网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

百脉根不定根发育相关基因LcC2DP1的克隆与功能初步分析  PDF

  • 马思宇
  • 肖芳斌
  • 罗雪
  • 韦飘
  • 宋莉
贵州大学生命科学学院/农业生物工程研究院/山地植物资源保护与种质创新教育部重点实验室/ 贵州省农业生物工程重点实验室,贵阳550025

中图分类号: S541+.6

最近更新:2023-01-14

DOI:10.13300/j.cnki.hnlkxb.2023.01.006

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

为研究百脉根(Lotus corniculatus L.)C2钙依赖蛋白激酶基因LcC2DP1在不定根形成过程中的功能,通过RACE法从百脉根中克隆LcC2DP1基因,利用qRT-PCR检测其时空表达模式,并通过农杆菌介导的瞬时表达系统在百脉根中过量表达LcC2DP1并鉴定其功能。结果显示:LcC2DP1基因全长705 bp,编码235个氨基酸,分子质量为25.95 ku,与蒺藜苜蓿同源性最高(82%);在百脉根不定根分化过程中持续表达,表达部位为根、茎和叶片;与野生型亲本(WT)相比,转LcC2DP1基因百脉根(TP)的不定根分化提前1~2 d;在不定根分化的9~15 d ,其总根长分别是WT的168%、155%,根体积分别是WT的249%、161%,根尖数分别是WT的156%、137%。TP百脉根的总根长(P<0.01)、根体积(P<0.01和根尖数(P<0.05)表现出一定的发育优势,表明LcC2DP1基因可能与百脉根不定根发育调控相关。

植物根系具有固持地上组织和吸收水分、养分的双重功

1,在植物生长发育过程中发挥重要作2。根系的生长状态和分化速度直接影响牧草的长势和产3-4。牧草根系的发育受多种内外环境因子的影响,由蛋白激酶(protein kinases, PK)介导的激素信号途径是其中的主要调控途5-6。蛋白激酶是催化蛋白质磷酸化反应的酶,广泛参与细胞信号感7、传8、基因表9、生长发育调10等过程。根据催化域氨基酸序列的不同,蛋白激酶分为AGC、CaMK、CMGC、PTK和其他共5个类11。CaMK中的C2钙依赖蛋白激酶(C2 calcium-dependent protein kinase, C2CDPK)是一类含有C2结构域的蛋白。钙依赖蛋白激酶(CDPK)依赖于Ca2+催化磷酸化反12,参与细胞信号转导过13。研究表明,CDPK参与植物根系的生长发育调控,定位于细胞膜的拟南芥CDPK编码基因CPK29参与侧根形成调9,苜蓿MtCDPK1表达促进根毛的正常生14,水稻OsCDPK5在淹水条件下能保证根系通气组织的正常形15。C2结构域蛋白主要定位于人类和动物的细胞膜系统,具有参与磷脂第二信号产生、GTP酶激活和控制蛋白质磷酸化等重要功16-17。近年来,植物C2CDPK的研究已逐渐受到关18-19。研究发现小麦的C2CDPK基因TaC2DP1在干旱、低温和热胁迫中发挥重要作20,旋蒴苣苔的BhC2DP1基因参与脱落酸(abscisic acid, ABA)信号途径调控根的生21。尽管如此,人们对植物C2CDPK的了解仍极为有限。

百脉根(Lotus corniculatus L.)是一种优质的多年生豆科牧草,也是一种良好的蜜源和护坡固土植物,其由匍匐茎发生的不定根所构成的根系系统十分发达。本研究通过RACE扩增法克隆Leo百脉根C2CDPK编码基因LcC2DP1,利用qRT-PCR技术检测该基因的组织表达特异性,通过农杆菌介导的瞬时表达系统对其不定根分化调控功能进行初步分析,以期为揭示百脉根根系发育调控机制提供依据。

1 材料与方法

1.1 材料

所用植物材料为百脉根(Lotus corniculatus ‘Leo’),种植于贵州大学贵州省农业生物工程重点实验室试验田。农杆菌(Agrobacterium tumefaciens)菌株GV3101和pSH737植物表达载体均保存于笔者所在实验室。

1.2 LcC2DP1基因克隆

笔者所在课题组前期分析百脉根不定根发育转录组数

22中发现,12个C2结构域激酶基因家族成员在不定根发育过程中持续上调表达,其中的LcC2DP1(Lc1g3v0026680)表达最为显著,本研究对该基因进行进一步研究,克隆引物(表1)采用Primer Premier 5.0软件设计,提取百脉根茎、叶、根的总RNA混合反转录成cDNA后作为模板,按照5′RACE和3′RACE试剂盒(TaKaRa, 大连)提供的操作方法进行两轮巢式PCR扩增,首轮PCR产物稀释50倍后取1 μL作为第二轮PCR的模板。50 μL反应体系为:cDNA模板1 μL、引物各2 μL、Taq酶0.5 μL、Buffer 5 μL、2H2O补足体系;PCR反应程序为:94 ℃预变性2 min;94 ℃变性30 s,55 ℃退火30 s,72 ℃延伸1 min,35次循环后再72 ℃ 延伸10 min,之后对PCR产物进行凝胶分离和回收测序。根据已知序列和5′ RACE、3′ RACE测序结果,拼接目的基因全长序列,分析起始和终止密码子位置。根据RACE扩增序列设计2条全长扩增特异性引物(表1),以百脉根cDNA为模板扩增LcC2DP1基因,扩增条件为:94 ℃ 预变性2 min;94 ℃ 变性30 s,55 ℃ 退火30 s,68 ℃延伸1 min,35个循环;68 ℃ 延伸10 min。PCR扩增片段与pMD18T载体连接,热激法转化大肠杆菌DH5α后送生工生物一程(上海)公司测序。

表1  RACE和全长基因克隆扩增引物序列
Table 1  RACE and full length gene cloning amplification primer sequence
引物 Primer序列 Sequence用途 Function
A041-1(GSP1) CGTAGGGATCTTGGCG 5' RACE扩增
A041-2(GSP2) ATCCATTCTGTGTCCTTC 5' RACE amplification
A041-3(GSP3) TTGGAGCAGGAAACAACAG
S042-1 CATCGTTTGGAACAGCAATACACT 3' RACE扩增

S042-3

LcC2DP1-F

LcC2DP1-R

TTCAATCCAAAACTGGCAGACACGC

TGTTGAATTGAAAGATCTGC

GAGGGTGTAGAGGATCCA

3' RACE amplification

全长扩增

Full length amplification

1.3 LcC2DP1基因结构分析

使用相关的生物信息分析在线工具进行LcC2DP1基因的分子特征分析,其中,理化性质(蛋白质分子质量、等电点、分子式)采用ExPASy ProtParam tool(https://web.expasy.org/protparam/)、编码蛋白的亲疏水性采用Protscale(https:∥web.expasy.org/protscale/)、蛋白结构分析采用SOPMA(https:∥npsa-prabi.ibcp.fr/cgi-bin/)和SWISS-MODEL(https://swissmodel.expasy.org/)进行。利用Plant-mPLoc(http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/)对LcC2DP1基因进行亚细胞定位预测。利用BEDTools

23获得LcC2DP1基因上游2 000 bp序列(Lotus corniculatus genome assembly build 3.024,利用在线网站PlantCARE对获得的序列和顺式作用元件进行分析。使用NCBI的BLAST工具筛选出LcC2DP1同源序列后用MEGA X中邻位相连法构建系统发育进化树。

1.4 LcC2DP1基因表达分析

为探究LcC2DP1在百脉根不同组织和不同时期中的表达情况,分别收集Leo百脉根的根、茎、叶以及不定根形成过程中0、3、6、9、12 d根部组织为样本。以百脉根UBI(DQ249171.1)作为内参基因,通过IDT(https://sg.idtdna.com/site/home/home/sessiontimeout)在线软件设计LcC2DP1UBI的扩增引物(表2)。使用实时荧光定量PCR仪(CFX96)检测LcC2DP1基因的时空表达特性,反应体系和反应程序根据TIANGEN miRcutemiRNA试剂盒的说明进行。采用2-△△Ct

25分析基因相对表达量。

表2  qRT-PCR检测引物序列
Table 2  Primer sequence used in qRT-PCR detection

引物

Primer

序列(5'-3')

Sequence

用途

Function

LcUBI-F CTTCACCTTGTCCTTCGTCTG 内参基因
LcUBI-R TGGATCTTAGCCTTCACGTTG House-keeping gene
QLcC2DP1-F TTTCACGCCAAGATCCCTAC 目的基因
QLcC2DP1-R GAGTGTATTGCTGTTCCAAACG Gene of interest

1.5 植物表达载体构建及遗传转化

利用限制性内切酶EcoRⅠ和XbaⅠ(TaKaRa, 大连)分别酶切pSH737和pMD18T- LcC2DP1质粒,酶切片段回收后用T4 DNA连接酶(TaKaRa,大连)4 ℃连接过夜,构建LcC2DP1基因的植物表达载体,该基因由35S启动子驱动表达,以GUS::NPTII作为报告基因和筛选基因。采用YEP液体培养基培养所获得的阳性工程菌至对数生长期。参照杨少彤

26的方法,通过真空渗透法进行百脉根枝条瞬时转化。转化条件为在12 kPa处理10 min,快速释放压力,再次重复处理1次。每组15株样品,重复3次。以携带GV3101-pSH737质粒转化植株作为对照,分别采用GUS组织化学染色和RT-PCR进行转化鉴定。采用视显微镜(OOX-86)进行拍照,利用根系扫描仪(Epson)和根系分析软件(Win Rhizo)对总根长、根尖数、根系总表面积、根体积和根平均直径等根系指标进行观察及统计分析。

1.6 数据统计与分析

数据统计和显著性分析分别采用Excel 2016软件和DPS 7.05软件,并采用GraphPad Prism 8.2软件进行作图。

2 结果与分析

2.1 LcC2DP1基因克隆

基于百脉根不定根分化转录组筛选的Lc1g3v0026680序列,对LcC2DP1基因进行RACE扩增,获得的LcC2DP1全长为705 bp,编码235个氨基酸,该序列上游有起始密码子ATG,下游有终止密码子TGA。为了验证拼接序列的正确性,设计引物对LcC2DP1编码区进行扩增,得到1条约700 bp的特异性条带,序列测定结果表明LcC2DP1编码区与拼接结果序列完全一致(图1)。

图1  LcC2DP1基因克隆及拼接翻译

Fig.1  LcC2DP1 gene amplification and mosaic translation

A:5' RACE克隆结果; B:3' RACE克隆结果; C:全长克隆结果 (1:阳性单菌落提取的质粒; M:DL2000 Marker);D:拼接翻译。A:5' RACE cloning results; B:3' RACE cloning results; C:Full length cloning results (1:Plasmids extracted from positive single colonies; M:DL2000 Marker);D:Mosaic translation.

2.2 LcC2DP1的理化性质

LcC2DP1基因结构进行分析,结果显示,其编码蛋白含235个氨基酸,相对分子质量为25 952.03,理论等电点为7.17,分子式为C1185H1737N305O344S6,脂肪指数为53.91,不稳定性指数为85.47,是一种不稳定蛋白。对LcC2DP1蛋白质进一步分析,发现其亲水性氨基酸较疏水性氨基酸多(图2A),推测该蛋白属于亲水性蛋白。在LcC2DP1蛋白的二级结构中,α螺旋有19个氨基酸(占8.15%),无规卷曲有175个氨基酸(占75.11%),延伸链有39个氨基酸(占16.74%)(图2B),可确定该蛋白二级结构主要以无规卷曲为主。利用Plant-mPLoc在线分析软件,对LcC2DP1进行亚细胞定位预测,结果显示,LcC2DP1定位在细胞核和细胞膜上(图2C)。用Swiss model对LcC2DP1蛋白进行三级结构预测,结果显示,LcC2DP1蛋白结构包含大量的无规卷曲(图2D),这与预测的二级结构结果一致。对LcC2DP1的全长蛋白序列进行Blast比对并构建系统进化树,结果显示,LcC2DP1与蒺藜苜蓿蛋白同源性最高,为82%(图2E),暗示C2结构域在豆科植物中进化较为保守。

图2  LcC2DP1 基因分子特性

Fig.2  Molecular characteristics of LcC2DP1 gene

A:LcC2DP1蛋白疏水性; B:LcC2DP1蛋白二级结构预测; C:LcC2DP1的亚细胞定位预测; D:LcC2DP1蛋白三级结构预测; E:百脉根LcC2DP1与其他C2结构域蛋白的系统进化树。A:LcC2DP1 protein hydrophobicity analysis; B:LcC2DP1 protein secondary structure prediction; C:Subcellular localization prediction of LcC2DP1; D:Tertiary structure of LcC2DP1; E:Phylogenetic tree analysis of Lotus corniculatus and other C2 domain protein.

2.3 顺式作用元件类型

提取百脉根LcC2DP1基因上游2 000 bp序列进行顺式作用元件分析,结果(表3)显示,百脉根LcC2DP1基因除了含有启动子和增强子区域最基本的CAAT-box元件以外,还含有光响应元件(Box-4、AT1-motif、GT1-motif)、转录起始核心启动子元件(TATA-box)以及干旱诱导相关(MBS)的多种顺式作用元件。

表 3  LcC2DP1基因的主要顺式调控元件
Table 3  The main cis-regulatory elements of LcC2DP1 gene
元件 Element位点 Site功能 Function数量 Number
CAAT-box 1,233,1 725,1 778,1 799

启动子和增强子区域常见的元件

Common elements in promoter and enhancer regions

5
Box-4 16,1 495

参与光响应顺式作用调节元件

Participate in lighting response clocking components

2
TATA-box 10,11,12,13,1 976,1 977,1 978

转录起始核心启动子元件

Transcription initiation core promoter componentst

7
MBS 1 740

参与干旱诱导的顺式作用元件

Participate in drought -induced custody components

1
AT1-motif 1 370

参与光响应顺式作用调节元件

Participate in lighting response clocking components

1
GT1-motif 175,176

参与光响应顺式作用调节元件

Participate in lighting response clocking components

2

2.4 植物表达载体构建

扩增LcC2DP1基因片段,与pSH737植物表达载体连接,双酶切鉴定结果显示,重组质粒酶切后出现705 bp的目的基因条带(图3A)。GV3103农杆菌转化菌株的PCR扩增检测显示,菌体中能扩增出705 bp的LcC2DP1基因条带(图3B),表明植物表达载体pSHLcC2DP1和携带LcC2CDP1基因的工程菌构建成功。

图3  植物表达载体双酶切及农杆菌PCR电泳检测

Fig.3  The electrophoretic detection on double enzyme digestion of plant expression vector and PCR of Agrobacterium tumefaciens liquid

A:植物表达载体双酶切; B:农杆菌菌落PCR(M:DL 2000 Marker;1-2:不同阳性单菌落提取的质粒)。A:Verification of vector double enzyme digestion; B:PCR identification of Agrobacterium tumefactiens colony (M:DL 2000 Marker;1-2:Plasmids extracted from different positive single colonies).

2.5 LcC2DP1基因的表达特征

通过qRT-PCR分析LcC2DP1基因在百脉根不同组织及不定根分化期间的差异表达情况,发现相较于内参基因UBILcC2DP1基因在根、茎、叶中均有表达,但主要表达部位为根(1.00±0.00)和茎(7.57±0.36),在叶中表达量(0.15±0.03)最低(图4A)。当瞬时转化后,LcC2DP1基因在百脉根根(相对表达量为6.51±0.32)、茎(相对表达量为9.65±0.35)、叶(相对表达量为0.34±0.06)中表达量均增加,以根中表达变化量最为显著(P<0.01)(图4A);不定根分化的0~9 d,野生型植株(WT)和转LcC2DP1植株(TP)的LcC2DP1基因表达量均逐渐上升,但TP相较于WT变化显著(P<0.05),其中3 d时为1.26±0.09,9 d时表达量最高(2.68±0.35),之后表达量下降,TP同期表达量均高于WT(图4B)。

图4  LcC2DP1 基因表达特异性

Fig.4  LcC2DP1 gene expression specificity

*和**分别表示在0.05和0.01水平上显著性相关;WT:野生型植株;TP:转LcC2DP1植株;下同。A:LcC2DP1 基因在不同组织的表达; B:LcC2DP1基因在不定根分化过程中的差异表达。* and ** indicate significant correlation at the 0.05 and 0.01 levels, respectively;The same as follows.WT:Wild type;TP:Trans LcC2DP1 gene plants;A:The relative expression level of LcC2DP1 gene in plant different tissues; B:The expression of LcC2DP1 gene in the process of adventitious root development.

2.6 LcC2DP1基因在不定根分化中的作用

采用农杆菌介导的真空渗透法将植物表达载体pSHLcC2DP1转化到百脉根中。GUS组织化学染色显示,外源基因转化后3~15 d均可观察到百脉根叶片显示蓝色,外源基因瞬时转化百脉根后可在叶片和根部组织有效表达,随着时间的延长蓝色逐渐加深,到第9天时蓝色最深(图5A),之后蓝色逐渐变浅,外源基因功能鉴定可在转化后15 d内进行。形态学观察发现第6天时不定根形成,之后根系逐渐增多(图5B),利用RT-PCR对转化后9 d LcC2DP1基因转录情况进行检测,发现外源基因有表达(图5C)。

图5  不定根分化9天时的转基因植株观察与鉴定

Fig. 5  Observation and identification of transgenic plants after adventitious root differentiation for 9 days

A:GUS组织化学染色叶片和根部; B:不定根发育情况; C:RT-PCR检测(M:DL2000 marker; 1:水; 2:pSHLcC2DP1质粒; 3:WT; 4~7:瞬时转化LcC2DP1第9天的百脉根。A:GUS organizational chemical staining blade and root; B:Adventitious root development; C:Expression in the 9th day RT-PCR detection of transient transformation of Lotus corniculatus(M:DL2000 marker; 1:Water; 2:pSHLcC2DP1 plasmid; 3:WT; 4-7:Instantaneous transformation of LcC2DP1 Lotus corniculatus on the 9th day).

图6可见,TP植株在第6天时观察到不定根开始分化,比野生型亲本(WT)提前1~2 d形成根系。在第12~15天TP植株根系总根长、根尖数、根体积均显著高于WT植株。12 d时TP植株根系总根长为(4.28±0.22) cm,是WT的168%,15 d为(7.74±0.23) cm,是WT的155%(图6A);12 d时TP植株根体积为(0.016 7±0.001 2) cm3,是WT的249%,15 d时为(0.040 3±0.003) cm3,是WT的161%(图6B);12 d时TP植株根尖数为(8.30±0.88) ,是WT的156%,15 d天时为(12.33±0.88),是WT的137%(图6C)。同一时期的TP与WT的根系总表面积(图6D)和根平均直径(图6E)差异不显著。TP百脉根在总根长(P<0.01)、根体积(P<0.05)和根尖数(P<0.05)上表现出一定的根系发育优势,LcC2DP1基因的表达可能与百脉根的不定根发育有关。

图6  百脉根不定根分化9~15 d期间的根系发育指标比较

Fig.6  Comparison of root development indicators of the Lotus corniculatus during 9-15 days

A:根系总根长; B:根体积; C:根尖数; D:根系总表面积; E:根平均直径。A:Total root length; B:Root volume; C:Root number; D:Root total surface area; E:Root average diameter.

3 讨论

C2结构域蛋白作为与钙离子结合的一类功能型蛋白,在调控植物生长发育、抗逆性以及信号转导方面起着重要的作用。本研究从Leo百脉根中克隆了LcC2DP1基因,序列分析发现该基因具有典型的C2结构域,属于C2域蛋白家族基

2227。亚细胞定位预测结果显示,LcC2DP1蛋白定位于细胞膜和细胞核中,符合大多数C2结构域蛋白的亚细胞定位情10,这是由C2结构域蛋白的结构所决定的,当C2结构域蛋白的N端发生酰基化修饰时,其棕榈酰化位点可与细胞膜形成一种可逆的稳定结合,而其豆蔻酰化位点则形成一种不可逆的松散结28

系统进化分析发现LcC2DP1基因与狭叶羽扇豆、蒺藜苜蓿、刺毛黧豆等豆科植物具有较高的同源性,其中与蒺藜苜蓿的同源性最高为82%,说明LcC2DP1在豆科植物中具有较高的保守性。对该基因进行的组织特异性表达分析表明,LcC2DP1基因在百脉根牧草的根、茎和叶片组织中均有表达,但这种组织表达存在着明显的差异,以根和茎组织中的表达量较高,而叶片中的表达量较低。马佛明

29研究表明,巴西橡胶树的C2结构域蛋白编码基因HbC2在被检植物组织中均有表达;但辣椒C2结构域蛋白编码基因CaSRC2-1Kim却具有显著的组织特异性,仅在根组织中表30。可以看出,C2结构域蛋白在植物生长发育中有着不同的表达模式,暗示C2结构域蛋白在植物生长发育过程中功能的多样性,包括可能参与根系发育调控过程。

张兰军

21研究发现,复苏植物旋蒴苣苔的C2CDPK蛋白基因BhC2DP1参与激素途径调控根系发育。本研究利用农杆菌介导的瞬时表达系统对LcC2DP1基因功能进行初步分析,结果显示,转LcC2DP1基因植株的不定根分化比野生型早1~2 d,且根系总根长(P<0.01)、根体积(P<0.05)、根尖数(P<0.05)均高于野生型,LcC2DP1基因表达使宿主植物产生一定的根系发育优势,这加深了人们对植物C2CDPK基因功能的认识。C2结构域蛋白可以通过生长素途径调控根系发1031,本研究中的根系发育优势可能与激素途径有关。光是植物生长发育的重要环境因素之一,光通过调节基因的表达和酶的活性等方式影响了植物的生长发育和根系分化过32LcC2DP1基因顺式作用元件中含有光响应元件Box-4、AT1-motif和GT1-motif,该基因也有可能是通过响应或改变光的敏感性调控植株生长发育,进而影响根系分化。

本研究通过对LcC2DP1基因的克隆、生物信息学分析、组织特异性表达、瞬时表达分析,发现LcC2DP1基因属于C2蛋白基因,可能参与百脉根不定根发育调控过程,在后续的研究中,将进一步验证LcC2DP1是否具有钙依赖蛋白激酶相应的生理功能,进行百脉根稳定遗传转化和创制突变体植株,明确LcC2DP1基因在不定根发育过程中的生物学功能。

参考文献 References

1

QIN H,MA C,ZHOU Y,et al. Molecular modulation of root development by ethylene[J/OL]. Small methods,2020,4(8):1900067[2022-04-07]. https://doi.org/10.1002/smtd.201900067. [百度学术] 

2

马旭辉,陈茹梅,柳小庆,等. 褪黑素对玉米幼苗根系发育和抗旱性的影响[J]. 生物技术通报,2021,37(2):1-14. MA X H,CHEN R M,LIU X Q,et al. Effects of melatonin on root growth and drought tolerance of maize seedlings[J]. Biotechnology bulletin,2021,37(2):1-14(in Chinese with English abstract). [百度学术] 

3

李良勇,崔国贤,邹喜明,等. 低钾胁迫对不同钾效率苎麻基因型根系发育及纤维产量品质的影响[J]. 中国农学通报,2006,22(9):246-249. LI L Y,CUI G X,ZOU X M,et al. Root growth,fiber yield and quality for difference potassium efficiency ramie genotypes under lower potassium stress[J].Chinese agricultural science bulletin,2006,22(9):246-249(in Chinese with English abstract). [百度学术] 

4

LEMENT C,SLEIDERINK J,SVANE S F,et al. Comparing the deep root growth and water uptake of intermediate wheatgrass (Kernza®) to alfalfa[J]. Plant and soil,2022,472:369-390. [百度学术] 

5

TANG S,SHAHRIARI M,XIANG J,et al. The role of AUX1 during lateral root development in the domestication of the model C4 grass Setaria italica[J]. J Exp Bot,2022,73(7):2021-2034. [百度学术] 

6

CHEN L,HE F,LONG R,et al.A global alfalfa diversity panel reveals genomic selection signatures in Chinese varieties and genomic associations with root development[J].Journal of integrative plant biology,2021,63(11):1937-1951. [百度学术] 

7

杨乐,齐妍,刘生祥,等.植物抗逆相关蛋白激酶的结构与功能[J].植物遗传资源学报,2013,14(4):659-667.YANG L,QI Y,LIU S X,et al.Structure and function of stress-related protein kinases in plants[J].Journal of plant genetic resources,2013,14(4):659-667(in Chinese with English abstract). [百度学术] 

8

CHEN X,DING Y,YANG Y,et al.Protein kinases in plant responses to drought,salt,and cold stress[J].Journal of integrative plant biology,2021,63(1):53-78. [百度学术] 

9

LEE H,GANGULY A,BAIK S,et al.Calcium-dependent protein kinase 29 modulates PIN-FORMED polarity and Arabidopsis development via its own phosphorylation code[J].The plant cell,2021,33(11):3513-3531. [百度学术] 

10

SHIMIZU Y,SINNETT J,TENGGARA M,et al.Protein kinase D1 (PKD1) signaling induces growth-promoting effects in murine enteroids[J].Cellular and molecular gastroenterology and hepatology,2020,10(2):430-433. [百度学术] 

11

HANKS S K,HUNTER T.The eukaryotic protein kinase superfamily:kinase (catalytic) domain structure and classification 1[J].The FASEB journal,1995,9(8):576-596. [百度学术] 

12

何乐平,张蕾.植物钙依赖性蛋白激酶及其相关蛋白激酶(CDPKs/CRKs)的研究进展[J].安徽农业科学,2020,48(18):26-31,51.HE L P,ZHANG L.Research progress of plant calcium-dependent protein kinases(CDPKs) and CDPK-related kinases(CRKs)[J].Journal of anhui agricultural sciences,2020,48(18):26-31,51(in Chinese with English abstract). [百度学术] 

13

LI A,WANG X,LESEBERG C H,et al.Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat (Triticum aestivum L.)[J].Plant signaling & behavior,2008,3(9):654-656. [百度学术] 

14

IVASHUTA S,LIU J,LIU J,et al.RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development[J].The plant cell,2005,17(11):2911-2921. [百度学术] 

15

YAMAUCHI T,YOSHIOKA M,FUKAZAWA A,et al.An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions[J].The plant cell,2017,29(4):775-790. [百度学术] 

16

RYUTA N,MASAHIRO E,NAOFUMI F,et al.Protein kinase C iota facilitates insulin-induced glucose transport by phosphorylation of soluble nSF attachment protein receptor regulator (SNARE) double C2 domain protein b[J].Journal of diabetes investigation,2019,10(3):591-601. [百度学术] 

17

YOHTA F,TSUYOSHI I.Structural insights into a C2 domain protein specifically found in tardigrades[J].Protein science,202030(2):513-518. [百度学术] 

18

YE Q,YU J T,ZHANG Z,et al.VvBAP1,a Grape C2 domain protein,plays a positive regulatory role under heat stress[J/OL].Frontiers in plant science,2020,11:544374[2022-04-07].https://doi.org/10.3389/fpls.2020.544374. [百度学术] 

19

HAO P,WANG H,MA L,et al.Genome-wide identification and characterization of multiple C2 domains and transmembrane region proteins in Gossypium hirsutum[J].BMC genomics,2020,21(1):1-16. [百度学术] 

20

肖瑞霞,王新国,夏国军,等.小麦逆境胁迫相关基因TaC2DP1的克隆及表达分析[J].中国农业科学,2015,48(8):1463-1472.XIAO X R,WANG X G,XIA G J,et al.Cloning and expression analysis of a stress-related TaC2DP1 gene from wheat[J].Scientia agricultura sinica,2015,48(8):1463-1472(in Chinese with English abstract). [百度学术] 

21

张兰军,姬飞腾,王丽丽,等.复苏植物旋蒴苣苔C2结构域小蛋白BhC2DP1参与植物对ABA的反应[J].植物学报,2012,47(1):11-27.ZHANG L J,JI F T,WANG L L,et al.A small C2-domain protein from the resurrection plant boea hy-grometrica promotes plant responses to abscisic acid[J].Chinese bulletin of botany,2012,47(1):11-27(in Chinese with English abstract). [百度学术] 

22

YANG S M,MA S Y,QIU R G,et al.Comparative analysis of RNA-Seq data reveals adventitious root development is mediated by ChIFNα in Lotus japonicus[J].Biotechnology & biotechnological equipment,2021,35(1):179-195. [百度学术] 

23

QUINLAN A R,HALL I M.BEDTools:a flexible suite of utilities for comparing genomic features[J].Bioinformatics,2010,26(6):841-842. [百度学术] 

24

杨芳,杨仕梅,罗雪,等.百脉根Hsp70s基因家族的生物信息学分析[J].山地农业生物学报,2020,39(5):1-8.YANG F,YANG S M,LUO X,et al.Bioinformatics analysis of Hsp70s gene family in Lotus japonicus[J].Journal of mountain agriculture and biology,2020,39(5):1-8(in Chinese with English abstract). [百度学术] 

25

唐永凯,贾永义.荧光定量PCR数据处理方法的探讨[J].生物技术,2008,183):89-91.TANG Y K,JIA Y Y.Method of processing real time PCR data[J].Biotechnology,2008,18(3):89-91(in Chinese with English abstract. [百度学术] 

26

杨少彤,刘宗林,屈申,等.FmJAZ1基因瞬时侵染水曲柳对JA通路相关基因表达的影响[J].广西植物,2021,41(4):662-670.YANG S T,LIU Z L,QU S,et al.Effects of transient infection of FmJAZ1 gene on JA pathway related gene expression in Fraxinus mandshurica[J].Guihaia,2021,41(4):662-670(in Chinese with English abstract). [百度学术] 

27

黄桂媛,翚克东,杨财和,等.玉米中编码C2结构域蛋白基因Zmcnp1的克隆及表达特性分析[J].基因组学与应用生物学,2020,39(10):4647-4655.HUANG G Y,HUI K D,YANG C H,et al.Cloning and expression characteristics of C2 domain protein gene Zmcnp1 in maize[J].Genomics and applied biology,2020,39(10):4647-4655(in Chinese with English abstract). [百度学术] 

28

RESH M D.Trafficking and signaling by fatty-acylated and prenylated proteins[J].Nature chemical biology,2006,2(11):584-590. [百度学术] 

29

马佛明,李辉亮,郭冬,等.巴西橡胶树一个编码含有C2结构域蛋白cDNA的克隆及表达分析[J].基因组学与应用生物学,2010,29(1):150-154.MA F M,LI H L,GUO D,et al.Cloning and expression of a C2-domian protein gene from Hevea brasiliensis[J].Genomics and applied biology,2010,29(1):150-154(in Chinese with English abstract). [百度学术] 

30

KIM Y C,KIM S Y,CHOI D,et al.Molecular characterization of a pepper C2 domain-containing SRC2 protein implicated in resistance against host and non-host pathogens and abiotic stresses[J].Planta,2008,227(5):1169-1179. [百度学术] 

31

HAZAK O,MAMON E,LAVY M,et al.A novel Ca2+-binding protein that can rapidly transduce auxin responses during root growth[J/OL].PLoS biology,2019,17(7):e3000085[2022-04-07].https://doi.org/10.1371/journal.pbio.3000085. [百度学术] 

32

霍艳利,曲婷,高凯,等.不同类型的少花蒺藜草种子萌发对水分和光照的响应[J].安徽农业科学,2022,50(4):51-56.HUO Y L,QU T,GAO K,et al.Response of seed germination of different types of Cenchrus incertus to water and light[J].Journal of anhui agricultural sciences,2022,50(4):51-56(in Chinese with English abstract). [百度学术]