网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

长江干流轮虫群落结构的空间分布及其影响因素  PDF

  • 钟可儿 1,2
  • 陈敏建 1
  • 田盼盼 1
  • 马吉顺 1
  • 周琼 1,2
1. 华中农业大学水产学院/农业农村部淡水生物繁育重点实验室,武汉 430070; 2. 长江经济带大宗水生生物产业绿色发展教育部工程研究中心,武汉 430070

中图分类号: X826

最近更新:2023-01-14

DOI:10.13300/j.cnki.hnlkxb.2023.01.016

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

为阐明长江干流轮虫群落结构与分布特征及其环境影响因素,本研究基于水体物理化学参数将长江干流自源头至下游共27个江段的生境空间划分为4个区域:高山区、峡谷区、平原区、河口区,探究各区域轮虫群落结构特征与分布规律,并基于生物学方法评价了长江干流各区域水质现状。结果显示:研究期间在长江干流共鉴定出轮虫37属85种,其中包括指示种63种,以寡污型种类为主。4个研究区域共有优势种12种,其中曲腿龟甲轮虫(Keratella ualga螺形龟甲轮虫(Keratella cochlearis)在多个水域均占优势。长江干流轮虫平均密度为19.66 ind./L,平均生物量为0.11 mg/L。轮虫密度与生物量分布规律均表现为峡谷区>平原区>高山区>河口区。干流平均Shannon-Wiener多样性指数值为2.62,Pielou均匀度指数值为0.78。其中,各区域之间Shannon-Wiener指数表现出显著性差异(P<0.05),而各区域Pielou指数分布相对均匀。非度量多维尺度分析结果显示,峡谷区与平原区轮虫群落相似性较其他区域高。冗余分析结果显示,温度、藻密度、溶氧、总磷等是影响长江干流轮虫空间分布的重要因素。以上研究表明,长江干流不同区域间轮虫群落结构呈现较高的空间异质性,自然环境的变化和人类活动干扰共同影响了轮虫的空间分布。

河流生态系统是鱼类等水生生物的重要栖息地,具有人类赖以生存的重要资源。长江是我国的第一长河,具有复杂的地貌条件、气候特征以及丰富的河流水系网络,孕育着丰富的水生生物资

1。然而,社会与经济的快速发展导致人类干扰不断加强,水利工程、过度捕捞、挖沙采石等行为对长江流域的生态环境造成了严重的破2,长江流域的生物多样性正遭遇危机。

浮游动物在水生生态系统物质循环、能量流动等生态过程中扮演着重要角色,是天然水域食物链中关键环节之

3。轮虫是淡水浮游动物的重要组成部分,是食物网中维系生产者和次级消费者的关键组分,对环境变化的反应敏感,被作为水生态系统中的重要环境指示生4。在不同水体中,环境因子(水温、溶氧、总氮、总磷等)对轮虫结构特征的影响程度亦有差5-6,轮虫的种类组成往往随水质的变化而发生改变,轮虫迁移能力较弱,对水质的响应比瞬时水质监测更为长7。因此,轮虫的群落结构特征可以有效地反映水体健康状8。轮虫的监测与研究已被广泛应用于河流、湖泊、水库等各种水生态环境的健康评价9-10

近年来,研究人员在长江流域各江段及其附属水体开展了较多基于浮游动物的水质评价及其环境驱动因素研

11-13,但未见对整个长江干流水域的浮游动物群落进行系统性的调研与分析,亦无对长江干流轮虫空间分布的专门报道。2020年1月1日农业农村部在长江开始实施“十年禁渔”计划,本研究对长江干流(源头至下游)的轮虫群落结构特征与分布规律进行系统调查及分析,探讨影响长江干流水域轮虫群落结构的关键环境因素,旨在为长江水域生态保护提供理论依据,同时为长江“十年禁渔”提供饵料生物变化方面的基础资料。

1 材料与方法

1.1 采样区域概述

本研究的采样时间为2019年6-9月,将长江干流全流域自西向东划分为27个江段,各采样江段根据城市上、中、下游的地理形态特征及实际采样状况设置1~3个采样站点,各调查江段的分布情况如表1所示。

表1  长江干流各江段采样断面信息
Table 1  Information of sampling sections in the mainstream of the Yangtze River
编号Number

采样江段

Sampling section

经纬度

Longitude and latitude

站点数

Number of sites

水文条件

Hydrologic condition

S1 唐古拉 Tangola E92.450 8~92.674 0, N34.216 1~34.285 5 2 静水、流水 Standing and running water
S2 曲麻莱 Qumacai E95.723 8~95.825 2, N33.973 9~34.187 0 3 流水 Running water
S3 玉树 Yushu E97.039 8~97.272 4, N32.925 4~33.071 8 3 流水 Running water
S4 德格 Dege E98.582 0~98.651 1, N31.636 1~31.959 5 3 流水 Running water
S5 巴塘 Batang E98.997 7~99.161 5, N29.705 0~30.078 6 2 流水 Running water
S6 丽江 Lijiang E100.0179 9~100.418 6, N26.895 4~27.308 3 3 流水 Running water
S7 攀枝花 Panzhihua E101.577 1~101.897 9, N26.435 0~26.821 9 3 静水、流水 Standing and running water
S8 金阳 Jinyang E103.085 2~103.387 2, N27.403 0~27.717 3 3 流水 Running water
S9 宜宾 Yibin E104.408 1~104.918 5, N28.639 8~28.772 4 3 流水 Running water
S10 重庆 Chongqin E106.459 4~106.842 4, N29.374 8~29.575 7 2 流水 Running water
S11 涪陵 Fuling E107.472 5, N29.816 6 1 流水 Running water
S12 万州 Wanzhou E108.395 9~108.401 0, N30.699 7~30.780 2 2 流水 Running water
S13 稊归 Zigui E110.730 3~110.973 8, N30.838 7~30.937 4 3 静水、流水 Standing and running water
S14 宜昌 Yichang E111.156 4~111.254 2, N30.301 4~30.467 4 3 流水 Running water
S15 枝江 Zhijiang E111.254 2~111.443 7, N30.231 3~30.301 4 3 流水 Running water
S16 荆州 Jingzhou E112.133 8~112.142 8, N30.129 4~30.231 3 3 流水 Running water
S17 监利 Jianli E112.421 7~112.562 5, N29.385 3~29.481 3 3 流水 Running water
S18 岳阳 Yueyang E113.610 6~113.937 6, N29.273 1~29.315 2 3 流水 Running water
S19 嘉鱼 Jiayu E113.532 9~114.455 1, N29.556 0~30.516 2 3 流水 Running water
S20 武汉 Wuhan E114.257 1~114.550 5, N30.181 4~30.393 2 3 流水 Running water
S21 黄石 Huangshi E115.042 6~115.145 5, N30.092 7~30.201 7 3 流水 Running water
S22 湖口 Hukou E116.083 8~116.232 9, N29.450 5~29.510 9 3 流水 Running water
S23 安庆 Anqin E116.563 2~117.122 3, N30.272 5~30.322 0 3 流水 Running water
S24 芜湖 Wuhu E118.113 7~119.150 9, N31.160 5~31.270 1 3 流水 Running water
S25 镇江Zhenjiang E119.150 9~119.385 7, N32.114 7~32.141 5 3 流水 Running water
S26 南通 Nantong E120.403 7~121.024 6, N31.473 4~32.033 4 3 流水 Running water
S27 启东 Qidong E121.272 7~121.530 1, N31.412 7~31.491 8 3 流水 Running water

1.2 轮虫样品采集与鉴定及环境因子测定

轮虫样品与水质样品采集、水质物理因子的测定同步进行。

在每个采样点分别采集轮虫的定性与定量样品。轮虫定性样品使用25#浮游生物网在水体表层0.5 m处绕“∞”形反复缓慢拖拽后将样品收集至采样瓶内,加入4%福尔马林溶液进行固定。定量样品则在表层0.5 m处使用5 L采水器进行采集后使用25#浮游生物网过滤,将过滤后的轮虫转移至采样瓶内,加入鲁哥试液进行固定并贴好标签。将所有样品带回实验室静置24 h后将样品浓缩以待镜检,使用1 mL计数框在倒置显微镜下进行物种鉴定与全片计数,种类鉴定参考相关文

14-15

使用便携式水质分析仪(YSI,美国)现场测定酸碱度(pH)、溶氧(DO)、盐度(Sal)、总溶解固体(TDS)、电导率(Cond)、水温(WT),使用塞氏透明度盘对水质透明度及水深进行测试。另采取1 L水样于4 ℃下避光保存,将其带回实验室后对总氮(TN)、总磷(TP)、硝态氮(NO3--N)、氨氮(NH4+-N)等指标进行测定,测定方法见参考文献[

16]。

1.3 数据处理与分析

① 采用优势度(Y)表示物种的优势程度,计算公式如下:

Y=fi·niN

式中,fi表示第i物种的出现频率,ni表示第i物种的个体数,N表示同一样品中的轮虫总个体数。将Y≥0.02的物种视为优势种,使用自编程函数计算优势

3,并划分污染指示类17-18

②采用Shannon-Wiener 多样性指数(H')、Pielou均匀度指数(J)对水质进行健康评价,各指数计算公式及评判标准如下。

H'=-i=1SPi·log2Pi
J=H'log2S

上述公式中,S为同一样品中轮虫的物种数之和,Pi表示第i物种的个体数(ni)与N(同一样品中的轮虫总个体数)的比值。

表2  基于轮虫多样性指数的水质评价标准
Table 2  Criteria of water quality assessment based on the diversity indices of rotifer

多样性指数

Diversity indices

清洁

Xenosaprobity

寡污

Oligosaprobity

β-中污

Beta-mespsaprobity

α-中污

Alpha-mespsaprobity

多污

Polysaprobity

H' >4.0 3.0~4.0 2.0~3.0 1.0~2.0 <1.0
J >0.8 0.5~0.8 0.3~0.5 0.1~0.2 <0.1

③使用 R软件4.2.1对各区域轮虫群落进行非度量多维尺度分析(NMDS)、聚类分析。

④使用R软件4.2.1 探究长江干流轮虫群落结构与环境因子的关系。物种的分布可能呈现单峰或者线性2种情况,利用除趋势对应分析(detrended correspondence analysis, DCA)进行确定。典范对应分析(canonical correspondence analysis,CCA)适用于DCA排序轴最大梯度长度值大于4的情况,而冗余分析(redundancy analysis, RDA)适用于DCA排序轴最大梯度长度值不大于4的情况。pH以外的数据在统计分析前进行lg(x+1) 转换。

⑤使用数据分析软件SPSS 26.0进行不同江段间密度、生物量、多样性指数等的单因素方差分析,并进行Pearson相关性分析,以探究环境因子对长江干流轮虫群落结构与分布规律的影响。

2 结果与分析

2.1 长江干流各江段生境特征

根据27个采样江段的水体理化因子进行聚类分析,在聚类距离为2.5的水平上可将其划分为4个组群,其空间分布规律明显。第1个组群为高山区,包括自源头曲麻莱至丽江的6个江段(S1-S6),横跨青藏高原、横断山区,其生态环境恶劣,水温较低。第2个组群为峡谷区(S7-S17)主要为峡谷地带,其水流湍急、水量丰沛 ,建有大量水电站。第3个组群为平原区,包括中、下游的9个江段(S18-S26),平原区水面宽阔、水流缓慢。第4个组群为S27,启东江段位于河口,受咸水控制,与长江下游生境有较大差异。生境区域划分的聚类结果见图1

图1  长江干流27个采样江段的生境聚类

Fig.1  Habitat clustering of the 27 sampling sections in the mainstream of the Yangtze River

表3  长江干流各区域环境参数
Table 3  Environmental parameters at each area in the mainstream of the Yangtze River
项目 Item高山区 High mountain area峡谷区 Canyon area平原区 Plain area河口区 Estuary area
WT/℃ 13.79±3.09 23.82±1.69 29.28±0.83 26.93±1.95
TN/(mg/L) 0.81±0.27 1.94±0.88 2.47±1.73 2.54±0.73
TP/(mg/L) 0.37±0.2 0.16±0.15 0.11±0.02 0.50±0.14
NO3--N/(mg/L) 0.48±0.11 1.35±0.47 1.47±0.04 1.39±0.28
NH4+-N/(mg/L) 0.22±0.04 0.44±0.36 0.81±1.20 1.29±1.07
电导率Cond/(μS/cm) 998.25±204.69 429.78±121.08 289.51±33.12 10075±9933.72
盐度Sal/% 0.06±0.02 0.02±0.01 0.01±0.00 0.58±0.62
DO/(mg/L) 7.50±0.99 7.96±0.73 5.60±0.41 4.87±0.35
pH 8.57±0.13 8.22±0.32 8.14±0.09 7.92±0.14
藻密度 Algal density/(106 cells/L) 0.20±0.13 0.82±1.19 2.92±2.09 0.04±0.00

长江干流各采样江段TN质量浓度范围为0.67~7.08 mg/L,最高值出现在平原区的S21,属于劣Ⅴ类水体;最低值出现在高山区的S1。各采样江段NO3--N、NH4+-N质量浓度波动范围分别为0.32~1.96、0.15~3.98 mg/L,均值分别为1.20、0.54 mg/L。各采样江段DO的范围为4.87~9.24 mg/L,DO均值为6.96 mg/L。各采样江段水温变化范围为8.68~30.2 ℃,各区域中,高山区平均水温为13.79 ℃,峡谷区平均水温为23.82 ℃,平原区、河口区平均水温为29.28 ℃、26.93 ℃,整体上呈现由源头向下游递增的趋势。各江段电导率在219.5~10 075 μS/cm波动,TDS在0.37~6 469.67波动,河口区电导率、盐度明显大于其他区域。

2.2 轮虫群落结构特征

1) 种类组成。研究期间长江干流各江段共鉴定出轮虫11科37属85种,主要为臂尾轮科(11属31种)、腔轮科(3属13种)、镜轮科(6属9种)、鼠轮科(1属7种)、腹尾轮科(3属6种)、疣毛轮科(3属6种)的种类。高山区、峡谷区、平原区、河口区分别检出轮虫20、56、80、3种,其中平原区的轮虫种数最多。

2) 密度与生物量。长江干流各江段轮虫密度与生物量空间分布如图2所示,密度分布范围在0.32~164.16 ind. /L,平均密度为19.66 ind. /L。高山区、峡谷区、平原区、河口区平均密度分别为9.24、27.23、19.44、0.75 ind./L,各江段中轮虫密度的最高值(S13)与最低值(S11)均出现在峡谷区。长江干流各江段生物量分布范围在8.64×10-5~7.51×10-2 mg/L,平均生物量为0.11 mg/L,最高值出现在峡谷区的S13,最低值出现在S11。在各区域中,高山区、峡谷区、平原区、河口区轮虫平均生物量分别为6.46×10-3、1.54×10-2、1.38×10-2、1.44×10-4 mg/L。

图2  长江干流各江段轮虫的密度与生物量

Fig. 2  The density and biomass of rotifer in the mainstream of the Yangtze River

对长江干流各个区域轮虫密度、生物量进行差异性分析,结果显示:各区域密度(F=0.365, P>0.05)、生物量(F=0.280, P>0.05)差异不显著。

2.3 优势种与指示种

1) 优势种类。根据优势度公式计算各区域轮虫优势度,将Y≥0.02的物种视为优势种,结果如表4所示。各区域中,优势物种共12种,以臂尾轮科臂尾轮虫属为主(5种)。高山区轮虫优势种包括螺形龟甲轮虫(Keratella cochlearis)、矩形龟甲轮虫(K. quadrata)。螺形龟甲轮虫(K. cochlearis)是峡谷区最主要的优势种,曲腿龟甲轮虫(Keratella ualga)次之。平原区优势种以螺形龟甲轮虫(K. cochlearis)为主,其他依次为等刺异尾轮虫(Trichocerca similis)、曲腿龟甲轮虫(K. ualga)、角突臂尾轮虫(Brachionus angularis)、针簇多肢轮虫(Polyarthra trigla)等。河口区轮虫优势度最高者为螺形龟甲轮虫(K. cochlearis),曲腿龟甲轮虫(K. ualga)次之。

表4  长江干流各区域轮虫优势物种及优势度
Table 4  The dominance (Y) and the dominant species of rotifer at each research area in the mainstream of the Yangtze River

优势种

Dominant species

高山区

High mountain area

峡谷区

Canyon area

平原区

Plain area

河口区

Estuary area

指示类型

Indicating types

裂痕龟纹轮虫 Anuraeopsis fissa 0.029 8 o
角突臂尾轮虫 Brachionus angularis 0.062 9 0.047 6 β-α
萼花臂尾轮虫 Brachionus calyciflorus 0.027 4 β-α
裂足臂尾轮虫 Brachionus diversicornis 0.031 1 β
镰状臂尾轮虫 Brachionus falcatus 0.038 0 β
剪形臂尾轮虫 Brachionus forficula 0.040 9 β
螺形龟甲轮虫 Keratella cochlearis 0.028 0 0.360 5 0.180 5 0.500 0 β-o
矩形龟甲轮虫 Keratella quadrata 0.353 4 o-β
曲腿龟甲轮虫 Keratella ualga 0.042 9 0.095 8 0.238 1 o-β
真翅多肢轮虫 Polyarthra euryptera 0.021 9 o
针簇多肢轮虫 Polyarthra trigla 0.052 3 -
等刺异尾轮虫 Trichocerca similis 0.101 4 o

2) 轮虫污染指示种类。共检测出污染指示种63种,其中臂尾轮科臂尾轮属种类最多(8种),鼠轮科异尾轮虫属种类数次之(6种)。所有的污染指示种包括寡污型种类23种,寡污至β-中污型17种,β-中污至寡污型2种,β-中污型15种,β-中污至α-中污型3种,α-中污型2种,多污型1种。长江干流各区域中,高山区以寡污型种类最多,占污染指示种类数的50%;峡谷区以寡污型种类最多,占40.82%,β-中污型次之,占26.53%。平原区指示种以寡污型为最多,占41.67%,寡污至β-中污型、β-中污型二者次之,占23.33%。河口区污染指示种类为寡污至β-中污型、β-中污至寡污型、β-中污至α-中污型(表5)。

表5  轮虫指示种的空间分布
Table 5  Spatial distribution of rotifer indicator species
指示类型Indicating types

高山区

High mountain area

峡库区

Canyon area

平原区

Plain area

河口区

Estuary area

种类数Species number占比/%Proportion种类数Species number占比/%Proportion种类数Species number占比/%Proportion种类数Species number

占比/%

Proportion

o 8 50 20 40.82 25 41.67 0
o-β 4 25 10 20.41 14 23.33 1 33.33
β-o 1 6.25 2 4.08 2 3.33 1 33.33
β 2 12.5 13 26.53 14 23.33 0
β-α 0 3 6.12 3 5 1 33.33
α 1 6.25 1 2.04 1 1.67 0
p 0 0 1 1.67 0

注:  o表示寡污型,β表示β-中污型,α表示α-中污型,p表示多污型,o-β表示寡污至β-中污型,β-o表示β-中污至寡污型,β-α表示β至α-中污型。 Note: o, β, α, p=saprobic degrees, i.e. oligosaprobity, beta-mespsaprobity, alpha-mespsaprobity, polysaprobity. And o-β, β-o, β-α=oligosaprobity to beta-mespsaprobity, beta-mespsaprobity to oligosaprobity, beta-mespsaprobity to alpha-mespsaprobity.

2.4 多样性指数

参考表2的评价标准对轮虫多样性进行评价,结果(图3)显示:研究期间长江干流各江段Shannon-wiener值分布范围为0.65~4.19,H′ 指数均值为2.62(β-中污型)。其中,最低值出现在高山区的S2,最高值出现在平原区的S18。从各个区域来看,高山区、峡谷区、平原区、河口区的H′ 值与评价水平分别为:1.39(α-中污型)、1.89(α-中污型)、3.63(寡污型)、1.43(α-中污型)。各江段Pielou(J)指数范围在0.32~0.95,长江干流整体J均值为0.78(寡污型);对于各区域,高山区、峡谷区、平原区、河口区分别为0.80(清洁型)、0.76(寡污型)、0.76(寡污型)、0.90(清洁型)。

图3  长江干流各区域轮虫多样性指数及评价水平

Fig. 3  The diversity indices of rotifer and evaluationlevels at different research areas in the mainstream of the Yangtze River

x表示清洁型,o表示寡污型,α表示α-中污型。x,o,α=saprobic degrees,i.e.xenosaprobity, ligosaprobity, alpha-mespsaprobity.

对长江干流各个区域轮虫多样性指数进行差异性分析,结果显示,各区域之间Shannon指数(F=12.218, P<0.01)差异性极显著,Pielou指数(F=0.303, P>0.05)差异不显著。使用One-way ANOVA方差多重比较对Shannon-Wiener多样性指数进行分析,结果表明,高山区与峡谷区(P<0.05)、高山区与平原区(P<0.01)、峡谷区与平原区(P<0.01)均存在显著性差异。

2.5 轮虫空间分布模式

非度量多维尺度分析(NMDS)显示,峡谷区、平原区轮虫群落组成具有相似性,而其他区域间显示出明显区别(图4)。NMDS分析中的压力值(stress)为0.108,表明该二维分析具有一定的解释能力。

图4  非度量多维尺度分析排序结果

Fig.4  Results of non-metric multidimensional scaling

2.6 轮虫群落结构与环境因子的相关性

1 )冗余分析。整合各区域共12个优势种,对其丰度进行RDA分析。长江干流RDA排序图第1轴与第2轴分别解释了轮虫变异程度的49.06%、24.14%(图5)。WT、藻密度Np(实验室未发表数据)、DO、TP是影响长江干流轮虫分布的主要影响因子。从轮虫分布来看,裂痕龟纹轮虫、萼花臂尾轮虫、裂足臂尾轮虫、镰状臂尾轮虫、剪形臂尾轮虫、等刺异尾轮虫受藻密度影响较大,与DO、TP呈负相关关系。角突臂尾轮虫分布受WT的影响较其他因素高。针簇多肢轮虫与TP呈现明显的负相关关系。曲腿龟甲轮虫与DO、藻密度无相关关系,螺形龟甲轮虫分布受DO、TP影响较高,与WT呈现显著的负相关关系。

图5  长江干流主要轮虫种类与环境因子、采样江段间的RDA排序图

Fig. 5  The RDA diagram between main rotifer species and environmental parameters and sampling sections in the mainstream of the Yangtze River

Anu.f::裂痕龟纹轮虫 Anuraeopsis fissa; Bra.a:角突臂尾轮虫 Brachionus angularis;Bra.c:萼花臂尾轮虫 Brachionus calyciflorus;Bra.d:裂足臂尾轮虫 Brachionus diversicornis;Bra.fa:镰状臂尾轮虫 Brachionus falcatus; Bra.fo:剪形臂尾轮虫 Brachionus forficula; Ker.c:螺形龟甲轮虫 Keratella cochlearis;Ker.q:矩形龟甲轮虫 Keratella quadrata;Ker.u:曲腿龟甲轮虫 Keratella ualga;Pol.e:真翅多肢轮虫 Polyarthra euryptera;Pol.t:针簇多肢轮虫 Polyarthra trigla;Tri.s:等刺异尾轮虫 Trichocerca similis.

2)群落结构特征与环境因子Pearson相关性分析。轮虫密度、生物量、Shannon(H′)多样性指数、Pielou(J)均匀度指数与各环境参数、藻密度Np的Pearson相关性分析结果见表6。各江段轮虫密度、生物量与ORP呈显著正相关关系。多样性指数中,H’与WT、NO3--N、Np呈极显著正相关关系,与TP、DO呈显著负相关关系;J与pH呈现出显著正相关关系。寡污型种类相对密度与TN、NO3--N、NH4+-N呈显著正相关关系。

表6  轮虫群落结构特征与环境参数的相关性分析
Table 6  Correlation analysis between community structure characteristics of rotifer and environmental parameters
项目 ItemWTTNTPNO3--NNH4+-NDOORPpHNp
轮虫密度 Rotifer density -0.198 0.053 0.139 0.061 -0.06 0.229 0.445* -0.107 -0.121
轮虫生物量 Rotifer biomass -0.252 0.034 0.18 -0.028 -0.039 0.13 0.396* -0.125 -0.128
Shannon-wiener 0.653** 0.357 -0.450* 0.609** 0.201 -0.481* -0.209 0.002 0.547**
Pielou 0.076 0.176 0.218 0.164 0.143 -0.096 -0.024 0.455* -0.123

污染指示种个数

Number of pollution indicators

0.515** 0.148 -0.436* 0.328 0.064 -0.353 -0.202 -0.136 0.603**

污染指示种密度

Density of pollution indicators

0.053 -0.039 -0.16 -0.108 -0.015 0.308 0.223 -0.019 0.442*

寡污型种类相对密度

Relative density of oligosaprobity

0.379 0.654** -0.287 0.432* 0.614** -0.217 -0.225 -0.073 0.585**

β-中污型种类相对密度

Relative density of beta-mespsaprobity

-0.314 -0.324 0.641** -0.286 -0.16 -0.102 0.112 0.045 -0.292

注:  *表示在0.05 级别(双尾)相关性显著;**表示在0.01 级别(双尾)相关性显著。Note: * indicates significant correlation at the 0.05 level (two-tailed);** indicates significant correlation at the 0.01 level (two-tailed).

3 讨论

多数研究揭示河流中的浮游动物以轮虫占比最

19-20。本研究中,臂尾轮科占轮虫种类的36.41%,该科为长江干流轮虫种类组成的主要部分,这与长江各江段已有研究结果一21-24。轮虫在各种类型水域中均具有高度的适应25,长江干流大部分江段水流湍急,枝角类、桡足类等甲壳种类一般难以适应流动水体,这也是本研究中选择以轮虫为研究对象的原因之一。龟甲轮虫属、臂尾轮虫属种类在长江干流各个区域占据优势地位,这与罗丹13在2016年对长江中游宜昌、岳阳等5个江段和郭欧12在2016-2017年对长江下游干流江段所作研究得出的优势种大体相同,表明长江干流轮虫优势种分布状况较为稳定,且龟甲轮虫属、臂尾轮虫属是长江干流水域中的广布种属。

受河流物理形态、人类干扰、河岸带等影响,长江干流存在复杂的生境类

26。长江干流27个采样江段呈现出规律性的空间聚集,区域之间Shannon-Wiener指数存在极显著差异(P<0.01),NMDS分析结果显示各区域间不同程度的差异,这表明长江干流各区域轮虫群落结构存在空间异质性。在各区域中,峡谷区、平原区平均密度、生物量、Shannon指数总体高于高山区、河口区。这可能与快速的城市化、工业化进程使武汉城市群、长三角城市群流域水质富营养化程度升27有关。长江发源自青藏高原腹地,高寒且生态系统脆弱敏感,而峡谷区地理跨度大,建有大量梯级电站,过渡于四川盆地与中、下游平28,巨大的环境变化可能是各区域轮虫群落结构明显差异的重要原因。在高山区的6个采样江段中,S1江段呈现出较高的轮虫现存量,原因可能是S1江段的采样断面之一靠近雅西错(沱沱河左岸外流淡水湖),位于静水、流水交汇处,复杂的地形地貌与水交换使生态环境发生改变,而峡谷区的S13江段的轮虫现存量则呈现出所有采样江段中的最高水平,S13江段位于三峡大坝前,坝前缓慢的水流有助于营养盐积聚与悬浮物的沉6,也为轮虫的生长繁殖提供了有利条件,进而导致了S1、S13段异常高的轮虫密度与生物量。从水体理化指标来看,S7江段的营养盐指标的含量较高,水体富营养化的程度更高,因此,S7江段轮虫群落结构的异常可能与成渝城市群周围人类活动的影响有29

轮虫能对水体营养状态的变化做出快速的反应,具有污染指示功能。参照Sládeček

17对轮虫指示种的划分,高山区优势种的污染指示水平为寡污至β-中污型,峡谷区为β-中污至寡污型,平原区介于寡污型到β-α型之间,河口区指示水平为寡污至β-中污型。不同区域指示种存在一定差异,这与长江干流水域存在着不同的生境的结果相符,表明本研究筛选出的优势物种对长江干流水质具有一定的指示作用。高山区优势种类与其他区域相差明显,具体表现为第1优势种矩形龟甲轮虫优势度高达0.35,且矩形龟甲轮虫仅在高山区占优势地位,矩形龟甲轮虫为寡污至β-中污型种类,建议当地进行水质监测及生态修复时应重点关注矩形龟甲轮虫种群的动态。而峡谷区、平原区、河口区需加强对其第1优势种螺形龟甲轮虫的监测。

以往的研究表明,多样性指数与水质呈现正相关,多样性指数越高,水质越

30。本研究中,高山区、峡谷区、平原区、河口区的轮虫多样性指数综合评价结果分别为β-中污、β-中污、寡污、β-中污,即平原区的水质最好,高山区水质最差。在使用传统方法对水质进行评价时,N、P等营养因子是水体理化指标中重要的部31,而单因素方差分析结果表明高山区在TN、NO3--N等指标均显著低于其他区域(P<0.05),表明仅用多样性指数对水质进行评价是存在误差的。这可能是由于多样性指数与物种数有32,物种数目越多则多样性指数越高,水质评价结果越好,但轮虫被划分为多个指示类17-18,因此轮虫的污染水平不能单由其数量与种类进行评33。本研究中,长江干流平原区轮虫种类虽然较多,但多为污染指示种,故而仅利用多样性指数进行水质评价存在局限性。在对长江干流各区域水质生态健康进行监测评价时,将生物指标和理化指标相结合显得更为科学、准确。

水温、酸碱度、营养盐等环境因素对轮虫的分布具有重要的影

34-35。浮游动物对藻类的摄食是上行效应的关键环节,藻类的密度也与轮虫的生长繁殖有着密切的关36。Pearson相关分析表明,ORP、WT、TP、NO3--N、DO、藻密度与长江干流轮虫多样性有显著相关性。RDA分析结果表明随着藻密度增加,多种臂尾轮虫(萼花臂尾轮虫、裂足臂尾轮虫、镰状臂尾轮虫、剪形臂尾轮虫)、裂痕龟纹轮虫、等刺异尾轮虫密度也增加;此外,TP与多种优势种密度呈现负相关关系。温度是影响轮虫生长、繁殖以及种类组成的重要因37。本研究采样于6-9月,平原区、河口区的平均水温均超过25 ℃,浮游动物大量繁殖使水体中耗氧量增加,溶解氧含量减38,进而抑制了轮虫的生物量与多样性。水体中TP浓度的增加会导致浮游动物物种数减39,营养盐则通过影响浮游植物的分布来间接影响轮虫群落结40,这与本研究中长江干流轮虫分布与温度、藻密度、溶氧、总磷密切相关的结果一致。

浮游动物是鱼类优质的天然饵料,能通过上行效应影响鱼类群落结构,进而影响珍稀土著鱼类的摄食和分布特

3234,其现存量会影响渔业资源量和水生态系统整体的容纳30 。轮虫是淡水鱼类最主要的开口饵41,具有营养价值高、游动速度慢、利于仔鱼摄食等优42。因此,为保护重要水生生物的繁殖及子代的孵化生长,调查轮虫的资源结构具有重要的意43。本研究为长江“十年禁渔”政策实施前期的研究结果,可用于今后评估不同阶段禁渔实施效果。

参考文献 References

1

王学雷,吕晓蓉,杨超.长江流域湿地保护、修复与生态管理策略[J].长江流域资源与环境,2020,29(12):2647-2654.WANG X L,LÜ X R,YANG C.Strategies of wetland protection,restoration and ecological management in the Yangtze River Basin[J].Resources and environment in the Yangtze Basin,2020,29(12):2647-2654(in Chinese with English abstract). [百度学术] 

2

董妍兰,孙德智,邱斌.长江流域四川区域城市水生态环境问题解析及治理对策[J/OL].环境工程技术学报:1-13[2022-12-02].https://kns.cnki.net/kcms/detail/11.5972.X.20220929.1109.010.html.DONG Y L, SUN D Z, QIU B.Water eco-environmental problems and related countermeasures for the cities in Sichuan region of the Yangtze River Basin [J/OL].Journal of environmental engineering technology: 1-13[2022-12-02].https://kns.cnki.net/kcms/detail/11.5972.X.20220929.1109.010.html(in Chinese with English abstract). [百度学术] 

3

冯世敏,吴明姝,熊莲,等.太平湖浮游动物动态演替与环境因子的相关性研究[J].水生生物学报,2017,41(3):700-711.FENG S M,WU M S,XIONG L,et al.The research of dynamic succession of zooplankton and its correlation with environmental factors in Taiping Lake[J].Acta hydrobiologica sinica,2017,41(3):700-711(in Chinese with English abstract). [百度学术] 

4

梁迪文,王庆,魏南,等.广州市不同类型水体轮虫群落结构的时空变动及与理化因子间的关系[J].湖泊科学,2017,29(6):1433-1443.LIANG D W,WANG Q,WEI N,et al.Spatial and temporal variation in rotifer community structure and the response to environmental factors among different water bodies in Guangzhou City[J].Journal of lake sciences,2017,29(6):1433-1443(in Chinese with English abstract). [百度学术] 

5

杜明敏,刘镇盛,王春生,等.中国近海浮游动物群落结构及季节变化[J].生态学报,2013,33(17):5407-5418.DU M M,LIU Z S,WANG C S,et al.The seasonal variation and community structure of zooplankton in China sea[J].Acta ecologica sinica,2013,33(17):5407-5418(in Chinese with English abstract). [百度学术] 

6

陈佳琪,赵坤,曹玥,等.鄱阳湖浮游动物群落结构及其与环境因子的关系[J].生态学报,2020,40(18):6644-6658.CHEN J Q,ZHAO K,CAO Y,et al.Zooplankton community structure and its relationship with environmental factors in Poyang Lake[J].Acta ecologica sinica,2020,40(18):6644-6658(in Chinese with English abstract). [百度学术] 

7

HESSEN D O,FAAFENG B A,SMITH V H,et al.Extrinsic and intrinsic controls of zooplankton diversity in lakes[J].Ecology,2006,87(2):433-443. [百度学术] 

8

李共国,包薇红,徐石林,等.甬江干流浮游动物群落结构季节动态与水环境的关系[J].水生生物学报,2015,39(1):1-12.LI G G,BAO W H,XU S L,et al.Seasonal change of zooplankton communities and its relationship with aquatic environments in the Yongjiang River,Ningbo[J].Acta hydrobiological sinica,2015,39(1):1-12(in Chinese with English abstract). [百度学术] 

9

张琦,陈菊芳,杞桑,齐雨藻.广东肇庆星湖浮游轮虫的调查及其与水质关系的研究[J].生态科学,1997,16(2):27-35.ZHANG Q,CHEN J F,QI S,et al.Studies on planktonic rotifers and its relationship with water quality in Xing Lake,Zhaoqing City,Guangdong Province[J].Ecologic science,1997,16(2):27-35 (in Chinese with English abstract). [百度学术] 

10

王少坤,王绍祥,顾静,等.上海饮用水源地青草沙水库轮虫群落结构的特征及其环境影响因子[J].动物学杂志,2017,52(6):1023-1036.WANG S K,WANG S X,GU J,et al.The characteristics of community structure of rotifer and its environmental factors in Qingcaosha rReservoir,Shanghai[J].Chinese journal of zoology,2017,52(6):1023-1036(in Chinese with English abstract). [百度学术] 

11

林锡芝,胡美琴.长江水质污染与浮游生物指示种类[J].淡水渔业,1982,12(5):14-19.LIN X Z,HU M Q.Water pollution and plankton indicator species in the Yangtze River[J].Freshwater fisheries,1982,12(5):14-19(in Chinese). [百度学术] 

12

郭欧阳.长江下游干流浮游动物群落结构及其与环境因子相关性的研究[D].上海:上海师范大学,2018.GUO O Y.Zooplankton community structure and its relation to environmental factors in the lower reaches of the Yangtze River[D].Shanghai:Shanghai Normal University,2018(in Chinese with English abstract). [百度学术] 

13

罗丹,李星浩,余育和,等.长江中游干流浮游动物空间分布[J].水生生物学报,2019,43(S1):3-8.LUO D,LI X H,YU Y H,et al.Spatial distribution of zooplankton in the main stem of the middle Yangtze River[J].Acta hydrobiologica sinica,2019,43(S1):3-8(in Chinese with English abstract). [百度学术] 

14

王家辑.中国淡水轮虫志[M].北京: 科学出版社,1961: 1-287.WANG J J.Freshwater rotifers in China [M].Beijing: Science Press,1961: 1-287 (in Chinese). [百度学术] 

15

诸葛燕.中国典型地带轮虫的研究[D].武汉:中国科学院水生生物研究所,1997.ZHUGE Y.Studies on rotifers in typical areas of China[D].Wuhan:Institute of Hydrobiology,Chinese Academy of Sciences,1997(in Chinese with English abstract). [百度学术] 

16

国家环境保护总局水和废水监测分析方法编委会.水和废水检测分析方法 [S].4版.北京: 中国环境出版社,2002.Editorial Committee of Water and Wastewater Monitoring and Analysis Methods,State Environmental Protection Administration.Methods for detection and analysis of water and wastewater [S].4th Ed.Beijing: China Environment Press,2002(in Chinese). [百度学术] 

17

SLÁDEČEK V.Rotifers as indicators of water quality[J].Hydrobiologia,1983,100(1):169-201. [百度学术] 

18

陆娇,张琦,刘应迪.湘江长沙综合枢纽浮游动物群落结构及水质分析[J].湖北农业科学,2019,58(13):24-29.LU J,ZHANG Q,LIU Y D.Community dynamic structure of zooplankton and water quality in the comprehensive hub of Xiangjiang River,Changsha[J].Hubei agricultural sciences,2019,58(13):24-29(in Chinese with English abstract). [百度学术] 

19

姜作发,唐富江,董崇智,等.黑龙江水系主要江河浮游动物种群结构特征[J].东北林业大学学报,2006,34(4):64-66.JIANG Z F,TANG F J,DONG C Z,et al.Population structure of zooplankton in Heilongjiang River system[J].Journal of Northeast Forestry University,2006,34(4):64-66(in Chinese with English abstract). [百度学术] 

20

黎洁,单保庆,宋芬,等.永定河和滦河水系浮游动物多样性调查与分析[J].华中农业大学学报,2011,30(6):768-774.LI J,SHAN B Q,SONG F,et al.Investigation and analysis on biodiversity of zooplankton of Yongding River and Luanhe River in Haihe river basin[J].Journal of Huazhong Agricultural University,2011,30(6):768-774(in Chinese with English abstract). [百度学术] 

21

张晓可,刘凯,万安,等.安庆西江浮游动物群落结构及江豚生存状况评估[J].水生生物学报,2018,42(2):392-399.ZHANG X K,LIU K,WAN A,et al.Community structure of zooplankton and its relationship with survivability of the Yangtze finless porpoise in Xijiang oxbow,Anqing City[J].Acta hydrobiologica sinica,2018,42(2):392-399(in Chinese with English abstract). [百度学术] 

22

彭刚,边文冀,陈校辉.长江江苏段浮游动物群落结构调查报告[J].水利渔业,2008,29(4):109-111,120.PENG G,BIAN W J,CHEN X H.Investigation report on zooplankton community structure in Jiangsu section[J].Reservoir fisheries,2008,29(4):109-111,120(in Chinese). [百度学术] 

23

王金秋,袁骐,陈亚瞿.长江口轮虫群落物种多样性的初步研究[J].中国水产科学,1999,6(S1):10-14.WANG J Q,YUAN Q,CHEN Y Q.A preliminary study on the species diversity of estuarine community of rotifer in the Changjiang Estuary[J].Journal of fishery sciences of China,1999,6(S1):10-14(in Chinese with English abstract). [百度学术] 

24

兰波,朱迟,黄玉静,等.三峡水库蓄水期长江万州段干支流浮游动物群落特征研究[J].四川动物,2020,39(5):517-530.LAN B,ZHU C,HUANG Y J,et al.Research on zooplankton community in the mainstream of Yangtze River and its tributaries of Wanzhou section during impounding[J].Sichuan journal of zoology,2020,39(5):517-530(in Chinese with English abstract). [百度学术] 

25

林秋奇,赵帅营,韩博平.广东省水库轮虫分布特征[J].生态学报,2005,25(5):1123-1131.LIN Q Q,ZHAO S Y,HAN B P.Rotifer distribution in tropical reservoirs,Guangdong Province,China[J].Acta ecologica sinica,2005,25(5):1123-1131(in Chinese with English abstract). [百度学术] 

26

邹曦,杨志,郑志伟,等.长江干流典型区域河流生境健康评价[J].长江流域资源与环境,2020,29(10):2219-2228.ZOU X,YANG Z,ZHENG Z W,et al.Health assessment of river habitat in typical regions of the Yangtze River mainstream[J].Resources and environment in the Yangtze Basin,2020,29(10):2219-2228(in Chinese with English abstract). [百度学术] 

27

付凯,张秋英,李兆,等.城市化进程中长江经济带长江干流水化学演变特征及影响因素[J].环境科学学报,2022(11):160-171.FU K,ZHANG Q Y,LI Z,et al.Characteristics and influencing factors of hydrochemical evolution of the mainstream of the Yangtze River in the Yangtze River Economic Belt in the process of urbanization[J].Acta scientiae circumstantiae,2022(11):160-171(in Chinese with English abstract). [百度学术] 

28

谢平.长江及其生物多样性的前世今生[M].武汉:长江出版社,2020.XIE P.The past and present of the Yangtze River and its biodiversity[M].Wuhan : Changjiang Press,2020(in Chinese). [百度学术] 

29

郭超,李为,李诗琦,等.城市新建湖泊浮游动物群落结构特征及其驱动因素——以南通紫琅湖为例[J].生物资源,2022,44(2):141-153.GUO C,LI W,LI S Q,et al.Structural characteristics and driving factors of zooplankton community in a newly-built urban lake:a case of Zilang Lake in Nantong[J].Biotic resources,2022,44(2):141-153(in Chinese with English abstract). [百度学术] 

30

李学军,鲍战猛,高彩凤,等.北运河浮游动物调查及水质评价[J].生态学杂志,2014,33(6):1559-1564.LI X J,BAO Z M,GAO C F,et al.Zooplankton investigation and water quality evaluation in Beiyun River[J].Chinese journal of ecology,2014,33(6):1559-1564(in Chinese with English abstract). [百度学术] 

31

朱挺兵,杜红春,胡晓娜,等.基于水质综合指数的澜沧江西藏段水质评价及其影响因素[J].淡水渔业,2022,52(5):104-111.ZHU T B,DU H C,HU X N,et al.Evaluation and water quality influencing factors of the Tibet reach of the Lancang River based on the water quality index[J].Freshwater fisheries,2022,52(5):104-111(in Chinese with English abstract). [百度学术] 

32

李开枝,尹健强,黄良民,等.珠江口浮游动物的群落动态及数量变化[J].热带海洋学报,2005,24(5):60-68.LI K Z,YIN J Q,HUANG L M,et al.Dynamic variations of community structure and quantity of zooplankton in Zhujiang River Estuary[J].Journal of tropical oceanography,2005,24(5):60-68(in Chinese with English abstract). [百度学术] 

33

李共国,虞左明.千岛湖轮虫群落结构及水质生态学评价[J].湖泊科学,2003,15(2):169-176.LI G G,YU Z M.Community structure of Rotifera and ecological assessment of water quality in Qiandao Lake[J].Journal of lake science,2003,15(2):169-176(in Chinese with English abstract). [百度学术] 

34

秦海明.长江口盐沼潮沟大型浮游动物群落生态学研究[D].上海:复旦大学,2011.QIN H M.Ecological studies of macrozooplankton communities in salt marsh creeks of the Yangtze River Estuary[D].Shanghai:Fudan University,2011(in Chinese with English abstract). [百度学术] 

35

O'BRIEN W J,DE NOYELLES F Jr.Photosynthetically elevated pH as a factor in zooplankton mortality in nutrient enriched ponds[J].Ecology,1972,53(4):605-614. [百度学术] 

36

刘庆霞,周林滨,毋赟,等.褶皱臂尾轮虫Brachionus plicatilis摄食小球藻Chlorella sp.的碳同化与碳排放[J].生态学报,2018,38(18):6768-6777.LIU Q X,ZHOU L B,WU Y,et al.Assimilation and release of the ingested carbon of phytoplankton Chlorella sp.by the marine zooplanktonic rotifer Brachionus plicatilis[J].Acta ecologica sinica,2018,38(18):6768-6777(in Chinese with English abstract). [百度学术] 

37

林青,由文辉,徐凤洁,等.滴水湖浮游动物群落结构及其与环境因子的关系[J].生态学报,2014,34(23):6918-6929.LIN Q,YOU W H,XU F J,et al.Zooplankton community structure and its relationship with environmental factors in Dishui Lake[J].Acta ecologica sinica,2014,34(23):6918-6929(in Chinese with English abstract). [百度学术] 

38

徐雪,姚文佳,邢雨辉,等.苏州工业园区湖泊后生浮游动物群落结构及影响因子[J].生态学报,2021,41(10):4023-4035.XU X,YAO W J,XING Y H,et al.Characteristics and influencing factors of metazoan zooplankton community structure in lakes of Suzhou Industrial Park[J].Acta ecologica sinica,2021,41(10):4023-4035(in Chinese with English abstract). [百度学术] 

39

JEPPESEN E,PEDER JENSEN J,SØNDERGAARD M,et al.Trophic structure,species richness and biodiversity in Danish Lakes:changes along a phosphorus gradient[J].Freshwater biology,2000,45(2):201-218. [百度学术] 

40

叶文建,杜萍,寿鹿,等.舟山海域大中型浮游动物群落时空变化及受控要素[J].生态学报,2021,41(1):254-267.YE W J,DU P,SHOU L,et al.Spatio-temporal variation of marco and mesozooplankton communities and the controlling factors around Zhoushan archipelago[J].Acta ecologica sinica,2021,41(1):254-267(in Chinese with English abstract). [百度学术] 

41

秦志清,樊海平,林建斌,等.不同开口饵料对半刺厚唇鱼仔鱼摄食、生长与成活的影响[J].水产学杂志,2020,33(1):33-37.QIN Z Q,FAN H P,LIN J B,et al.Effects of different weaning diets on feeding,growth and survival of larval acrossocheilius hemispinus[J].Chinese journal of fisheries,2020,33(1):33-37(in Chinese with English abstract). [百度学术] 

42

袁锡立,刘本祥,薛治国,等.胭脂鱼仔鱼开口饵料的初步研究[J].淡水渔业,2004,34(2):14-15.YUAN X L,LIU B X,XUE Z G,et al.Preliminary study on opening bait for juvenile cochineal fish[J].Freshwater fisheries,2004,34(2):14-15(in Chinese). [百度学术] 

43

高原,赖子尼,杨婉玲,等.2014—2015年珠江春季禁渔前后浮游动物群落变化[J].生态环境学报,2017,26(9):1562-1569.GAO Y,LAI Z N,YANG W L,et al.Changes of zooplankton community before and after the spring closed season in the Pearl River in 2014—2015[J].Ecology and environmental sciences,2017,26(9):1562-1569(in Chinese with English abstract). [百度学术]