摘要
通过走访调查,选取92株具有优良性状的沙子空心李种质,根据李反转录转座子的RT序列开发IRAP标记引物,设计L16(
主持人语:植物种质资源是国家战略性资源,也是新品种选育的基础,对农业和生态安全具有不可替代的作用,世界各国对植物种质资源研究极为重视。近年来,我国山地植物资源领域的广大科学工作者根据植物生物科学的现状和发展趋势,围绕国家种质资源的保护利用、生态环境建设、精准扶贫和乡村振兴的发展战略,针对喀斯特山地特色植物优新种质鉴定、多样性保护、优异基因发掘、种质创新、生产服务一体化领域存在的重大科学问题开展了卓有成效的研究工作,为地方经济及产业发展、脱贫攻坚和乡村振兴提供了理论和技术支持。为了科学展示山地特色植物种质评价与保存、优异基因资源发掘与新种质创制、资源产业化利用等领域取得的重要成果,本期专栏以“山地植物资源保护与种质创新”为主题,聚焦喀斯特山地特色植物种质资源评价与保存、优异基因资源发掘与利用、植物抗逆生物学等领域存在的科学问题组织稿件,共录用文章9篇,涉及园艺、药用及牧草等植物种质评价、优异基因挖掘、抗逆生理特性等方面,希望能引起同行的关注。
沙子空心李(Prunus salicina Lindl. ‘Shazikongxinli’),为蔷薇科李属植物、青皮黄肉李品种,是贵州省沿河土家族自治县栽培的地方特色水果,于2006年被批准为国家地理标志保护产
DNA分子标记技术,如RAPD、SSR及ISSR,已经广泛用于李研究的不同领
本研究依据品种成熟期、果实品质、高产稳产这几个育种目标选择了92株具有优良性状的沙子空心李作为试验材料,采用IRAP标记技术,系统评价供试材料遗传多样性水平及亲缘关系,同时构建沙子空心李指纹图谱,旨在为沙子空心李优异种质的辅助育种、科学利用及保护等提供理论依据与应用参考。
于2020年7月对贵州省沿河县南庄村等地进行实地走访调查,选取92株具有优良性状(高品质、高产稳产等)、健康的沙子空心李作为试验材料(
采样地点 Locality | 编号 Code | 种质 Germplasms | 突出性状 Highlighting botanical traits |
---|---|---|---|
贵州省沿河县南庄村 Nanzhuang Village,Yanhe County,Guizhou Province | 1 | N1 | 产量高 High yield |
2 | N2 | 产量高,口感好 High yield and good taste of fruit | |
3 | N3 | 产量高,口感好 High yield and good taste of fruit | |
4 | N4 | 花期迟 Late flowering | |
5 | N5 | 花期迟 Late flowering | |
6 | N6 | 花轮簇生,树皮较黑 Flowers in clusters, bark darker | |
7 | N7 | 实生苗,产量高、稳 Seedling ,high and stable yield | |
8 | N8 | 实生苗,产量稳,果实大 Seedling, stable yield and large fruit | |
9 | N9 | 实生苗,产量稳,果实大 Seedling, stable yield and large fruit | |
10 | N10 | 花轮簇生,成团状Flowers in clusters | |
11 | N11 | 早熟 Early ripening fruit | |
12 | N12 | 早熟,果实口感好 Early ripening fruit and good taste | |
13 | N13 | 晚熟 Late ripening fruit | |
14 | N14 | 树龄>80 a ,果实口感好 Tree age >80 years, good taste of fruit | |
15 | N15 | 果实中等大小,口感好 Medium sized fruits and good taste | |
16 | N16 | 果实多,果小 Many but small fruit | |
17 | N17 | 果较大,品质好 Large fruit and good taste | |
18 | N18 | 果实口感好 Good taste of fruit | |
19 | N19 | 树龄>100 a ,产量高,果实大 Trees age>100 years, high yield | |
20 | N20 | 产量稳,果圆 Steady yield, round fruit | |
21 | N21 | 果大果圆 Large and round fruit | |
22 | N22 | 果实最大,约100 g The largest fruit, about 100 g | |
23 | N23 | 树龄>80 a ,果大皮薄 Tree age >80 years, large fruit and thin skin | |
24 | N24 | 果实大,口感好 Large fruit and good taste | |
25 | N25 | 早熟,树干有刺 Early ripening fruit, thorny trunk | |
26 | N26 | 树龄>40 a Tree age >40 years | |
27 | N27 | 果实口感最好 Best fruit taste | |
28 | N28 | 产量高,果实大 High yield, large fruit | |
29 | N29 | 早熟,果实中等大小 Early ripening fruit, medium sized fruit | |
30 | N30 | 结果少,果实大,口感好 Few fruits, large fruits, good taste | |
31 | N31 | 果大,叶片较大 Large fruit, large leaves | |
32 | N32 | 早熟,果皮厚 Early ripening fruit, thick skin | |
33 | N33 | 树龄>70 a Tree age >70 years | |
34 | N34 | 树龄>70 a Tree age >70 years | |
35 | N35 | 早熟 Early ripening fruit | |
36 | N36 | 树龄>80 a ,果大、甜 Tree age >80 years, large and sweet fruit | |
37 | N37 | 口感好 Good taste of fruit | |
38 | N38 | 果实大 Large fruit | |
39 | N39 | 高品质 Good quality | |
40 | N40 | 早熟 Early ripening fruit | |
贵州省沿河县黎家寨 Lijia Village, Yanhe County,Guizhou Province | 41 | L1 | 实生苗,树龄>80 a ,果大,品质好 Seedling, tree age >80 years, large fruit, good quality |
42 | L2 | 实生苗,树龄>80 a ,果大,品质好 Seedling, tree age >80 years, large fruit, good quality | |
43 | L3 | 实生苗,树龄>50 a ,果大,品质好 Seedling, tree age >50 years, large fruit, good quality | |
44 | L4 | 实生苗,树龄>50 a ,果大,品质好 Seedling, tree age >50 years, large fruit, good quality | |
45 | L5 | 实生苗,树龄>50 a ,产量高,早熟 Seedling, tree age >50 years, high yield,early ripening fruit | |
46 | L6 | 树龄>50 a Tree age >50 years | |
47 | L7 | 果大,品质好 Large fruit and good quality | |
48 | L8 | 花簇生,果实品质好 Flowers in clusters,good fruit quality | |
49 | L9 | 树龄>80 a ,果大品质好 Tree age >80 years, large fruit and good quality | |
50 | L10 | 果大,品质好 Large fruit and good quality | |
51 | L11 | 树龄>60 a ,果大皮薄 Tree age >60 years, large fruit and thin skin | |
52 | L12 | 果大皮薄,口感好 Large fruit and thin skin,good taste | |
53 | L13 | 果大皮薄,口感好 Large fruit and thin skin,good taste | |
54 | L14 | 树龄>60 a ,果大皮薄 Tree age >60 years,large fruit and thin skin | |
55 | L15 | 树龄>60 a ,果实品质好 Tree age >60 years,good quality | |
56 | L16 | 树龄>60 a ,果大皮薄 Tree age >60 years,large fruit and thin skin | |
57 | L17 | 树龄>70 a ,果大皮薄 Tree age >70 years,large fruit and thin skin | |
58 | L18 | 树龄>20 a ,产量高 Trees age >20 years, high yield | |
59 | L19 | 树皮紫红色,果大皮薄 Purple-red bark,large fruit and thin skin | |
60 | L20 | 树龄>60 a ,树皮黄红色 Trees age >60 years,bark iron red | |
61 | L21 | 果大,品质好 Large fruit and good quality | |
62 | L22 | 果大,品质好 Large fruit and good quality | |
63 | L23 | 树龄>30 a ,果大皮薄 Tree age >30 years,large fruit and thin skin | |
64 | L24 | 树龄>60 a ,果大果圆 Tree age >60 years,large and round fruit | |
65 | L25 | 树龄>70 a ,果大果圆 Tree age >70 years,large and round fruit | |
66 | L26 | 花轮簇生 Flowers in clusters | |
67 | L27 | 果大 Large fruit | |
68 | L28 | 花轮簇生,果大 Flowers in clusters,large fruit | |
69 | L29 | 果大皮薄 Large fruit and thin skin | |
70 | L30 | 果大皮薄 Large fruit and thin skin | |
71 | L31 | 晚熟 Late ripening fruit | |
72 | L32 | 早熟,果实不离核 Early ripening, flesh does not separate from the core | |
贵州省沿河县十二盘村 Shierpan Village, Yanhe County,Guizhou Province | 73 | P1 | 早熟,果实心形,果抗性差,易裂果 Early maturity, heart-shaped fruit, poor fruit resistance, easy to split fruit |
74 | P2 | 早熟,果实心形,果抗性差,易裂果 Early maturity, heart-shaped fruit, poor fruit resistance, easy to split fruit | |
75 | P3 | 早熟,果实心形,果抗性差,易裂果 Early maturity, heart-shaped fruit, poor fruit resistance, easy to split fruit | |
76 | P4 | 早熟,果实心形,果抗性差,易裂果 Early maturity, heart-shaped fruit, poor fruit resistance, easy to split fruit | |
77 | P6 | 早熟,果实心形,果抗性差,易裂果 Early maturity, heart-shaped fruit, poor fruit resistance, easy to split fruit | |
78 | P7 | 无 None | |
79 | P8 | 花期晚,产量高 Late flowering and high yield | |
80 | P9 | 果实品质好 Good quality of fruit | |
贵州省沿河县孙家寨 Sunjiazhai Village, Yanhe County,Guizhou Province | 81 | S1 | 树龄>50 a Tree age >50 years |
82 | S2 | 树龄>100 a Tree age >100 years | |
83 | S3 | 树龄>100 a Tree age >100 years | |
84 | S4 | 果实品质好 Good quality of fruit | |
85 | S5 | 果大,品质好 Large fruit and good quality | |
86 | S6 | 果大,果皮光滑 Large fruit with smooth skin | |
87 | S7 | 早熟 Early ripening fruit | |
88 | S8 | 果实品质好 Good quality of fruit | |
89 | S9 | 果实品质好 Good quality of fruit | |
90 | S10 | 树龄>50 a Tree age >50 years | |
91 | S11 | 果大,品质好 Large fruit and good quality | |
92 | S12 | 产量高、稳定 High and stable yield |
通过植物基因组DNA提取试剂盒DP320(北京,天根)提取92份供试材料幼嫩叶片DNA后,经1%琼脂糖凝胶电泳和紫外分光光度计检测质量及浓度后,将DNA稀释至约30 ng/μL,置于-20 ℃保存。
通过Clustal W对李反转录转座子Ty1-copia和Ty3-gypsy的RT序列(NCBI:K78998~K79023;K79024~K79041)进行多序列比对,获得保守区域,采用Primer 5.0程序以保守区域上游序列设计单向引
设计L16(
编号 No. | 模板DNA Template DNA (30 ng/μL) | PCR Mix | IRAP引物 IRAP primer (1 |
---|---|---|---|
1 | 0.6 | 3.0 | 0.7 |
2 | 0.6 | 4.0 | 1.3 |
3 | 0.6 | 5.0 | 1.6 |
4 | 0.6 | 6.0 | 1.0 |
5 | 1.0 | 3.0 | 1.0 |
6 | 1.0 | 4.0 | 1.6 |
7 | 1.0 | 5.0 | 1.3 |
8 | 1.0 | 6.0 | 0.7 |
9 | 1.4 | 3.0 | 1.3 |
10 | 1.4 | 4.0 | 0.7 |
11 | 1.4 | 5.0 | 1.0 |
12 | 1.4 | 6.0 | 1.6 |
13 | 1.8 | 3.0 | 1.6 |
14 | 1.8 | 4.0 | 1.0 |
15 | 1.8 | 5.0 | 0.7 |
16 | 1.8 | 6.0 | 1.3 |
根据已优化的10 μL IRAP-PCR体系,随机选取8个供试种质DNA作为模板,利用筛选出来的IRAP引物对92份沙子空心李种质进行PCR扩增,每个引物重复2~3次,PCR产物在1×TAE缓冲液中用1.5%琼脂糖凝胶以6 V/cm电泳40 min后,于凝胶成像系统中观察并保存图像。
仅统计每个引物清晰明亮且可重复的条带,有和无条带分别以“1”和“0”记录,获得每个引物的数据矩阵,通过POPGEN 1.3
PCR体系优化试验见

图1 10 μL IRAP-PCR体系优化结果
Fig.1 Optimization results of 10 μL IRAP-PCR system
M:DL2000 DNA marker;数字1~16代表1~16个PCR体系(表2) 1-16 represent 1-16 PCR systems( see Table 2).
对设计的65条IRAP引物进行筛选,最终筛选出18条多态性良好、条带清晰且可重复性强的IRAP引物,且确定最佳退火温度为51~58 ℃(
引物名称Primer name | 引物序列 Prinmer sequence | 退火温度/℃ Annealing temperature |
---|---|---|
Ty1-2 | TGGCCTGAAACAGTCTC | 52.0 |
Ty1-3 | CGGAGACTTAGAAGAGGAG | 52.4 |
Ty1-6 | CAACCACAAGGGTATGAAG | 52.7 |
Ty1-7 | AAGGAAGTCCCTGTATGGC | 54.3 |
Ty1-9 | GGTTTGCTGGTTGAAGAAGT | 54.0 |
Ty1-15 | AGAAGGCACTTTACGGATTG | 52.3 |
Ty1-17 | ATATGGAACAGCCAGAAGG | 52.1 |
Ty1-18 | AAGGCAGTGGAACAAGAAG | 53.0 |
Ty1-20 | TCAGACAATTCGCAGGAGG | 55.0 |
Ty1-25 | ACCAGAAGGGTTTGTTGAA | 51.0 |
Ty3-1 | TCTGGCTATCACCAAGTCC | 54.1 |
Ty3-2 | GAATCGGTATCCATTGTCG | 52.2 |
Ty3-3 | TGGCTATCACCAAGTCTGC | 55.1 |
Ty3-5 | CAACGCTCCAACTTCTTTC | 52.3 |
Ty3-6 | CCGCCCTTTCATTGACGACT | 58.0 |
Ty3-9 | ACCAGCACATCCCTAACCT | 55.9 |
Ty3-14 | CGAGGATTGATGACTTGCT | 51.9 |
Ty3-16 | CCCATACATCCTTCATCACAG | 54.0 |

图2 6条IRAP引物筛选结果
Fig.2 Screening results of 6 IRAP primers
M:DL2000 DNA Marker;数字1~8代表8个不同种质 1-8 represent 8 different germplasm.
通过筛选出的18条IRAP引物对92份沙子空心李进行PCR分析,结果(
IRAP引物 IRAP primer | 扩增位点数 Number of amplified loci | 多态性位点数 Number of polymorphic loci | 多态性位点比率/% Percentage of polymorphic loci | 观测等位基因数 Number of alleles observed | 有效等位基因数 Number of effective alleles | 基因多样性指数 Gene diversity index | Shannon 信息指数 Shannon’s information index |
---|---|---|---|---|---|---|---|
Ty1-2 | 8 | 6 | 75.0 | 1.750 | 1.046 | 0.041 | 0.089 |
Ty1-3 | 5 | 4 | 80.0 | 1.800 | 1.064 | 0.058 | 0.123 |
Ty1-6 | 12 | 12 | 100.0 | 2.000 | 1.471 | 0.278 | 0.422 |
Ty1-7 | 13 | 13 | 100.0 | 2.000 | 1.629 | 0.367 | 0.547 |
Ty1-9 | 13 | 13 | 100.0 | 2.000 | 1.560 | 0.335 | 0.506 |
Ty1-15 | 12 | 12 | 100.0 | 2.000 | 1.623 | 0.368 | 0.551 |
Ty1-17 | 6 | 4 | 66.7 | 1.667 | 1.090 | 0.077 | 0.148 |
Ty1-18 | 9 | 8 | 88.9 | 1.889 | 1.647 | 0.364 | 0.530 |
Ty1-20 | 8 | 8 | 100.0 | 2.000 | 1.466 | 0.267 | 0.407 |
Ty1-25 | 10 | 10 | 100.0 | 2.000 | 1.541 | 0.317 | 0.482 |
Ty3-1 | 7 | 7 | 100.0 | 2.000 | 1.276 | 0.204 | 0.348 |
Ty3-2 | 17 | 17 | 100.0 | 2.000 | 1.594 | 0.350 | 0.526 |
Ty3-3 | 16 | 16 | 100.0 | 2.000 | 1.635 | 0.379 | 0.563 |
Ty3-5 | 12 | 12 | 100.0 | 2.000 | 1.477 | 0.295 | 0.460 |
Ty3-6 | 12 | 12 | 100.0 | 2.000 | 1.317 | 0.217 | 0.361 |
Ty3-9 | 9 | 8 | 88.9 | 1.889 | 1.452 | 0.276 | 0.425 |
Ty3-14 | 4 | 3 | 75.0 | 1.750 | 1.203 | 0.153 | 0.264 |
Ty3-16 | 16 | 16 | 100.0 | 2.000 | 1.568 | 0.351 | 0.532 |
合计 Total | 189 | 180 | |||||
平均 Mean | 10.5 | 10 | 95.24 | 1.930 | 1.426 | 0.261 | 0.405 |

图3 引物Ty3-2及Ty3-6 PCR扩增结果
Fig.3 PCR amplification results of Ty3-2 and Ty3-6
M.DL2000 DNA Marker;数字1~92代表1~92个种质(编号代表的种质名称见表1)。M.DL2000 DNA Marker;1-92 represent 92 germplasms(The number is the same as Table 1).
通过Popgene 1.32对统计的0、1数据进行统计分析,结果(
利用NTSYS 2.10e软件计算供试种质的遗传相似性系数(DICE系数)。92份沙子空心李种质两两之间的DICE系数变幅为0.417~0.830,平均0.681。在遗传相似系数为0.645时,92份沙子空心李被聚类为4组(

图4 92份沙子空心李聚类结果
Fig.4 Dendrogram of 92 Shazikongxinli germplasms based on IRAP bands
利用18条IRAP引物对92份沙子空心李进行PCR扩增,获得每个引物92个种质的0/1数据矩阵,这些0/1数据可作为供试空心李种质指纹图谱或分子身份证构建的直接依据。为达到利用最少的引物鉴定尽量多种质的目的,通过对有效等位基因数达到2.000的12条IRAP引物的种质鉴别情况进行统计(
编号No. | 编码Code | IRAP引物 IRAP primers | 鉴定种质数 Number of germplasm that can be identified | 鉴定比率/% Identification ratio |
---|---|---|---|---|
1 | A | Ty3-2 | 83 | 90.22 |
2 | B | Ty3-3 | 81 | 88.04 |
3 | C | Ty3-16 | 78 | 84.78 |
4 | D | Ty1-7 | 69 | 75.00 |
5 | E | Ty1-15 | 65 | 70.65 |
6 | F | Ty1-9 | 59 | 64.13 |
7 | G | Ty3-5 | 48 | 52.17 |
8 | H | Ty1-6 | 36 | 39.13 |
9 | I | Ty3-6 | 32 | 34.78 |
10 | J | Ty1-25 | 28 | 30.43 |
11 | K | Ty3-1 | 12 | 13.04 |
12 | L | Ty1-20 | 8 | 8.70 |

图5 沙子空心李种质N1及L1分子身份证
Fig.5 Prunus salicina Lindl. Shazikongxinli N1 and L1 molecular IDs
本研究通过L16(
目前构建指纹图谱的方法相对较多,有直接根据条带统计获得的“0/1”数据作为构建指纹的代码;还有从多个引物的扩增结果中选取稳定的特异条带组成“0/1”数据构建指纹代码;另外,还可将二进制的“0/1”数据转变为十进制的数字形成代
遗传多样性能够反映出物种的遗传背景及育种潜力,是作物种内和种群之间育种过程的基础条
遗传相似性系数是判断物种间亲缘关系及遗传基础的标准之
沙子空心李在生产上出现果实品质及成熟期不一致的现象,可能是在长期的栽培过程中,由地方品种的种性退化以及苗木繁育过程中产生的不同品系混杂引起的。本研究验证了沙子空心李种质在DNA水平上产生了较为明显的变异,排除了供试沙子空心李不同株系间在栽培表现上产生差异仅由环境因素或栽培技术不同而导致的情况,表明这些种质可作为优异品系培育的核心种质。后续可通过结合各个株系的优良性状包括抗逆能力、果实品质、产量等进行杂交选配,培育出更为优异的后代。如利用沙子空心李种质N22具有果实最大的突出品质,结合N27果实口感最好和N7等种质高产、稳定的优点进行杂交后连续回交繁育后代,实现沙子空心李的增产提质。
参考文献 References
李刚凤,李洪艳,张绍阳,等.沙子空心李果实营养品质的主成分分析和综合评价[J].食品与发酵工业,2020,46(12):264-270.LI G F,LI H Y,ZHANG S Y,et al.Principal component analysis and comprehensive evaluation of the nutritional quality of Prunus salicina Lindl.‘Shazi Kongxinli’ fruit[J].Food and fermentation industries,2020,46(12):264-270(in Chinese with English abstract). [百度学术]
丁健,阮成江,吴茂宏,等.空心李RNA-seq SSR信息分析及分子标记开发[J].分子植物育种,2019,17(8):2579-2586.DING J,RUAN C J,WU M H,et al.RNA-seq SSR information analysis and development of molecular markers in Kongxinli[J].Molecular plant breeding,2019,17(8):2579-2586(in Chinese with English abstract). [百度学术]
韩振诚,潘学军,安华明,等.贵州柿属植物种质资源遗传多样性遗传多样性的SRAP分析[J].果树学报,2015,32(5):751-762.HAN Z C,PAN X J,AN H M,et al.Genetic diversity of Diospyros Linn. in Guizhou based on SRAP[J].Journal of fruit science,2015,32(5):751-762(in Chinese with English abstract). [百度学术]
魏潇,章秋平,刘威生.中国李种质资源研究进展[J].园艺学报,2020,47(6):1203-1212.WEI X,ZHANG Q P,LIU W S.Research progress on plum germplasm resources in China[J].Acta horticulturae sinica,2020,47(6):1203-1212(in Chinese with English abstract). [百度学术]
KALENDAR R,GROB T,REGINA M,et al.IRAP and REMAP:two new retrotransposon-based DNA fingerprinting techniques[J]. Theoretical and applied genetics,1999,98:704-711. [百度学术]
KALENDAR R,ALAN H S.Transposon-based tagging:IRAP,REMAP,and iPBS[J].Methods Mol Biol,2014,1115:233-255. [百度学术]
陈立佼,蒋奇呈,李红叶,等.基于茶树Ty3-gypsy逆转录转座子序列的IRAP分子标记开发及利用[J].分子植物育种,2022,20(3):902-918.CHEN L J,JIANG Q C,LI H Y,et al.Development and application of IRAP molecular markers based on Ty3-gypsy transposition sequence in tea plants[J].Molecular plant breeding,2022,20(3):902-918(in Chinese with English abstract). [百度学术]
刘厚宇,李顺雨,吴敏芳,等.中国樱桃(Prunus pseudocerasus Lindl.)IRAP分子标记技术体系的建立[J].种子,2020,39(9):31-35,40. LIU H Y,LI S Y,WU M F,et al.Establishment of IRAP molecular marker system of Prunus pseudocerasus Lindl.[J].Seed,2020,39(9):31-35,40(in Chinese with English abstract). [百度学术]
周鹏,张士伟,翟锐,等.梨Ty1-copia反转录转座子的克隆及IRAP分子标记体系的建立[J].西北农林科技大学学报(自然科学版),2016,44(2):97-104.ZHOU P,ZHANG S W,ZHAI R,et al.Cloning of Ty1-copiaretrotransposons in pear(Pyrus bretschneideri Rehd.)and establishment of the inter-retrotransposon amplified polymorphism(IRAP)marker system[J].Journal of Northwest A & F University(natural science edition),2016,44(2):97-104(in Chinese with English abstract). [百度学术]
李慧,罗正荣,张青林.基于SSR和IRAP标记的‘关口葡萄’亲缘关系分析[J].果树学报,2014,31(6):1040-1046.LI H,LUO Z G,ZHANG Q L.Genetic relationship analysis of ‘Guankou-putao’ grape by SSR and IRAP markers[J].Journal of fruit science,2014,31(6):1040-1046(in Chinese with English abstract). [百度学术]
陶金,乔光,文晓鹏,等.火龙果IRAP分子标记反应体系的建立与优化[J].华中农业大学学报,2014,33(4):33-38.TAO J,QIAO G,WEN X P,et al.Establishment and optimization of IRAP marker methodology in dragon fruit[J].Journal of Huazhong Agricultural University,2014,33(4):33-38(in Chinese with English abstract). [百度学术]
聂琼,文晓鹏.火龙果组培苗体细胞无性系变异及其分子检测[J].果树学报,2017,34(12):1527-1536.NIE Q,WEN X P.Somaclonal variation of pitaya(Hylocereus undatus) in vitro plants and identification by molecular markers[J].Journal of fruit science,2017,34(12):1527-1536(in Chinese with English abstract). [百度学术]
沈玉英,高志红,王飞,等.梅(Prunus mume)IRAP分子标记技术体系的建立[J].果树学报,2011,28(3):423-427.SHEN Y Y,GAO Z H,WANG F,et al.A technique system of IRAP marker on mei(Prunus mume)[J].Journal of fruit science,2011,28(3):423-427(in Chinese with English abstract). [百度学术]
FAN F H,WENG X P,DING G J,et al.Isolation,identification,and characterization of genomic LTR retrotransposon sequences from masson pine(Pinus massoniana)[J].Tree genetics & genomes,2013,9:1237-1246. [百度学术]
YEH F C,YANG R C,BOYLE T B,et al.POPGENE,the user-friendly shareware for population genetic analysis(ver.1.32)[M]. Alberta:Molecular Biology and Biotechnology Centre,1997. [百度学术]
ROHIF F J.NTSYSpc:numerical taxonomy and multivariate analysis system,version 2.02.exeter software[CP].Setauket,New York:Applied Biostatistics Inc.,1998. [百度学术]
刘昕.萱草属植物遗传多样性的ISSR分析及指纹图谱的初步构建[D].长春:吉林农业大学,2014.LIU X.Genetic diversity analysis of ISSR and fingerprint preliminary construction of the genus Hemerocallis[D].Changchun:Jilin Agricultural University,2014(in Chinese with English abstract). [百度学术]
桂腾琴,李春艳,秦燕,等.应用ISSR分子标记绘制黔西南州梨品种DNA的指纹图谱[J].种子,2021,40(11):126-131.GUI T Q,LI C Y,QIN Y,et al.DNA fingerprinting of pear varieties in Qianxinan prefecture based on ISSR molecular markers[J].Seed,2021,40(11):126-131(in Chinese with English abstract). [百度学术]
WEI X,SHEN F,ZHANG Q P,et al.Genetic diversity analysis of Chinese plum(Prunus salicina L.) based on whole-genome resequencing[J/OL].Tree genetics & genomes,2021,17:26[2022-08-30]. https://doi.org/10.1007/s11295-021-01506-x. [百度学术]
王红林,陈守一,罗昌国,等.利用SSR标记分析贵州中晚熟李资源遗传多样性[J].分子植物育种,2022,20(4):1230-1238. WANG H L,CHEN S Y,LUO C G,et al.Genetic diversity analysis of Guizhou middle-late maturing plums by SSR markers[J]. Molecular plant breeding,2022,20(4):1230-1238(in Chinese with English abstract). [百度学术]
魏潇,章秋平,刘宁,等.不同来源中国李(Prunus salicina L.)的多样性与近缘种关系[J].中国农业科学,2019,52(3):568-578.WEI X,ZHANG Q P,LIU N,et al.Genetic diversity of the Prunus salicina L.from different sources and their related species[J].Scientia agricultura sinica,2019,52(3):568-578(in Chinese with English abstract). [百度学术]
左力辉,韩志校,梁海永,等.不同产地中国李资源遗传多样性SSR分析[J].园艺学报,2015,42(1):111-118.ZUO L H,HAN Z X,LIANG H Y,et al.Analysis of genetic diversity of Prunus salicina from different producing areas by SSR markers[J].Acta horticulturae sinica,2015,42(1):111-118(in Chinese with English abstract). [百度学术]
陈红,杨迤然.贵州李资源遗传多样性及亲缘关系的ISSR分析[J].果树学报,2014,31(2):175-180.CHEN H,YANG Y R.Genetic diversity and relationship of plum resources in Guizhou analysed by ISSR markers[J].Journal of fruit science,2014,31(2):175-180(in Chinese with English abstract). [百度学术]
BASILIO C,CAROLE D,MARIO M,et al.Genetic characterization of Japanese plum cultivars(Prunus salicina) using SSR and ISSR molecular markers[J].Cienciae investigacion agraria,2012,39(3):533-543. [百度学术]
GUAN C F,CHACHAR S,ZHANG P X,et al.Inter- and intra-specific genetic diversity in diospyros using SCoT and IRAP markers[J].Horticultural plant journal,2020,6(2):71-80. [百度学术]
王利英,杜永臣,张斌,等.茄子IRAP和REMAP分子标记的开发[J].园艺学报,2008,35(9):1363-1367. WANG L Y,DU Y C,ZHANG B,et al.Development of molecular markers IRAP and REMAP in eggplant[J]. Acta horticulturae sinica,2008,35(9):1363-1367(in Chinese with English abstract). [百度学术]
马凯,赵钰,张恒,等.基于SSR标记的中亚生态区核桃(Juglans regia L.)遗传多样性与种群结构分析[J].果树学报,2021,38(11):1854-1867.MA K,ZHAO Y,ZHANG H,et al.Analysis of genetic diversity and population structure of walnut(Juglans regia L.) in central Asia ecological region based on SSR markers[J].Journal of fruit science,2021,38(11):1854-1867(in Chinese with English abstract). [百度学术]