摘要
以濒危植物辐花苣苔(Oreocharis esquirolii)及同属植物紫花粗筒苣苔(O. elegantissima)和都匀马铃苣苔(O. duyunensis)为研究对象,在同等保育生境中进行叶光合生理特性及解剖结构的比较,探讨辐花苣苔与同属2种植物光合能力与叶生理结构之间的差异。结果显示:辐花苣苔的叶绿素a及(叶绿素a+叶绿素b)显著低于其他2种苦苣苔(P<0.05),叶绿素初始荧光显著高于紫花粗筒苣苔和都匀马铃苣苔(P<0.05),最大光化学效率、潜在光学活性、实际光化学量子产量、表观电子传递速率在3种植物中为最小;在光合日进程中,3种植物净光合速率呈现出较一致的双峰曲线特点,胞间CO2浓度趋势均呈“W”型,气孔导度随时间推移呈下降趋势,蒸腾速率随时间推移呈先下降后上升随后再下降的趋势,3种植物均出现明显的光合“午睡”现象,且各指标均呈现出辐花苣苔最低的特点;在光响应中辐花苣苔最大净光合速率值为2.24 μmol/(
珍稀植物的濒危机制及保护策略研究是植物多样性保护的重点工作之一。植物濒危的进程是该物种的竞争力及其对立地条件适应力等互作的生态过
苦苣苔科(Gesneriaceae)植物多为多年生草本,我国苦苣苔科植物在喀斯特地貌地区分布较多,是特化适应石灰岩地貌的一个重要类群,具有重要的观赏价
在相同的生态条件下濒危植物通常表现出生存力及适应力较差的共同特征,而多数濒危植物的生理代谢速率,如光合速率、呼吸速率和蒸腾速率亦低于非濒危近缘
试验地为中国苦苣苔科植物保育中心(贵州),位于贵州省贵阳市,贵州省植物园内(106°42′E,26°34′N),海拔约1 300 m,年均气温15.3 ℃,相对湿度约为74%,年平均总降水量为1 174.7 mm。辐花苣苔、紫花粗筒苣苔和都匀马铃苣苔均为中国苦苣苔科植物保育中心繁殖栽培的成熟植株。试验时3种植物分别选择长势良好一致的植株3~4株,标记健康成熟的叶片作为测试叶,测定时保持叶片自然生长角度不变,每株植物重复测定3次。
1) 叶绿素含量测定。摘取健康功能叶片用于叶绿素含量测定,测定及计算参考Lichtenthaler
2) 叶绿素荧光参数测定。测定时间在2021年8月,选择晴朗天气的上午(08:30-11:30), 使用OPTI-sciences公司的OS-5
3)光合日进程观测。选择晴朗天气的08:00-18:00时,在保育基地自然环境条件下,采用美国LI-COR公司的Li-6800便携式光合仪,测定3种植物叶片的光合日变化。每种植物选取长势一致的3~4片功能叶,1 h测1次。测定的主要参数包括净光合速率(Pn)、蒸腾速率(E)、胞间CO2浓度(Ci)、气孔导度(Gs)、饱和水汽压亏缺(vapor pressure deficit,VPD)等。
4)光响应曲线测定。选择晴朗天气的09:00-11:30测定,测定前对待测叶片进行充分光诱导,设定叶室温度28 ℃,叶室相对湿度60%,气体流速为500 μmol/s,CO2浓度为400 μmol/mol(用CO2小钢瓶控制浓度),设置0~1 500 μmol/(
5)CO2响应曲线测定。与测定光响应曲线的条件相同,测定前控制光强为600 μmol/(
6)叶片解剖结构。将测定光合作用的叶片摘下,制作石蜡切
1)光合色素含量。3种植物的光合色素含量如
物种 Species | 叶绿素a/(mg/d Chl a | 叶绿素b/(mg/d Chl b | 类胡萝卜素/(mg/d | (叶绿素a+叶绿素b)/(mg/d Chl a+Chl b | 叶绿素a/叶绿素b Chl a/Chl b |
---|---|---|---|---|---|
紫花粗筒苣苔 O. elegantissima | 0.72±0.02b | 0.28±0.01a | 0.24±0.01a | 1.00±0.04a | 2.55±0.03a |
都匀马铃苣苔 O. duyunensis | 0.66±0.06a | 0.29±0.03a | 0.25±0.02a | 0.95±0.09b | 2.27±0.03b |
辐花苣苔 O. esquirolii | 0.66±0.04a | 0.32±0.02a | 0.25±0.02a | 0.98±0.06b | 2.04±0.01c |
注: 表中数据为均值±标准误差,不同字母表示差异显著(P<0.05),下同。Note: Data in the table for the “mean ± standard error”. Different letters denote significant differences at 0.05 level. The same as below.
2) 叶绿素荧光参数。由

图1 辐花苣苔与紫花粗筒苣苔和都匀马铃苣苔的叶片叶绿素荧光参数比较
Fig. 1 Comparison of chlorophyll fluorescence parameters in leaves of O. esquirolii between O. elegantissima and O. duyunensis
1. 紫花粗筒苣苔 O. elegantissima; 2.都匀马铃苣苔 O.
;duyunensis; 3. 辐花苣苔 O.esquirolii.A:初始荧光Fo;B:最大荧光 Fm;C:最大光化学效率 Fv/Fm;D:潜在光学活性Fv/Fo; E:实际光化学量子产量Y(Ⅱ);F:表观电子传递速率 ETR.
3种植物的净光合速率(Pn)日变化呈现出较一致的双峰曲线特点(

图2 辐花苣苔与紫花粗筒苣苔和都匀马铃苣苔的叶片光合日变化参数比较
Fig. 2 Comparison of diurnal variation parameters of leaf photosynthesis betweenO. esquirolii between O. elegantissima and O. duyunensis
3种植物的胞间CO2浓度(Ci)趋势大致呈“W”型,辐花苣苔和都匀马铃苣苔Ci的第1个波谷是在上午11:00,而紫花粗筒苣苔Ci的第1个波谷是12:00,3种植物Ci的第2个波谷均出现在下午15:00,3种苦苣苔在上午11:00-12:00以及下午15:00时光合作用较强且呈现出辐花苣苔>都匀马铃苣苔>紫花粗筒苣苔的趋势(P<0.05,
气孔导度(Gs)随时间推移呈下降趋势,14:00出现短暂升高后下降,呈现都匀马铃苣苔>紫花粗筒苣苔>辐花苣苔的趋势,且辐花苣苔的Gs值显著低于同属另2种植物(P<0.05,
蒸腾速率(E)在12:00降到较低点,期间上升到14:00至最大值,说明3种植物在12:00出现短暂的休眠,E大小依次为都匀马玲苣苔>紫花粗筒苣苔>辐花苣苔(P<0.05,
3种植物的饱和水汽压亏缺(VPD)趋势基本一致,呈单峰型,VPD最小值均出现在08:00,最大值均出现在15:00(
1) 光响应曲线。光响应曲线反映了植物光合速率随光强改变而变化的规律。如

图3 辐花苣苔与紫花粗筒苣苔和都匀马铃苣苔的叶片光响应曲线
Fig. 3 Light response curve of leaves of O. esquirolii between O. elegantissima and O. duyunensis
物种 Species | 最大净光合速率 Pnmax | 暗呼吸速率 Rd | 光饱和点 Light saturation points | 光补偿点 Light compensation points |
---|---|---|---|---|
紫花粗筒苣苔 O. elegantissima | 7.01±0.44a | 0.87±0.25b | 427.15±7.00a | 18.46±4.42b |
都匀马铃苣苔 O. duyunensis | 4.98±0.06b | 0.84±0.06b | 277.02±24.28b | 22.32±6.71b |
辐花苣苔 O. esquirolii | 2.24±0.18c | 1.14±0.21a | 294.47±6.22b | 51.85±1.56a |
2)CO2响应曲线。通过拟合得到光合CO2响应曲线(

图4 辐花苣苔与紫花粗筒苣苔和都匀马铃苣苔的叶片CO2响应曲线
Fig. 4 CO2 response curves of leaves of O. esquirolii between O. elegantissima and O. duyunensis
物种 Species | 最大羧化速率 vcmax | 最大光合电子传递速率Jmax |
---|---|---|
紫花粗筒苣苔 O. elegantissima | 30.25±5.34a | 83.91±7.25a |
都匀马铃苣苔 O. duyunensis | 19.90±3.09b | 50.04±8.77b |
辐花苣苔 O. esquirolii | 7.63±2.13c | 26.04±4.21c |
经光学显微镜观察,辐花苣苔的横切结构与紫花粗筒苣苔和都匀马铃苣苔存在较大差异,叶表面的绒毛密度较大,栅栏组织细胞较少(

图5 紫花粗筒苣苔(A)、都匀马铃苣苔(B)与辐花苣苔(C)的叶片解剖结构比较
Fig. 5 Leaves anatomical comparison of O. elegantissima (A), O. duyunensis(B) and O. esquirolii (C)
物种 Species | 叶片厚度(LT)/μm Leaf thickness | 上表皮厚度(UE)/μm Thickness of upper epidermis | 下表皮厚度(LE)/μm Thickness of lower epidermis | 栅栏组织厚度(PT)/μm Palisade tissue thickness | 海绵组织 厚度(ST)/μm Sponge tissue thickness | 组织密实度(PT/LT) Tissue dense degrees | 组织疏松度 (ST/LT) Tissue loose degrees |
---|---|---|---|---|---|---|---|
紫花粗筒苣苔 O. elegantissima | 415.67±23.09a | 27.25±10.01b | 29.26±0.92a | 54.50±3.25a | 35.95±5.26b | 0.13±0.11a | 0.09±0.01a |
都匀马铃苣苔 O. duyunensis | 393.34±14.08b | 35.12±15.61a | 23.37±7.68b | 49.21±1.02b | 39.27±10.44a | 0.13±0.05a | 0.10±0.04a |
辐花苣苔 O. esquirolii | 304.48±12.28c | 37.80±8.29a | 38.09±2.97a | 40.79±4.33c | 30.07±8.59c | 0.13±0.07a | 0.10±0.07a |
叶绿素a与叶绿素b具有捕获和吸收光能的作用,是植物光合作用的物质基础,其含量和比值反映植物适应和利用环境因子的重要指标。类胡萝卜素等在弱光条件下辅助提高对总光量子的吸
叶绿素荧光参数作为评价植物光合能力的重要指标,对研究植物光系统及其电子传递过程起重要作
光合作用日变化是衡量植物内在节律及对环境适应能力的重要指标,通常表现为“单峰”和“双峰”
光响应曲线中最大净光合速率(Pnmax)是衡量叶片光合能力的重要指标。判断植物耐荫性的重要指标主要是叶片的光饱和点和光补偿点,也反映了植物在生境中对光照条件的要求,3种马铃苣苔属植物叶片的LSP为427.15~294.47 μmol/(
已有的研究表明,叶片适应弱光环境的生理特性主要为表皮厚度减小、栅栏组织及海绵组织发
综上,3种植物的光合生理特性与叶片结构之间的差异,反映其适应外界生态环境调节机制的差异。作为国家一级保护的珍稀濒危植物辐花苣苔各项光合指标整体低于同属的非濒危植物紫花粗筒苣苔与都匀马铃苣苔,对环境的适应能力最弱,这可能是其濒危的主要内在因素之一。
参考文献 References
郑英茂,周钰鸿,潘成椿,等.濒危植物九龙山榧与其同属广布种榧树叶绿素荧光特性的比较[J].林业资源管理,2021(2): 86-93.ZHEN Y M, ZHOU Y H, PAN C C, et al.Comparison of chlorophyll fluorescence characteristics between Torreya jiulongshanensis leaves and its widespread congener T.Grandis[J].Forest resources management, 2021(2):86-93(in Chinese with English abstract). [百度学术]
吴泽群.珍稀濒危植物紫茎Stewartia sinensis的种子生理特性和光合生理特性研究[D].杭州:浙江农林大学,2018.WU Z Q.Study on the seed physiological characteristics and photosynthetic physiological characteristics of rare and endangered species Stewartia sinensis[D].Hangzhou:Zhejiang A & F University, 2018(in Chinese with English abstract). [百度学术]
MAKINO A.Photosynthesis, grain yield, and nitrogen utilization in rice and wheat[J].Plant physiology, 2011, 155(1):125-129. [百度学术]
李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学通报,2005(S1):118-127.LI F L, BAO W K.Responses of the morphological and anatomical structure of the plant leaf to environmental change[J].Chinese bulletin of botany,2005(S1):118-127(in Chinese with English abstract). [百度学术]
李振宇,王印政.中国苦苣苔科植物[M].郑州:河南科学技术出版社,2004.LI Z Y,WANG Y Z.Plants of Gesneriaceae in China[M].Zhengzhou:Henan Science and Technology Press, 2004(in Chinese). [百度学术]
温放.苦苣苔 依赖洞口弱光带[J].森林与人类,2021(8):66-81.WEN F.Gesneriaceae:relying on the open mouth weak light band[J].Forest & humankind,2021(8):66-81(in Chinese). [百度学术]
LI Q,DENG M,XIONG Y, et al.Morphological and photosynthetic response to high and low irradiance of Aeschynanthus longicaulis[J/OL].The scientific world journal,2014,2014:347461[2022-04-28].https://doi.org/10.1155/2014/347461. [百度学术]
中国科学院《中国植物志》编辑委员会.中国植物志:第69卷[M].北京:科学出版社,1990:131.Editorial Board of Flora of China,Chinese Academy of Sciences.Flora of China:volume 69[M].Beijing:Science Press,1990:131(in Chinese). [百度学术]
MOELLER M, MIDDLETON D, NISHII K, et al.A new delineation for Oreocharis incorporating an additional ten genera of Chinese Gesneriaceae[J].Phytotaxa, 2011, 23(1):1-36. [百度学术]
温放,黎舒,辛子兵,等.新中文命名规则下的最新中国苦苣苔科植物名录[J].广西科学,2019,26(1):37-63.WEN F,LI S,XIN Z B,et al.The updated plant list of Gesneriaceae in China under the new Chinese naming rules[J].Guangxi sciences,2019,26(1):37-63(in Chinese with English abstract). [百度学术]
杨朔,任启飞,杨加文,等.珍稀濒危植物辐花苣苔生存群落结构特征及物种多样性[J].耕作与栽培,2021,41(1):50-54.YANG S,REN Q F,YANG J W,et al.Structural characteristics and species diversity of the endangered plant Thamnocharis esquirolii com munity[J].Tillage and cultivation,2021,41(1):50-54(in Chinese). [百度学术]
李飒,汤升虎,任启飞,等.贵州苦苣苔科植物新种资料(3)[J].贵州科学,2020,38(3):1-5.LI S,TANG S H,REN Q F,et al.Notes on the newly-reported species (Gesneriaceae) from Guizhou,China (Ⅲ)[J].Guizhou science,2020,38(3):1-5(in Chinese with English abstract). [百度学术]
石松利,王迎春,周红兵,等.濒危种四合木与其近缘种霸王水分关系参数和光合特性的比较[J].生态学报,2012,32(4):159-169.SHI S L,WANG Y C,ZHOU H B,et al.Comparative analysis of water related parameters and photosynthetic characteristics in the endangered plant Tetraena mongolica Maxim.and the closely related Zygophyllum xanthoxylon(Bunge) Maxim.[J].Acta ecologica sinica,2012,32(4):159-169(in Chinese with English abstract). [百度学术]
LICHTENTHALER H K,BUSCHMANN C.Chlorophyll fluorescence spectra of green bean leaves[J].Journal of plant physiology,1987,129(1/2):137-147. [百度学术]
叶子飘.光合作用对光和CO2响应模型的研究进展[J].植物生态学报,2010,34(6):727-740.YE Z P.A review on modeling of responses of photosynthesis to light and CO2[J].Chinese journal of plant ecology,2010,34(6):727-740(in Chinese with English abstract). [百度学术]
GU L H,PALLARDY S G,TU K,et al.Reliable estimation of biochemical parameters from C3 leaf photosynthesis-intercellular carbon dioxide response curves[J].Plant,cell & environment,2010,33(11):1852-1874. [百度学术]
李德燕,周运超.钙对马尾松针叶生理生化特性及细胞超微结构的影响[J].西北林学院学报,2018,33(2):20-27.LI D Y, ZHOU YC.Effects of calcium concentration on physio-biochemical characteristics and ultrastructure of Pinus massoniana needles[J].Journal of Northwest Forestry University,2018,33(2):20-27(in Chinese with English abstract). [百度学术]
NYGREN M.Effect of shading on leaf structure and photosynthesis in young birches,Betula pendula Roth. and B.pubescens Ehrh[J].Forest ecology and management,1983,7(2):119-132. [百度学术]
DRING M J.Chromatic adaptation of photosynthesis in benthic marine algae:an examination of its ecological significance using a theoretical model[J].Limnology and oceanography,1981,26(2):271-284. [百度学术]
FRANIĆ M,GALIĆ V,LONČARIĆ Z,et al.Genotypic variability of photosynthetic parameters in maize ear-leaves at different cadmium levels in soil[J/OL].Agronomy,2020,10(7):986[2022-04-28].https://doi.org/10.3390/agronomy10070986. [百度学术]
RASCHER U,LIEBIG M,LÜTTGE U.Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field[J].Plant,cell & environment,2000,23(12):1397-1405. [百度学术]
GHOBADI M, TAHERABADI S, GHOBADI M E,et al.Antioxidant capacity,photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress[J].Industrial crops and products,2013,50(1):29-38. [百度学术]
周敏,杜峰,张赟赟,等.黄土高原撂荒地植物群落共存种光合特性对土壤水分变化的响应[J].草业学报,2020,29(1):50-62.ZHOU M,DU F,ZHANG Y Y,et al.Photosynthetic responses to differences in soil moisture content of co-existing species in plant communities of abandoned land on the Loess Plateau[J].Acta prataculturae sinica,2020,29(1):50-62(in Chinese with English abstract). [百度学术]
SHARMA P N,TRIPATHI A,BISHT S S.Zinc requirement for stomatal opening in cauliflower[J].Plant physiology,1995,107(3):751-756. [百度学术]
MCADAM S A M,BRODRIBB T J.Linking turgor with ABA biosynthesis:implications for stomatal responses to vapor pressure deficit across land plants[J].Plant physiology,2016,171(3):2008-2016. [百度学术]
BELKO N,ZAMAN-ALLAH M,DIOP N N,et al.Restriction of transpiration rate under high vapour pressure deficit and non-limiting water conditions is important for terminal drought tolerance in cowpea[J].Plant biology,2013,15(2):304-316. [百度学术]
ROBY M C,SCOTT R L,MOORE D J P.High vapor pressure deficit decreases the productivity and water use efficiency of rain-induced pulses in semiarid ecosystems[J/OL].Journal of geophysical research:biogeosciences,2020,125(10):e2020JG005665[2022-04-28].https://doi.org/10.1029/2020JG005665. [百度学术]
蒋高明.植物生理生态学[M].北京:高等教育出版社,2004.JIANG G M.Plant Ecophysiology[M].Beijing:Higher Education Press,2004(in Chinese). [百度学术]
GYIMAH R,NAKAO T.Early growth and photosynthetic responses to light in seedlings of three tropical species differing in successional strategies[J].New forests,2007,33(3):217-236. [百度学术]
PASTUR G M, LENCINAS M V, PERI P L, et al.Photosynthetic plasticity of Nothofagus pumilio seedlings to light intensity and soil moisture[J].Forest ecology and management,2007,243:274-282. [百度学术]
李丽霞,刘济明,廖小锋,等.小蓬竹光合作用对CO2的响应特征[J].东北林业大学学报,2016,44(8):18-23.LI LX, LIU J M, LIAO X F, et al.Effect of Drepanostachyum luodianense photosynthesis on characteristic of response to CO2[J].Journal of Northeast Forestry University,2016,44(8):18-23 (in Chinese with English abstract). [百度学术]
VON CAEMMERER S,FARQUHAR G D.Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves[J].Planta,1981,153(4):376-387. [百度学术]
FARQUHAR G D,VON CAEMMERER S,BERRY J A.A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J].Planta,1980,149(1):78-90. [百度学术]
李冬林,金雅琴,崔梦凡,等.夏季遮光对连香树幼苗形态、光合作用及叶肉细胞超微结构的影响[J].浙江农林大学学报,2020,37(3):496-505.LI D L,JIN Y Q,CUI M F,et al.Growth,photosynthesis and ultrastructure of mesophyll cells for Cercidiphyllum japonicum seedlings with shading in summer[J].Journal of Zhejiang A & F University,2020,37(3):496-505(in Chinese with English abstract). [百度学术]
MEZIANE D,SHIPLEY B.Interacting components of interspecific relative growth rate:constancy and change under differing conditions of light and nutrient supply[J].Functional ecology,1999,13(5):611-622. [百度学术]
BACELAR E A,CORREIA C M,MOUTINHO-PEREIRA J M,et al.Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions[J].Tree physiology,2004,24(2):233-239. [百度学术]
束际林.茶树叶片解剖结构鉴定的原理与技术[J].中国茶叶,1995, 17(1):2-4.SU J L.Principle and technology of anatomical structure identification of tea leaves[J].China tea, 1995, 17(1):2-4(in Chinese). [百度学术]
CHARTZOULAKIS K,PATAKASB A,KOFIDIS G,et al.Water stress affects leaf anatomy,gas exchange,water relations and growth of two avocado cultivars[J].Scientia horticulturae,2002,95(1/2):39-50. [百度学术]
蔡志全,齐欣,曹坤芳.七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应[J].应用生态学报,2004,15(2):201-204.CAI Z Q,QI X,CAO K F.Response of stomatal characteristics and its plasticity to different light intensities in leaves of seven tropical woody seedlings[J].Chinese journal of applied ecology,2004,15(2):201-204(in Chinese with English abstract). [百度学术]