摘要
为揭示甜樱桃中扩展蛋白基因的结构与功能,克隆了甜樱桃PavEXPA2基因,并分析了该基因在不同组织(茎、花芽、盛开花朵、幼叶、老叶、幼叶叶柄、老叶叶柄、2个脱落高峰期正常果柄与即将脱落果柄、2个脱落高峰期正常果实与脱落果实)及逆境胁迫(使用20% PEG6000和20 mmol/L NaCl溶液分别模拟干旱和盐胁迫,分别处理0、2、4、6、8 h)下的表达情况。结果显示:PavEXPA2基因cDNA全长序列为1 035 bp,开放阅读框(ORF)为852 bp,编码283 aa,蛋白等电点为8.90,分子质量约为30.81 ku,含有2个跨膜螺旋结构和1个信号肽,亚细胞定位预测PavEXPA2定位于细胞壁;组织表达分析显示,PavEXPA2基因在甜樱桃易脱落组织中表达量较高,如盛开花瓣,即将脱落的果柄、果实、叶柄等,其中在即将脱落叶柄中表达量最高;相对于未处理样品,干旱处理样本PavEXPA2表达量上升,在处理6 h时表达量达到最高,随后降低;盐胁迫条件下,PavEXPA2表达量呈先下降后上升再下降的趋势,其中在处理6 h时表达量达到最高。结果表明,甜樱桃可能通过PavEXPA2基因上调促进脱落而抵御逆境胁迫。
甜樱桃(Prunus avium L.)属蔷薇科(Rosaceae)李属(Prunus)樱亚属植物,原产欧洲及亚洲西部,果实色泽红润,且营养价值高,深受消费者的喜爱,具有较高的经济价
扩展蛋白(expansins,EXPA)又称为细胞壁松弛蛋白,广泛存在于植物细胞组织中,是调节细胞壁伸展和松弛的细胞壁蛋白
甜樱桃在花发育、坐果及发育期间易出现幼果异常脱落现象,但有关甜樱桃扩展蛋白基因的克隆和功能分析未见报道。基于EXPA基因在植物器官脱落中的功能,本研究以甜樱桃脱落小果果柄为材料,克隆甜樱桃扩展蛋白基因PavEXPA2,并通过在线软件对其进行生物信息学分析;利用 qRT-PCR技术分析该扩展蛋白基因在不同组织以及不同胁迫处理中的表达情况,以期为阐明其在甜樱桃生长发育中的功能提供参考。
以甜樱桃品种“桑提娜”为材料,分别采集茎、花芽、盛开花朵、幼叶、老叶、幼叶叶柄、老叶叶柄、2个脱落高峰期正常果柄与即将脱落果柄、2个脱落高峰期正常果实与脱落果实。以叶片为材料,使用20% PEG6000和20 mmol/L NaCl溶液分别模拟干旱和盐胁迫,采集处理0、2、4、6、8 h的材料,采集后迅速用液氮速冻,后于-80 ℃中保存备用。以上材料均设置3个生物学重复。
用植物多糖多酚RNA提取试剂盒(赛诺生物科技有限公司,中国张家口)提取甜樱桃果柄总RNA,用MutiscanGO(Thermo,美国)和琼脂糖凝胶电泳对RNA质量进行检测,并用PrimeScriptTMRT reagent Kit with gDNA Eraser试剂盒(TaKaRa,日本)对甜樱桃果柄总RNA进行cDNA第1链合成,使用内参基因检测cDNA的完整性并于-20 ℃保存备用。
在甜樱桃基因组数据库中搜索该基因的CDS序列,利用Primer Premier 5软件设计特异引物PavEXPA22-F:CACATGCTGACCTGTCCTCC、PavEXPA2-R: CC GCCTAACCTCCTAAC TCTAAT,提交至上海生工生物工程有限公司合成。
以cDNA为模板,利用上述合成引物进行PCR扩增。PCR反应体系为:ddH2O 3 μL,高保真mix(TaKaRa,日本)5 μL,cDNA 1 μL,上游和下游引物各0.5 μL,共10 μL。PCR反应程序为:94 ℃预变性5 min;94 ℃变性30 s,60 ℃退火15 s,72 ℃延伸10 s,35次循环;最后72 ℃延伸7 min。用1%琼脂糖凝胶电泳检测扩增PCR产物纯度,用琼脂糖凝胶回收试剂盒对目的条带进行回收,将回收产物连接到pEASY-Blunt Cloning Kit(全式金,北京)并转化DH5α大肠杆菌,37 ℃活化1 h后吸取100~200 μL活化产物涂布于Kan抗性的LB平板上,于37 ℃过夜培养,待长出菌落后挑取单菌落进行菌落PCR验证,对检验出的阳性克隆进行培养,将阳性菌液送至上海生工生物工程有限公司测序。
用NCBI在线分析工具ORF Finder(http://www.ncbi.nlm.nih. gov/gorf/gorf.Html)寻找DNA的开放阅读框,通过DNAMAN软件进行蛋白质翻译、NCBI Blastp进行蛋白质同源性比对,利用MEGA5.1构建进化树。利用在线软件TMHMM Server v.2.0(http://www. cbs.dtu.dk /services/TMHMM/)对PavEXPA2蛋白的跨膜结构域进行预测,用ProtParam(https://web.expasy.org/ protparam/)分析PavEXPA2蛋白的分子质量和等电点等基本理化性质,用在线分析工具SignalP 4.1 Server (http://www. cbs.dtu.dk/services /SignalP-4.1/)分析PavEXPA2基因所编码的氨基酸序列的信号肽,利用Cell PLoc2.0(http://www.csbio. sjtu.edu.cn/bioinf /Cell-PLoc-2/)进行亚细胞定位预测。
根据克隆获得的PavEXPA2基因序列,用primer 5设计特异性引物,引物序列PavEXPA2-Y-F:CTTCTTTCTCATCTCCTCTGCC,PavEXPA2-Y-R:CCAAGGAACCATACC CACAA,在上海生工生物工程有限公司合成。以甜樱桃不同组织的cDNA为模板,以PavRSP3和PavEF1-α2为内参基
以甜樱桃果柄cDNA为模板,通过PCR扩增获得与预期目的基因片段大小一致的条带,将目的条带回收并测序,结果显示序列长度为1 035 bp,开放阅读框(ORF)为852 bp,编码283个氨基酸(

图1 PavEXPA2基因ORF序列及编码的氨基酸序列
Fig.1 ORF sequence and encoded amino acid sequence of PavEXPA2 gene
采用ProtParam分析可知,PavEXPA2蛋白质分子式为C1366 H2125 N3750 408S15,等电点为8.90,分子质量约为30.81 ku。PavEXPA2蛋白总的负电荷残基数(Asp+Glu)为21个,正电荷残基数(Arg+Lys)为29个,由此推测该蛋白带正电荷。该蛋白含量最丰富的氨基酸分别为丙氨酸Ala(9.9%)、甘氨酸Gly(8.8%)、丝氨酸Ser(8.8%)、亮氨酸Leu(8.8%)和赖氨酸Lys(6.4%)。蛋白的不稳定系数为41.88,这表明该蛋白属于不稳定蛋白质。氨基酸残基疏水性总和(GRAVY)是-0.139,所以该蛋白亲水性较强。
采用SignalP 4.1 Server在线预测得知PavEXPA2蛋白存在1个信号肽,且信号肽裂解位点位于41~42(

图2 PavEXPA2蛋白的信号肽预测
Fig. 2 Signal peptide prediction of PavEXPA2 protein
C-score(raw cleavage site score):用来区分是否为剪切位点,最高峰值为剪切位点后的第1个氨基酸; S-score (signal peptide score):用来区分对应位置是否为信号肽区域;Y-score (combined cleavage site score):用于避免多个高分C-score值对结果的影响。 C-score (raw cleavage site score) of the ordinate: Used to distinguish whether it is a cleavage site, and the highest peak is the first amino acid after the cleavage site (that is, the first amino acid of the mature protein),an amino acid residue); S-score (signal peptide score): Used to distinguish whether the corresponding position is a signal peptide region; Y-score (combined cleavage site score): The geometric mean of C-score and S-score, used to avoid the influence of multiple high score C-score values on the results.

图3 PavEXPA2 蛋白的跨膜域预测
Fig. 3 Prediction of the transmembrane domain of PavEXPA2 protein
将PavEXPA2基因序列在NCBI网站上进行BLAST同源检索,发现它与很多植物都具有较高的同源性,其中与扁桃(Prunus dulcis)、桃(Prunus persica)、梅(Prunus mume)扩展蛋白基因同源性最高,分别为97.49%、97.47%和96.91%,并且发现PavEXPA2有较高保守性,含有DPBB_1保守结构域。
利用DNAMAN软件将PavEXPA2基因的开放阅读框翻译成氨基酸序列,并将其序列与30个和PavEXPA2蛋白同源性较高的氨基酸序列进行对比,发现该基因编码氨基酸序列与桃、扁桃和梅扩展蛋白氨基酸序列的同源性较高,分别为95.58%、95.56%和94.76%。
利用MEGA5.1软件对甜樱桃扩展蛋白PavEXPA2与BLAST检索得到其他物种(柑橘、杨梅、胡杨、杨树)扩展蛋白氨基酸序列全长,构建系统进化树,结果发现甜樱桃PavEXPA2与PmEXPA2(梅)、PdEXPA2(扁桃)和PpEXPA2(桃)序列相似程度最高,亲缘关系最近(

图4 甜樱桃PavEXPA2系统进化分析
Fig. 4 Phylogenetic tree analysis of sweet cherry PavEXPA2 and the α-expansins of other plant species
来源物种 Species of EXPA: GrEXPA2: 棉花 Gossypium ;GaEXPA2: 木本棉 Bombax;GhEXPA2: 陆地棉Gossypium hirsutum;HsEXPA2: 木槿:Hibiscus syriacus;DzEXPA2:榴莲Durio zibethinus;MrEXPA1:杨梅Myrica rubra;SsEXPA1:密花豆Spatholobus suberectus;CcEXPA2:木豆Cajanus cajan;CcEXPA1:柑橘 Citrus;PvEXPA2:阿月浑子 Pistacia vera;PeEXPA2:胡杨Populus euphratica; PtEXPA2:杨树 Populus; JcEXPA1:麻风树 Jatropha curcas; XbEXPA2、HbEXPA2:橡胶 Hevea brasiliensis;MeEXPA2:木薯 Manihot esculenta ;ArEXPA1:猕猴桃 Actinidia chinensis;QiEXPA1:白栎 Quercus fabri;MnEXPA1:桑 Morus;PgEXPA2:石榴 Punica granatum;RaEXPA2: 玫瑰木 Rhodamnia;SoEXPA2:蒲桃 Syzygium jambos;FvEXPA2:草莓 Fragaria × ananassa;RcEXPA2:月季 Rosa chinensis;Pu×PcEXPA1:梨 Pyrus spp.;MdEXPA2:苹果 Malus;PavEXPA2:樱桃 Prunus avium;PmEXPA2:梅 Prunus;PdEXPA2:扁桃 Amygdalus communis;PpEXPA2:桃 Amygdalus persica.
PavEXPA2在甜樱桃“桑提娜”即将脱落组织,如茎、花芽、花朵,叶、叶柄、果柄和果实的表达结果显示,在成熟叶叶柄中表达量最高,随后依次是盛开花朵、第2落果高峰即将脱落果柄、成熟叶、第1落果高峰即将脱落果柄、第2落果高峰即将脱落果实,在第1落果高峰正常果实中表达量最低。而在第1落果高峰正常果柄、第2落果高峰正常果柄、花芽、第1落果高峰即将脱落果实、第2落果高峰正常果实、幼叶叶柄、幼叶以及茎中基本检测不到表达(

图5 甜樱桃PavEXPA2基因组织差异性表达分析
Fig.5 Differential expression of PavEXPA2 gene in sweet cherry
CA1:第1落果高峰即将脱落果柄;CN1:第1落果高峰正常果柄;CA2:第2落果高峰即将脱落果柄;CN2:第2落果高峰正常果柄;Fb:花芽;FL:盛开花朵;FN1:第1落果高峰即将脱落果实;FA1:第1落果高峰正常果实;FN2:第2落果高峰正常果实;FA2:第2落果高峰即将脱落果实;Pe1:幼叶叶柄;Pe2:成熟叶叶柄;Le1:幼叶;Le2:成熟叶;St:茎。CA1: Abscising carpopodium in the first peak of fruitlet abscission; CN1:Retention carpopodium in the peak of fruitlet abscission;CA2: Abscising carpopodium in the second peak of fruitlet abscission;CN2:Retention carpopodium in the second peak of fruitlet abscission; Fb: Flower bud; FL: Flower; FN1: Retention fruitlet in the first peak;FA1: Abscising fruitlet in the first peak; FN2: Retention fruitlet in the second peak; FA2: Retention fruitlet in the second peak; Pe1:Young leaf petiole; Pe2: Old leaf petiole; Le1: Young leaf; Le2: Old leaf; St: Stem.
在20% PEG6000和20 mmol/L NaCl处理后PavEXPA2基因的相对表达量结果(

图6 盐处理和干旱胁迫下甜樱桃PavEXPA2基因的表达
Fig.6 Expression of PavEXPA2 gene in sweet cherry under salt and drought treatments
本研究从甜樱桃克隆了1个扩展蛋白基因家族成员PavEXPA2,其编码蛋白与桃、扁桃、梅等扩展蛋白氨基酸序列有较高的同源性,PavEXPA2参与甜樱桃器官脱落的调控,尤其是叶柄脱落;在干旱及盐胁迫下,PavEXPA2基因均上调表达。因此,甜樱桃可能通过该基因上调促进脱落而抵御逆境胁迫。
扩展蛋白是1个庞大的多基因家族,目前植物扩展蛋白一般分为4类,分别为α-expansin(EXPA)、β-expansin(EXPB)、类α-expansin(EXLA)和类β-expansin(EXLB
在其他物种中,例如在草
本研究克隆得到1个甜樱桃中的扩展蛋白PavEXPA2,通过qRT-PCR发现PavEXPA2在成熟的器官及易脱落的组织中高表达,生物信息学分析结果表明,此基因可能在细胞壁中发挥作用。许多研究表明,扩展蛋白可重塑细胞壁,破坏纤维素和半纤维素之间的氢
扩展蛋白在响应非生物胁迫中有重要作用,在烟草中过表达TaEXPA2基因能提高植株对
由于贵州的寡日照及喀斯特高原的特殊地理条件,樱桃的生长及果实的发育有着一定的限制。甜樱桃在幼果阶段的异常脱落已经是制约贵州甜樱桃发展的一个严峻问题,而关于甜樱桃生理落果的分子信号机制仍旧比较模糊。在逆境胁迫时, 扩展蛋白主要通过调节植物细胞壁的组分以增加细胞壁的柔韧性从而缓解胁迫对细胞造成的压
参考文献 References
夏惠,林玲,高帆,等.甜樱桃‘佐藤锦’果实生长发育过程AsA含量及其相关酶活性的变化[J].西北植物学报,2016,36(10):2008-2014.XIA H,LIN L,GAO F,et al.Changes of AsA content and related enzyme activities in sweet cherry ‘Satonishiki’ fruit during development[J].Northwestern journal of botany,2016,36(10):2008-2014(in Chinese with English abstract). [百度学术]
赵美荣,李永春,黄文婕.扩展蛋白在果实成熟过程中的作用研究进展[J].赤峰学院学报(自然科学版),2016 ,32(11):11-13.ZHAO M R,LI Y C,HUANG W J.Research progress on the role of expansins in fruit ripening[J].Journal of Chifeng University (natural science edition),2016,32(11):11-13(in Chinese). [百度学术]
MCQUEEN-MASON S.Two endogenous proteins that induce cell wall extension in plants[J].The plant cell online,1992,4(11):1425-1433. [百度学术]
徐筱,徐倩,张磖,等.植物扩展蛋白基因的研究进展[J].北京林业大学学报,2010,32(5):154-162.XU X,XU Q,ZHANG L,et al.Advancements in expansin genes of plants[J].Journal of Beijing Forestry University,2010,32(5):154-162(in Chinese with English abstract). [百度学术]
SABIRZHANOVA I B,SABIRZHANOV B E,CHEMERIS A V,et al.Fast changes in expression of expansin gene and leaf extensibility in osmotically stressed maize plants[J].Plant physiology & biochemistry,2005,43(4):419-422. [百度学术]
马霜.毛竹扩展蛋白家族全基因组分析及PeEXPA8功能研究[D].绵阳:西南科技大学,2021.MA S.Genome-wide analysis of the expansin gene family in Phyllostachys edulis and functional analysis of PeEXPA8 [D].Mianyang:Southwest University of Science and Technology,2021(in Chinese with English abstract). [百度学术]
CHO H.Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana[J].PNAS,2000,97(17):9783-9788. [百度学术]
SANE A P,TRIPATHI S K,NATH P.Petal abscission in rose (Rosa bourboniana var Gruss an Teplitz) is associated with the enhanced expression of an alpha expansin gene,RbEXPA1[J].Plant science,2007,172(3):481-487. [百度学术]
仇志浪,何美乾,文壮,等.甜樱桃花芽不同发育时期内参基因的筛选与验证[J].种子,2020,39(2):37-43.QIU Z L,HE M Q,WEN Z,et al.Selection and validation of reference genes in sweet cherry flower bud at different development stages[J].Seed,2020,39(2):37-43(in Chinese with English abstract). [百度学术]
KENDE H,BRADFORD K,BRUMMELL D,et al.Nomenclature for members of the expansin superfamily of genes and proteins[J].Plant molecular biology,2004,55(3):311-314. [百度学术]
李昊阳,施杨,丁亚娜,等.杨树扩展蛋白基因家族的生物信息学分析[J].北京农业大学学报,2014,36(2):59-67.LI H Y,SHI Y,DING Y N .Bioinformatics analysis of expansin gene family in poplar genome[J].Journal of Beijing Forestry University,2014,36(2):59-67(in Chinese with English abstract). [百度学术]
DOWNES B P .Expression and processing of a hormonally regulated beta-expansin from soybean[J].Plant physiology,2001,126(1):244-252. [百度学术]
CIVELLO P M.An expansin gene expressed in ripening strawberry fruit[J].Plant physiology,1999,121(4):1273-1280. [百度学术]
HARRISON E P,MCQUEEN‐MASON SIMON J,KENNETH M.Expression of six expansin genes in relation to extension activity in developing strawberry fruit[J].Journal of experimental botany,2001(360):1437-1446. [百度学术]
MBÉGUIÉ-A-MBÉGUIÉ D,GOUBLE B,GOMEZ R M,et al.Two expansin cDNAs from Prunus armeniaca expressed during fruit ripening are differently regulated by ethylene[J].Plant physiology & biochemistry,2002,40(5):445-452. [百度学术]
ISHIMARU M,SMITH D L,GROSS K C,et al.Expression of three expansin genes during development and maturation of kyoho grape berries [J].Journal of plant physiology,2007,164:1675-1682. [百度学术]
TUCKER M L,BURKE A,MURPHY C A,et al.Gene expression profiles for cell wall-modifying proteins associated with soybean cyst nematode infection,petiole abscission,root tips,flowers,apical buds,and leaves[J]Journal of experimental botany,2007,58( 12) :3395-3406. [百度学术]
TSUCHI M,SATOH T,IWAI H,et al.Distribution of XTH,expansin,and secondary-wall-related CesA in floral and fruit abscission zones during fruit development in tomato (Solanum lycopersicum)[J/OL].Frontiers in plant science,2015,323[2022-02-22].https://doi.org/10.3389/fpls.2015.00323. [百度学术]
JOHN B E,BENEDETTO R,ALAN R J,et al.Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra[J].Journal of experimental botany,2005,56(413):817-823. [百度学术]
PATHARKAR O R,WALKER J C.Advances in abscission signaling[J].J Exp Bot,2018,69(4):733-740. [百度学术]
REICHARDT S,PIEPHO H P,STINTZI A,et al.Peptide signaling for drought-induced tomato flower drop[J].Science,2020,367(6485):1482-1485. [百度学术]
CHEN Y,HAN Y,KONG X,et al.Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating N
CHEN Y,HAN Y,ZHANG M,et al.Overexpression of the wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants[J/OL].PLoS One,2016,11(4):e0153494[2022-02-22].https://doi.org/10.1371/journal.pone.0153494. [百度学术]
REN Y,CHEN Y,AN J,et al.Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to Cd toxicity[J].Plant science,2018,270:245-256. [百度学术]
HAN Y,CHEN Y,YIN S,et al.2015.Over-expression of TaEXPB23,a wheat expansin gene,improves oxidative stress tolerance in transgenic tobacco plants[J].Journal of plant physiology,173:62-71. [百度学术]
YANG Y H,AI X L,FENG L,et al.Characterization of a wheat (Triticum aestivum L.) expansin gene,TaEXPB23,involved in the abiotic stress response and phytohormone regulation[J].Plant Physiol Biochem,2012,54:49-58. [百度学术]
GAO Q,ZHAO M,FENG L,et al.Expansins and coleoptile elongation in wheat[J].Protoplasma,2008,233(s1/2):73-81. [百度学术]
DAI F,ZHANG C,JIANG X,et al.RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals[J].Plant physiology,2012,160(4):2064-2082. [百度学术]
VESELOV D S,SABIRZHANOVA I B,SABIRZHANOV B E,et al.Changes in expansin gene expression,IAA content,and extension growth of leaf cells in maize plants subjected to salinity[J].Russian journal of plant physiology,2008,55(1):101-106. [30] 赵美荣,李永春,王玮.扩展蛋白与植物抗逆性关系研究进展[J].植物生理学报,2012,48(7):637-642.ZHAO M R,LI Y C,WANG W.Research progress on relationship between expansin and plant resistance[J].Plant physiology journal,2012,48(7):637-642(in Chinese with English abstract). [百度学术]