<Sd≤4.00)、分选极差(4.00<Sd);SK反映土壤粒度分布的对称性,分为5个等级,极负偏(-1.00≤SK≤-0.30)、负偏(-0.30<SK≤-0.10)、近于对称(-0.10<SK≤0.10)、正偏(0.10<SK≤0.30)、极正偏(0.30<SK≤1.00);Kg反映土壤粒度的集中程度,分为6个等级,很宽平(Kg≤0.67)、宽平(0.67<Kg≤0.90)、中等(0.90<Kg≤1.11)、尖窄(1.11<Kg≤1.56)、很尖窄(1.56<Kg≤3.00)、极尖窄(3.00<Kg
鄱阳湖泗洲头湿地土壤以砂壤土和粉黏土为主,其中苔草和南荻分布的土壤主要为粉黏土,芦苇、荻、狗牙根则倾向于在砂壤土中生长(表
植被 Vegetation | 黏粒 Clay | 粉粒 Slit | |||||
---|---|---|---|---|---|---|---|
极细砂Very fine sand | 细砂Fine sand | 中砂Middle sand | 粗砂Coarse sand | 极粗砂Very coarse sand | |||
苔草 Carex cinerascens | 12.97±1.20a | 78.03±3.00a | 6.19±3.37b | 0.86±0.46b | 1.19±1.06b | 0.77±0.68a | 0.00±0.00a |
南荻 Triarrhena lutarioriparia | 13.58±1.45a | 74.59±2.29a | 10.30±2.42b | 1.53±1.15b | 0.00±0.00b | 0.00±0.00a | 0.00±0.00a |
芦苇 Phragmites australis | 1.61±0.98b | 11.02±4.58b | 19.27±4.92a | 52.83±4.11a | 14.94±6.49a | 0.33±0.30a | 0.02±0.04a |
荻 Miscanthus sacchariflorus | 1.09±0.29b | 7.64±2.16b | 19.09±4.04a | 55.64±4.12a | 14.97±5.08a | 1.24±1.17a | 0.35±0.49a |
狗牙根 Cynodon dactylon | 1.19±0.16b | 9.01±2.10b | 22.30±1.55a | 54.68±4.90a | 11.74±0.92a | 0.88±0.87a | 0.20±0.14a |
注: 不同小写字母表示粒度组成在不同植被之间差异显著(P<0.05)。下同。Notes: Different lowercase letters indicate significant differences in grain size distribution under different vegetation(P<0.05). The same as below.
植被 Vegetation | 黏粒 Clay | 粉粒 Slit | |||||
---|---|---|---|---|---|---|---|
极细砂Very fine sand | 细砂Fine sand | 中砂Middle sand | 粗砂Coarse sand | 极粗砂Very coarse and | |||
苔草 Carex cinerascens | 14.69±0.68a | 73.62±3.44a | 8.59±1.79c | 1.60±1.10c | 0.88±0.90c | 0.63±0.58ab | 0.00±0.00b |
南荻 Triarrhena lutarioriparia | 14.32±2.43a | 77.30±8.72a | 6.98±7.89c | 1.40±2.41c | 0.00±0.00c | 0.00±0.00b | 0.00±0.00b |
芦苇 Phragmites australis | 1.93±0.99b | 14.70±7.26b | 30.57±4.46a | 46.18±9.65b | 5.65±2.92bc | 0.80±0.28ab | 0.18±0.13ab |
荻 Miscanthus sacchariflorus | 0.95±0.21b | 7.02±1.45b | 19.06±6.99b | 55.49±1.14a | 15.70±6.89a | 1.58±1.17a | 0.21±0.13a |
狗牙根 Cynodon dactylon | 1.42±0.25b | 11.56±2.12b | 24.95±6.51ab | 47.75±1.16ab | 12.49±8.05ab | 1.75±0.86a | 0.07±0.13ab |
芦苇、荻、狗牙根植被下的表层(0~20 cm)与下层(20~40 cm)土壤粒度组成一致,均以砂壤土为主,其中,细砂含量所占比例最大,可达32.90%~56.55%,极细砂含量达12.46%~34.61%,中砂含量达3.04%~24.41%,最低的是黏粒、粗砂和极粗砂(<4%)。
方差分析结果显示,苔草和南荻植被下的土壤黏粒与粉粒含量显著高于芦苇、荻和狗牙根(P<0.05),而前者极细砂、细砂、中砂的含量显著低于后者(P<0.05),不同植被下土壤粗砂和极粗砂含量差异不显著(P>0.05)。结果表明不同植被类型对土壤质地具有选择性和适应性。
土壤粒度参数表明(
植被类型 Vegetation type | 平均粒径/Φ Mz | 分选系数 Sd | 偏度 SK | 峰度 Kg |
---|---|---|---|---|
苔草 Carex cinerascens | 6.89±0.13a | 1.87±0.12a | -0.03±0.03c | 1.05±0.17b |
南荻 Triarrhena lutarioriparia | 6.76±0.23a | 1.98±0.06a | -0.04±0.04c | 0.89±0.08b |
芦苇 Phragmites australis | 3.00±0.35b | 1.29±0.28b | 0.33±0.09a | 1.65±0.10a |
荻 Miscanthus sacchariflorus | 2.83±0.16b | 1.13±0.16b | 0.24±0.02b | 1.62±0.12a |
狗牙根 Cynodon dactylon | 2.97±0.06b | 1.16±0.11b | 0.25±0.03ab | 1.64±0.07a |
植被类型 Vegetation type | 平均粒径/Φ Mz | 分选系数 Sd | 偏度 SK | 峰度 Kg |
---|---|---|---|---|
苔草 Carex cinerascens | 6.90±0.19a | 2.02±0.13a | -0.12±0.02d | 1.05±0.17b |
南荻 Triarrhena lutarioriparia | 7.10±0.58a | 1.75±0.35a | -0.02±0.03c | 0.89±0.08b |
芦苇 Phragmites australis | 3.37±0.37b | 1.25±0.22b | 0.30±0.06a | 1.65±0.10a |
荻 Miscanthus sacchariflorus | 2.80±0.24b | 1.07±0.02b | 0.22±0.05b | 1.62±0.12a |
狗牙根 Cynodon dactylon | 3.06±0.27b | 1.26±0.05b | 0.26±0.02ab | 1.64±0.07a |
Pearson相关性分析显示,泗洲头土壤Sd和Mz呈显著正相关(r=0.924),其分选性随着Mz增大而变差;土壤SK和Mz呈显著负相关(r=-0.866),其SK随着Mz变小从极对称到极正偏;土壤Kg和Mz呈显著负相关(r=-0.922),其Kg随着Mz越小而越尖锐。
泗洲头不同植被类型下的土壤粒度自然频率曲线表现为不一致的规律(

图1 不同植被类型的表层(A)和下层(B)土壤粒度频率曲线
Fig.1 Frequency curve of topsoil(A) and subsoil(B) grain size under different types of vegetation
土壤粒度概率累积曲线表明(

图2 不同植被类型的表层(A)和下层(B)土壤粒度概率累积曲线
Fig.2 Probability cumulative curves of topsoil(A) and subsoil(B) grain size under different types of vegetation
不同植被类型的表层(0~20 cm)与下层(20~40 cm)土壤有机碳含量分别为0.82~17.53 g/kg和0.43~8.30 g/kg,随着土层的下降呈现下降趋势(

图3 泗洲头不同植被类型下土壤有机碳分布
Fig.3 Distribution of soil organic carbon content under different types of vegetation in Sizhoutou
1.苔草 Carex cinerascens; 2.南荻 Triarrhenalutarioriparia; 3.芦苇 Phragmites australis; 4.荻 Miscanthus sacchariflorus; 5.狗牙根 Cynodon dactylon.
;不同大写字母表示不同植被的下层土壤(20~40 cm)之间差异显著;不同小写字母表示不同植被的表层土壤(0~20 cm)之间差异显著。Different capital letters represent significant differences among subsoil(20-40 cm) under different vegetation(P<0.05); different lowercase letters represent significant differences among topsoil(0-20 cm) under different vegetation(P<0.05).
方差分析显示,苔草和南荻2种植被表层(0~20 cm)土壤有机碳含量无显著性差异(P>0.05),下层(20~40 cm)土壤有机碳含量表现为苔草显著高于南荻(P<0.05),芦苇、荻和狗牙根3种植被下土壤有机碳含量在2种土层中均无显著性差异(P>0.05)。苔草和南荻下的粉黏土2种土层土壤有机碳含量平均值为(10.52±3.86) g/kg,显著高于芦苇、荻和狗牙根下的砂壤土土壤有机碳含量(P<0.05),砂壤土平均为(1.67±1.66) g/kg。
Pearson相关性分析显示,土壤有机碳含量与黏粒和粉粒呈极显著正相关,相关系数分别为0.83
结构方程模型(SEM)显示土壤质地、土层深度、TN、植被类型、pH、CEC、土壤有机碳之间拟合良好(

图4 土壤质地、植被类型及其他土壤性质对土壤有机碳影响的结构方程模型
Fig.4 Structural equation model(SEM) on how soil texture, vegetation types and other soil properties affect the soil organic carbon
土壤粒度分布特征与其沉积环境有关。本研究中,苔草和南荻下的土壤质地为粉黏土,质地较细,沉积物分选性较差,土壤粒度分布曲线显示为双峰或三峰分布。生长苔草和南荻的土壤粒度累积曲线存在明显差异,苔草表层(0~20 cm)和下层(20~40 cm)土壤蠕移组高于南荻,表明其受水动力影响更显著;粉黏土粒度分布曲线存在多个峰尖则可能是由于粉黏土母质风化程度较高,黏粒和粉粒的粒径小、质量轻,在鄱阳湖枯水季洲滩出露后会被风力吹蚀搬
结构方程模型表明,土层深度和土壤质地对土壤有机碳含量具有直接影响,植被类型和pH具有间接影响。在同一粒径下,随着土层深度增加,土壤有机碳含量呈下降趋势,有机碳含量垂直分布特征主要受植被净初级生产力以及枯落物分解速率的影响。土壤质地对土壤有机碳具有直接影响是因为更细的土壤粒度组分能结合更多有机碳,土壤有机碳的稳定性指数随着土壤颗粒增大而降
综上,粉黏土和砂壤土是鄱阳湖泗洲头湿地主要土壤质地类型,土壤粒度组成分别以粉粒(67.76%~79.28%)和细砂(32.90%~56.55%)为主,土壤有机碳含量分别为(10.52±3.86)、(1.67±1.66) g/kg,受水动力影响沉积物分选性较差。增加黏粒和粉粒2种粒级的含量有利于土壤有机碳固存,未来泗洲头湿地保护的过程中应注重改善土壤质地。本研究对土壤粒度及其对土壤有机碳的影响进行了分析,对湿地生态保护和修复具有一定的指导意义,但季节变化、人为因素对泗洲头湿地土壤有机碳的影响仍需进一步探讨。
参考文献References
刘锐,马腾,邱文凯,等.江汉平原黏土沉积物粒径与有机碳分布特征[J].环境科学与技术,2019,42(4):194-201.LIU R,MA T,QIU W K,et al.Distribution characteristics of particle size and organic carbon in clay sediments in Jianghan Plain[J]. Environmental science & technology,2019,42(4):194-201(in Chinese with English abstract). [百度学术]
宋炎炎,张奇,姜三元,等.鄱阳湖湿地地下水埋深及其与典型植被群落分布的关系[J].应用生态学报,2021,32(1):123-133.SONG Y Y,ZHANG Q,JIANG S Y,et al.Groundwater depth and its relation with typical vegetation distribution in the Poyang Lake wetland,China[J].Chinese journal of applied ecology,2021,32(1):123-133(in Chinese with English abstract). [百度学术]
李云良,许秀丽,赵贵章,等.鄱阳湖典型洲滩湿地土壤质地与水分特征参数研究[J].长江流域资源与环境,2016,25(8):1200-1208.LI Y L,XU X L,ZHAO G Z,et al.Research on soil texture and soil-water characteristic parameters in a typical wetland of Poyang Lake[J].Resources and environment in the Yangtze Basin,2016,25(8):1200-1208(in Chinese with English abstract). [百度学术]
崔乾,苗雨青,周光,等.鄱阳湖湿地典型植被群落土壤养分有效性特征[J].安徽师范大学学报(自然科学版),2020,43(1):80-85.CUI Q,MIAO Y Q,ZHOU G,et al.The characteristics of soil available nutrients under typical plant communities in Poyang Lake wetland[J].Journal of Anhui Normal University (natural science),2020,43(1):80-85(in Chinese with English abstract). [百度学术]
张广帅,于秀波,张全军,等.鄱阳湖湿地土壤微生物群落结构沿地下水位梯度分异特征[J].生态学报,2018,38(11):3825-3837.ZHANG G S,YU X B,ZHANG Q J,et al.Variation in the distribution of soil microbial community structure along ground water level gradients in the Poyang Lake Wetland[J].Acta ecologica sinica,2018,38(11):3825-3837(in Chinese with English abstract). [百度学术]
谢冬明,周国宏,陈亚云,等.鄱阳湖湿地泗洲头洲滩浅层土壤氮素的时空特征[J].江西师范大学学报(自然科学版),2017,41(2):160-167.XIE D M,ZHOU G H,CHEN Y Y,et al.The temporal-spatial characteristics for N in surface soil in sizhoutou marshland of Poyang Lake wetlands[J].Journal of Jiangxi Normal University (natural science edition),2017,41(2):160-167(in Chinese with English abstract). [百度学术]
钱海燕,周杨明,谢冬明,等.鄱阳湖季节性积水湿地表层土壤碳氮高程梯度分布特征及其影响因素[J].江西农业大学学报,2021,43(5):1199-1210.QIAN H Y,ZHOU Y M,XIE D M,et al.Distribution characteristics of surface soil carbon and nitrogen along with the elevation gradient and their influencing factors in seasonal waterlogged wetlands of Poyang Lake[J].Acta Agriculturae Universitatis Jiangxiensis,2021,43(5):1199-1210(in Chinese with English abstract). [百度学术]
赵鹏,朱淑娟,段晓峰,等.民勤绿洲边缘阻沙带表层土壤粒度空间分布特征[J].干旱区研究,2021,38(5):1335-1345.ZHAO P,ZHU S J,DUAN X F,et al.Spatial distribution characteristics of grain size of surface soil in the sand-resitant belt of Minqin Oasis marginal[J].Arid zone research,2021,38(5):1335-1345(in Chinese with English abstract). [百度学术]
鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:1-638.LU R K.Agricultural chemical analysis method of soil[M].Beijing: China Agriculture Scientech Press,2000:1-638(in Chinese). [百度学术]
FOLK R L,WARD W C.Brazos River bar;a study in the significance of grain size parameters[J].Journal of sedimentary research,1957,27(1):3-26. [百度学术]
崔健,党晓宏,汪季,等.不同规格可降解沙障铺设5年后土壤粒度及有机质特征[J].水土保持研究,2022,29(2):92-98.CUI J,DANG X H,WANG J,et al.Characteristics of soil particle size and organic matter after five years of laying different specifications of degradable sand barriers[J].Research of soil and water conservation,2022,29(2):92-98(in Chinese with English abstract). [百度学术]
陈红霞,包翔,刘果厚,等.荒漠草原药用植物生境土壤养分与土壤粒径分析[J].北方农业学报,2020,48(6):62-67.CHEN H X,BAO X,LIU G H,et al.Analysis of soil nutrients and soil particle size characteristics of medicinal plants habitat in desert steppe[J].Journal of northern agriculture,2020,48(6):62-67(in Chinese with English abstract). [百度学术]
石唯康,董治宝,梁爱民,等.锁阳城镇东南部雅丹沉积物粒度特征及环境意义[J].干旱区资源与环境,2021,35(10):141-148.SHI W K,DONG Z B,LIANG A M,et al.Grain-size characteristics and environmental significance of long ridge shaped Yardangs in the southeast Suoyang town,China[J].Journal of arid land resources and environment,2021,35(10):141-148(in Chinese with English abstract). [百度学术]
安庆,安萍,徐汝汝,等.青藏高原不同地区沉积物的粒度特征与沉积环境判别公式适用性对比研究[J].聊城大学学报(自然科学版),2017,30(4):37-47.AN Q,AN P,XU R R,et al.Comparative study on grain size characteristics of sediments in different regions of the Tibetan Plateau and the applicability of sedimentary environment discriminant formulas[J].Journal of Liaocheng University (natural science edition),2017,30(4):37-47(in Chinese with English abstract). [百度学术]
董延钰,金芳,黄俊华.鄱阳湖沉积物粒度特征及其对形成演变过程的示踪意义[J].地质科技情报,2011,30(2):57-62.DONG Y Y,JIN F,HUANG J H.Poyang lake sediments grain size characteristics and its tracing implication for formation and evolution processes[J].Geological science and technology information,2011,30(2):57-62(in Chinese with English abstract). [百度学术]
FU Z H,HU W,BEARE M,et al.Land use effects on soil hydraulic properties and the contribution of soil organic carbon[J/OL].Journal of hydrology,2021,602:126741[2022-09-30].https://doi.org/10.1016/j.jhydrol.2021.126741. [百度学术]
安芳娇,苏永中,牛子儒,等.干旱区流动沙地建植梭梭(Haloxylon ammodendron)林后细粒物质输入对土壤碳氮积累的影响[J].中国沙漠,2021,41(5):147-156.AN F J,SU Y Z,NIU Z R,et al.Effects of fine particulate matter input on soil carbon and nitrogen accumulation after establishment of Haloxylon ammodendron plantations on shifting sand dunes in arid area[J].Journal of desert research,2021,41(5):147-156(in Chinese with English abstract). [百度学术]
JI H,HAN J G,XUE J M,et al.Soil organic carbon pool and chemical composition under different types of land use in wetland:implication for carbon sequestration in wetlands[J].Science of the total environment,2020,716:136996[2022-09-30].https://doi.org/10.1016/j.scitotenv.2020.136996. [百度学术]
曹昀,杨杰,朱悦,等.鄱阳湖沙化土地湿地松人工林碳蓄积量研究[J].生态环境学报,2016,25(1):15-21.CAO Y,YANG J,ZHU Y,et al.Study on carbon storage of Pinus elliottii artificially forests in sandy desertification of Poyang Lake[J].Ecology and environmental sciences,2016,25(1):15-21(in Chinese with English abstract). [百度学术]
YIN S,BAI J H,WANG W,et al.Effects of soil moisture on carbon mineralization in floodplain wetlands with different flooding frequencies[J].Journal of hydrology,2019,574:1074-1084. [百度学术]
金奇,吴琴,钟欣孜,等.鄱阳湖湿地水位梯度下不同植物群落类型土壤有机碳组分特征[J].生态学杂志,2017,36(5):1180-1187.JIN Q,WU Q,ZHONG X Z,et al.Soil organic carbon and its components under different plant communities along a water table gradient in the Poyang Lake wetland[J].Chinese journal of ecology,2017,36(5):1180-1187(in Chinese with English abstract). [百度学术]
陈良帅,黄新亚,薛丹,等.川西高原泥炭沼泽土壤有机碳分布特征及其影响因素[J].应用与环境生物学报,2022,28(2):267-275.CHEN L S,HUANG X Y,XUE D,et al.Distribution characteristics of soil organic carbon and its influencing factors in the peatlands of Western Sichuan Plateau,China[J].Chinese journal of applied and environmental biology,2022,28(2):267-275(in Chinese with English abstract). [百度学术]