摘要
为高值化利用鲢鱼鳞加工制备鱼鳞冻预制菜,采用响应面实验设计法研究熬煮温度、熬煮时间、卡拉胶用量、水鳞比4个变量对得率、凝胶强度的影响,优化鲢鱼鳞冻的熬煮加工工艺参数,并采用差示扫描量热法、核磁成像和动态流变等方法研究鱼鳞冻的凝胶特性。结果显示,对鱼鳞冻得率和凝胶强度影响最大的因素为水鳞比。随着水鳞比增加,鱼鳞冻的得率逐渐增加,而凝胶强度逐渐下降。针对得率及凝胶强度进行综合评分,得到优化后的熬煮工艺条件为:以水和鱼鳞的总质量为100%计,水鳞比3∶1,熬煮温度80 ℃,熬煮时间90 min,卡拉胶用量1%,经过验证试验,得到鱼鳞胶产品的得率3.62%,凝胶强度为206.59 g·mm,综合加权分为145.699。鱼鳞冻中自由水比例超过89%,融化温度为24~28 ℃。随着水鳞比的增加,自由水含量逐渐增加,移动性增强;弹性模量和热焓值逐渐下降。结果表明,鲢鱼鳞可用于新型凝胶类预制菜加工。
鲢是我国“四大淡水鱼”之一,为滤食性鱼类,具有生长速度快、抗病能力强、可改善水质的优点,常与其他鱼类混合养殖。2021年我国鲢产量约384万
“预制菜”是指是一类通过现代化、标准化方式集中生产,再经冷冻或真空包装储存,以“半成品”状态销售的菜。淡水鱼预制菜因食用方便,受到众多消费者的青睐,市场份额逐步增加,具有广阔的市场前景。预制菜行业的蓬勃发展,为鱼鳞冻的流通提供了条件。
鲢主要用于鱼糜加工,其副产物中的鱼鳞易集中回收、清洁度高,适合用于鱼冻预制菜加工。从鱼鳞中提取的胶原蛋白经加工制成鱼鳞冻,安全营养,含有大量水溶性胶原蛋白,有补钙、美容、强身、健脑的功效,与其他胶原蛋白相比,鱼鳞冻更易被人体消化吸收,且制作工艺简单,无需大型设备即可完成。顾杨娟
然而,目前未见鲢鱼鳞冻预制菜加工工艺和特性研究的相关报道。因此,本研究采用响应面试验设计方法,以得率和凝胶强度为目标参数,对鲢鱼鳞冻熬煮工艺进行优化,进一步对制备的鲢鱼鳞冻的凝胶特性进行表征,以期为鲢鱼鳞的增值利用提供参考依据。
数显恒温水浴锅,上海力辰邦西仪器科技有限公司;YP 30002电子天平,上海衡际科学仪器有限公司;TA-XT plus型质构仪,英国Stable Micro System公司;DSC204型差示量热扫描仪,德国耐驰公司;NMI20-025V-I低场核磁共振(low frequency nuclear magnetic resonance, LF-NMR)仪,苏州纽曼分析仪器股份有限公司;AR-2000ex动态流变仪,英国TA公司。
鱼鳞冻的加工工艺流程为:鲢鱼鳞→解冻→清洗→加自来水、卡拉胶熬煮→过滤→冷藏→包装。
鲢鱼鳞在室温条件下解冻后,用自来水漂洗干净,除去表面的血迹及黏液,沥干,备用。设置一定的水鳞比、熬煮温度、熬煮时间及卡拉胶含量,用保鲜膜封口,防止水分蒸发。水浴加热提胶,用滤网(筛孔孔径0.85 mm)过滤滤液,将滤液置于4 ℃冷藏,滤液呈凝胶状后进行包装,冷藏。
参考顾杨娟
水平 | A 水鳞比 Water toscale ratio | B 熬煮温度/℃ Simmering temperature | C 熬煮时间/min Simmering time | D 卡拉胶用量/% Carrageenan dosage |
---|---|---|---|---|
-1 | 3∶1 | 80 | 60 | 0.6 |
0 | 4∶1 | 90 | 90 | 0.8 |
1 | 5∶1 | 100 | 120 | 1.0 |
参考张芷芸
称取备用的鲢鱼鳞30 g,分别设置水鳞比为3∶1、4∶1、5∶1,以水和鱼鳞的总质量为100%计,添加0.8%卡拉胶,在90 ℃水浴锅中反应90 min,经滤网(筛孔孔径0.85 mm)过滤后置于4 ℃环境中密封冷藏。所制备的鱼鳞冻分别用于动态流变学、热力学及水分分布测试。
参考沙小梅
准确称取鱼鳞冻5~10 mg于40 μL铝质坩埚中,压盖密封,利用空坩埚作为参比。所使用的气体为氮气,反应气流速20 mL/min,干燥气流速 60 mL/min。由5 ℃升至45 ℃,升降温速度:2 ℃/min。利用PeakFit v 4.12软件对DSC曲线进行分析,得出吸热转变峰温度(Tp)和热焓值(ΔH)。
将低温环境下保存的鱼鳞冻切成5 cm×5 cm大小块状,待用。进行低场核磁信号采集,首先对Q-FID序列进行单次采样后,用标样寻找中心频率(SF1)和偏移频率(O1)。再利用CPMG脉冲序列设定采样参数:频率主值(SF)20 MHz,偏移频率(O1)620 117.20 Hz,90°脉宽(P1)9.52 μs,180°脉宽(P2)18.48 μs,接收机带宽(SW)200 kHz。在完成信息收集后,使用反演对话框重建算法SIRT进行100万次的迭代计算,得到横向弛豫时间(T2)。
鱼鳞冻熬煮工艺的响应面试验结果见
编号 Number | A | B | C | D | 得率/% Yield rate | 凝胶强度/(g·mm) Gel strength | 综合加权分(Y) Comprehensive weighted score |
---|---|---|---|---|---|---|---|
1 | -1 | 0 | 1 | 0 | 2.28 | 195.60 | 137.604 |
2 | 0 | -1 | -1 | 0 | 3.19 | 126.73 | 89.668 |
3 | 0 | 0 | -1 | -1 | 3.37 | 86.88 | 61.827 |
4 | 1 | -1 | 0 | 0 | 4.09 | 85.50 | 61.077 |
5 | 0 | 0 | 1 | -1 | 3.37 | 105.23 | 74.672 |
6 | -1 | 1 | 0 | 0 | 2.03 | 137.51 | 96.866 |
7 | 1 | 0 | 1 | 0 | 4.27 | 87.10 | 62.251 |
8 | 0 | 0 | -1 | 1 | 3.30 | 108.10 | 76.660 |
9 | 0 | 1 | -1 | 0 | 2.92 | 114.52 | 81.040 |
10 | 0 | -1 | 1 | 0 | 3.24 | 106.79 | 75.725 |
11 | -1 | 0 | -1 | 0 | 2.32 | 160.22 | 112.850 |
12 | 1 | 1 | 0 | 0 | 4.14 | 68.82 | 49.416 |
13 | -1 | -1 | 0 | 0 | 2.13 | 196.27 | 138.028 |
14 | -1 | 0 | 0 | -1 | 2.27 | 170.71 | 120.178 |
15 | 0 | 1 | 0 | 1 | 3.29 | 89.97 | 63.966 |
16 | 1 | 0 | -1 | 0 | 4.17 | 62.64 | 45.099 |
17 | 0 | 0 | 0 | 0 | 3.33 | 112.56 | 79.791 |
18 | 0 | 0 | 1 | 1 | 3.17 | 137.82 | 97.425 |
19 | 0 | 1 | 0 | -1 | 3.21 | 68.34 | 48.801 |
20 | -1 | 0 | 0 | 1 | 2.21 | 203.29 | 142.966 |
21 | 1 | 0 | 0 | -1 | 4.36 | 76.87 | 55.117 |
22 | 0 | -1 | 0 | -1 | 3.25 | 91.40 | 64.955 |
23 | 1 | 0 | 0 | 1 | 4.34 | 106.17 | 75.621 |
24 | 0 | 1 | 1 | 0 | 3.28 | 95.40 | 67.764 |
25 | 0 | 0 | 0 | 0 | 3.00 | 124.89 | 88.323 |
26 | 0 | 0 | 0 | 0 | 3.09 | 121.56 | 86.019 |
27 | 0 | 0 | 0 | 0 | 3.04 | 101.45 | 71.927 |
28 | 0 | 0 | 0 | 0 | 3.42 | 103.85 | 73.721 |
29 | 0 | -1 | 0 | 1 | 3.04 | 124.06 | 87.754 |
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degrees of freedom | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型 Models | 18 003.22 | 14 | 1 285.94 | 11.27 |
<0.000 |
A | 13 327.40 | 1 | 13 327.40 | 116.80 |
<0.000 |
B | 996.52 | 1 | 996.52 | 8.73 |
0.010 |
C | 194.38 | 1 | 194.38 | 1.70 | 0.212 9 |
D | 1 176.95 | 1 | 1 176.95 | 10.31 |
0.006 |
AB | 217.58 | 1 | 217.58 | 1.91 | 0.189 0 |
AC | 14.45 | 1 | 14.45 | 0.13 | 0.727 3 |
AD | 1.30 | 1 | 1.30 | 0.011 | 0.916 4 |
BC | 0.11 | 1 | 0.11 |
9.747×1 | 0.975 5 |
BD | 14.57 | 1 | 14.57 | 0.13 | 0.726 2 |
CD | 15.68 | 1 | 15.68 | 0.14 | 0.716 4 |
| 1 335.83 | 1 | 1 335.83 | 11.71 |
0.004 |
| 331.70 | 1 | 331.70 | 2.91 | 0.110 3 |
| 0.010 | 1 | 0.010 |
8.918×1 | 0.992 6 |
| 15.40 | 1 | 15.40 | 0.13 | 0.718 8 |
注:

图1 各变量对鱼鳞冻综合加权分影响的响应面图
Fig. 1 Response surface diagram of the effect of various variables on the comprehensive weighted score of silver carp scale jelly
利用 Design-Expert 软件对模型方程求一阶偏导,得到一组优化的理论工艺参数:水鳞比为3.04∶1,熬煮温度为80.783 ℃,熬煮时间为97.095 min,卡拉胶用量为0.987%。为便于实际操作,调整水鳞比为3∶1,熬煮温度为80 ℃,熬煮时间为90 min,卡拉胶用量为1%,综合加权分预测值为145.886,经过验证试验,得到鱼鳞胶产品的得率3.62%,凝胶强度为206.59 g·mm,综合加权分为145.699,与预测值十分接近,说明回归模型能较好地预测鲢鱼鳞冻的熬煮加工工艺条件,最优参数组合有较强的可行性。
根据响应面试验结果,对鱼鳞冻样品影响最显著的变量为水鳞比,进一步研究不同水鳞比对鱼鳞冻凝胶特性的影响。当水鳞比分别为3∶1、4∶1、5∶1时,温度扫描过程中的弹性模量(G′)如

图2 不同水鳞比对弹性模量的影响
Fig.2 Effects of different water to scale ratios on elastic modulus
不同水鳞比的鱼鳞冻的低场核磁共振图分析结果见
水鳞比 Water to scale ratio | 峰1 Peak 1 | 峰2 Peak 2 | 峰3 Peak 3 | |||
---|---|---|---|---|---|---|
T21/ms | PT21 /% | T22/ms | PT22 /% | T23/ms | PT23 /% | |
3∶1 | 1.58±1.09d | 0.62±0.44b | 7.54±1.09d | 0 .77±0.14b | 613.59±0.00c | 98.61±0.51a |
4∶1 | 0.98±0.54d | 0.85±0.47b | 4.00±1.34d | 0.44±0.09b | 932.60±0.00b | 98.71±0.38a |
5∶1 | 0.49±0.23d | 0.58±0.42b | 7.85±3.81d | 0.62±0.09b | 1 112.41±69.53a | 98.81±0.38a |
注: 同一列中不同小写字母表示差异显著 (P<0.05)。Note: Different lowercase letters in the same column indicate significant differences (P<0.05)。
从鱼鳞冻胶的DSC热谱图(

图3 不同水鳞比的鱼鳞冻DSC图
Fig.3 DSC chart of fish scale gels with different water to scale ratios
水鳞比对鱼鳞冻的得率和凝胶强度的影响最大,熬煮时加水量越多,可促进胶原向水中溶解,得到的鱼鳞冻越多。随着熬煮时间的延长,产生了更多能量来破坏键能,释放出更多游离的α-链和β-链,因此,熬煮时间越长,鱼鳞冻的得率越
在加热条件下,鱼鳞明胶中保持三螺旋的次级键及部分肽键发生断裂,胶原分子解链,不溶性胶原转化为可溶性
弹性模量(G′)反映黏弹性物质的类固体特性,即弹性。温度在20~28 ℃时,鱼鳞冻的弹性模量(G′)迅速下降,其原因可能是温度升高破坏了以氢键为主的低温凝胶化网络结构,导致凝胶结构破坏,由三股螺旋结构解链成单
水分状态及其分布可直观地反映鱼鳞冻持水能力的变
DSC热谱图中,随着水鳞比增加,热焓值下降,表明鱼鳞冻的热稳定性降低。是由于水分增加降低了明胶浓度,破坏鱼鳞冻的有序网络结构,抑制凝胶网络的形成,使凝胶处于不稳定状态,此结果与凝胶强度的变化一致。若结合水(受束缚水)包裹着聚合物和结合水,形成类似“笼形”的“聚集体”,在空间允许时,自由的水分子会形成更多的氢
综合来看,水鳞比对水分分布、流变特性、胶融温度等都有显著影响,鲢鱼鳞可用于新型凝胶类预制菜加工。笔者仅研究了鱼鳞冻的加工工艺及凝胶特性,但其品质的变化尚不清楚,后续将针对鱼鳞冻在生产及冷藏中的品质变化作进一步研究。
参考文献References
农业农村部渔业渔政管理局.中国渔业统计年鉴-2022[M].北京:中国农业出版社,2022.Fisheries and Fishery Administration Bureau, Ministry of Agriculture and Rural Affairs. China fishery statistics yearbook of 2022[M].Beijing:China Agriculture Press,2022(in Chinese). [百度学术]
李岩胧,肖枫,康怀彬.鱼鳞胶原蛋白可食性膜研究进展[J].食品与机械,2021,37(1):222-228.LI Y L,XIAO F,KANG H B.Research progress on fish scale collagen edible film[J].Food & machinery,2021,37(1):222-228(in Chinese with English abstract). [百度学术]
曾少葵,刘坤,吴艺堂,等.脱钙罗非鱼鱼鳞明胶提取工艺优化及其理化性质[J].南方水产科学,2013,9(2):38-44.ZENG S K,LIU K,WU Y T,et al.Extraction optimization and physicochemical properties of gelatin from demineralized scale of Oreochromis nilotica[J].South China fisheries science,2013,9(2):38-44(in Chinese with English abstract). [百度学术]
陈莹艳,陈运中.草鱼鱼鳞明胶的提胶工艺及特性研究[J].粮油加工(电子版),2014(2):77-80,84.CHEN Y Y,CHEN Y Z.Extraction and characteristics of grass carp scale gelatin[J].Cereals and oils processing (electronic version),2014(2):77-80,84(in Chinese with English abstract). [百度学术]
顾杨娟,李杰,李富威,等.鱼鳞冻热处理工艺优化及性质的研究[J].食品与发酵工业,2013,39(2):102-108.GU Y J, LI J, LI F W, et al. Study on heat treatment process optimization and properties of fish scale jelly[J].Food and fermentation industry, 2013,39(2):102-108(in Chinese). [百度学术]
李燕,龚珞军,李文华,等.鱼鳞冻加工工艺的研制[J].渔业致富指南,2006(9):49-50.LI Y,GONG L J,LI W H,et al.Development of processing technology of fish scale jelly[J].Fishery guide to be rich,2006(9):49-50(in Chinese). [百度学术]
张芷芸,冯若男,李姝琦,等.高凝胶强度鱼鳞胶冻的开发[J].食品工业,2020,41(6):193-197.ZHANG Z Y,FENG R N,LI S Q,et al.Development of high gel strength fish scale jelly[J].The food industry,2020,41(6):193-197(in Chinese with English abstract). [百度学术]
沙小梅,王光耀,胡姿姿,等.冬夏季节对猪皮制备的明胶凝胶特性和溯源性的影响[J].食品与发酵工业,2021,47(16):31-39.SHA X M,WANG G Y,HU Z Z,et al.The influence of winter and summer on the properties and traceability of gelatin prepared from pigskin[J].Food and fermentation industries,2021,47(16):31-39(in Chinese with English abstract). [百度学术]
李双,涂宗财,陈雪岚.鱼明胶提取及其品质影响因素[J].食品与发酵工业,2019,45(2):252-259.LI S,TU Z C,CHEN X L.A review:factors affecting fish gelatin extraction and its quality[J].Food and fermentation industries,2019,45(2):252-259(in Chinese with English abstract). [百度学术]
SINTHUSAMRAN S,BENJAKUL S,KISHIMURA H.Characteristics and gel properties of gelatin from skin of seabass (Lates calcarifer) as influenced by extraction conditions[J].Food chemistry,2014,152:276-284. [百度学术]
姚峰,陈书霖,唐兰兰,等.鱼皮质量分数对热水浸提明胶的性质及其成膜性能的影响[J].食品工业科技,2015,36(10):114-118,124.YAO F,CHEN S L,TANG L L,et al.Effect of skin concentration on properties and film-forming ability of gelatin from Tilapia skin by hot-water extraction[J].Science and technology of food industry,2015,36(10):114-118,124(in Chinese with English abstract). [百度学术]
NAGARAJAN M,BENJAKUL S,PRODPRAN T,et al.Characteristics and functional properties of gelatin from splendid squid (Loligo formosana) skin as affected by extraction temperature[J].Food hydrocolloids,2012,29(2):389-397. [百度学术]
刘项,张成强,黄轶群,等.氯化钠添加量对鱼皮明胶凝胶性能和结构的影响[J].食品工业科技,2018,39(20):18-24.LIU X,ZHANG C Q,HUANG Y Q,et al.Effect of sodium chloride content on gel properties and structure of Tilapia fish skin gelatin[J].Science and technology of food industry,2018,39(20):18-24(in Chinese with English abstract). [百度学术]
郑红.复配胶体对鱼糜制品凝胶强度的影响[J].农产品加工,2017(11):22-23. ZHENG H. Effect of compound gel on gel strength of surimi[J]. Processing of agricultural products, 2017(11):22-23(in Chinese with English abstract). [百度学术]
顾杨娟,李杰,李富威,等.鱼鳞冻水法制备工艺及性质的研究[J].食品工业科技,2013,34(8):312-316,345.GU Y J,LI J,LI F W,et al.Study on processing and properties of fish scale jelly produced by heating in water[J].Science and technology of food industry,2013,34(8):312-316,345(in Chinese with English abstract). [百度学术]
贾丹,刘茹,刘明菲,等.转谷氨酰胺酶对鳙鱼糜热诱导胶凝特性的影响[J].食品科学,2013,34(9):37-41. JIA D, LIU R, LIU M F, et al.Effect of transglutaminase on heat-induced gel properties of bighead carp (Aristichthys nobilis) surimi[J]. Food science,2013,34(9):37-41(in Chinese with English abstract). [百度学术]
CARNEIRO C D S,MÁRSICO E T,RIBEIRO R D O R,et al.Studies of the effect of sodium tripolyphosphate on frozen shrimp by physicochemical analytical methods and low field nuclear magnetic resonance(LF
马莹,杨菊梅,王松磊,等.基于LF-NMR及成像技术分析牛肉贮藏水分含量变化[J].食品工业科技,2018,39(2):278-284.MA Y,YANG J M,WANG S L,et al.Analysis of water content in beef storage by LF-NMR and imaging technique[J].Science and technology of food industry,2018,39(2):278-284(in Chinese with English abstract). [百度学术]
HAN M Y,WANG P,XU X L,et al.Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics[J].Food research international,2014,62:1175-1182. [百度学术]
周明珠,陈方雪,邓祎,等.蒸煮方式对熟制小龙虾尾肉解冻后品质的影响[J].肉类研究,2021,35(8):16-22.ZHOU M Z,CHEN F X,DENG Y,et al.Effects of cooking methods on the quality of frozen-thawed cooked crayfish muscle[J].Meat research,2021,35(8):16-22(in Chinese with English abstract). [百度学术]
HONG S, KIM D. Interaction between bound water molecules and local protein structures: a statistical analysis of the hydrogen bond structures around bound water molecules[J]. Proteins: structure, function, and bioinformatics, 2016, 84(1):43-51. [百度学术]