摘要
为研究鱼浆静置时间对鱼丝品质及其微观结构的影响,以冷冻鱼糜为研究对象,于4、15、25 ℃制备混合鱼浆并在相同温度下静置一定时间后加工成鱼丝,测定成型前不同静置时间下鱼丝的表观形态、蒸煮品质、质构特性、感官品质、微观结构及鱼浆流变学特性等指标。结果显示,静置处理能显著提高较低物料温度下制得鱼丝的蒸煮品质、质构特性和感官评分(P<0.05),其中在物料温度4 ℃和15 ℃下分别静置8 h和4 h时,鱼丝持水性较未静置组分别提高了20.18%和9.94%,拉伸强度分别提高了28.97%和24.11%。而在25 ℃下静置0.5 h其品质无显著变化(P>0.05)。鱼丝微观结构及鱼浆流变学特性的试验结果表明,适当静置能显著促进鱼浆中蛋白溶出并形成均匀致密的凝胶网络、更好地将淀粉包裹在凝胶网络中,但经过长时间静置鱼浆会形成弱凝胶,后续挤压过程则会破坏已有结构,降低凝胶网络的连续性,最终导致鱼丝品质的下降。综上,鱼浆在物料温度4、15、25 ℃下所允许的最长静置时间分别为8、4和0.5 h,过度静置会导致鱼丝品质及其微观结构的劣化。
鱼糜制品是深受国内外消费者青睐的水产加工食品,具有营养价值高、口感独特及风味鲜美等特
笔者所在实验室早期以冷冻鲢鱼糜为原料通过挤压工艺制得以鱼蛋白为主体结构的鱼糜制品——鱼丝(fish vermicelli,FV),发现成型前物料温度会对其品质产生影响,其中物料温度25 ℃时鱼丝的质构特性较
冷冻鲢鱼糜(AAA级,水分含量(76.21±1.34)%),洪湖市井力水产食品股份有限公司;马铃薯淀粉(直链淀粉含量(25.87±0.42)%),黑龙江省如意淀粉食品有限公司;食盐,湖南盐业股份有限公司。上述原料的基本组成见
原料 Raw material | 蛋白质/(g/100 g) Protein | 脂肪/(g/100 g) Fat | 碳水化合物/(g/100 g) Carbohydrate | 钠/(mg/100 g) Sodium |
---|---|---|---|---|
冷冻鲢鱼糜 Frozen silver carp surimi | 15.5 | 0.3 | 4.8 | 56.0 |
马铃薯淀粉 Potato starch | 0 | 0 | 84.5 | 0 |
食盐 Table salt | 0 | 0 | 0 | 39 182 |
罗丹明B染料,美国Sigma-Aldrich公司;PAS/萘酚黄S染料,武汉塞维尔生物科技有限公司;二甲苯、无水乙醇均为分析纯,国药集团化学试剂有限公司。
HX-DMJ-01型面条机,中山市彗心智能科技有限公司;K600(3205)型食品料理机,德国博朗公司;CR-400/410型色差计,美国Konica Minolta公司;TA-XT Plus型物性分析仪,英国Stable Micro System公司;Eclipse E100型光学显微镜、Eclipse Ti型激光共聚焦显微镜,日本Nikon股份有限公司;AR2000ex型动态流变仪,美国TA公司。
首先将冷冻鱼糜的含水量调整至78%,再将冷冻鱼糜、蒸馏水分别置于4、15、25 ℃环境下保温10 min以达到目标温度。加入30%的蒸馏水(以鱼糜和淀粉质量之和为基准)空斩2 min,然后加入3%的食盐并盐斩2 min,以鱼糜(含水量78%)质量为100%计,加入25%的马铃薯淀粉斩拌3 min,得到膏状的鱼浆,将斩拌后的鱼浆转入真空袋中脱气并分别在4 ℃下静置0、4、8、12、16 h,15 ℃下静置0、2、4、6、8 h和25 ℃下静置0、0.5、1.0、1.5、2.0 h。最后将鱼浆装入孔径为3 mm的面条机中,并置于水上方5 cm处,随后挤入90 ℃水中加热2 min后捞起,并立即放入冰水中冷却2 min,滤干水分后包装,4 ℃贮藏,备用。
水分含量测定参照GB/T 5009.3—2016《食品安全国家标准 食品中水分的测定》。
鱼丝吐浆值的测定参考雷婉莹
持水性的测定采用离心法。称取2 g鱼丝,记录质量为m1,用双层滤纸包裹,于4 000 r/min下离心15 min后去除滤纸,称取鱼丝质量m2,M为鱼丝水分含量,按
(1) |
断条率的测定参考张玉荣
鱼丝拉伸特性的测定参考Wu
鱼丝质构特性测定参考Gao
在蒸煮容器中添加样品质量50倍的蒸馏水并加热至沸腾后,放入样品持续蒸煮2 min,将煮制完成的样品浸于30 ℃的蒸馏水中,待评价用。参照Gao
感官指标Sensory index | 18~25 | 9~17 | 0~8 |
---|---|---|---|
色泽 Color |
米白色,晶莹有光泽 Off-white and lustrous |
颜色正常,略有光泽 Off-white with slight lustrous |
颜色发黄或有异色 Yellowish white or abnormal color |
外观 Appearance |
鱼丝表面均匀,不断条 Smooth and even appearance with no fracture |
鱼丝表面较均匀,会断条 Slightly even appearance and hard to fractur |
鱼丝表面不均匀,断条 Rough and uneven appearance and easy to fracture |
风味 Favor |
有鱼鲜味,回味甘甜 Fish flavor with a sweet aftertaste |
鲜味淡,无明显回味 Slightly fish smell with no aftertaste |
有鱼腥味 Fishy smell |
口感 Mouth feel |
明显有嚼劲 Moderate hardness and chewy |
略有嚼劲 Slightly chewy |
缺乏嚼劲 Too soft with no elasticity |
采用CLSM技术观察鱼丝中蛋白质的组织形貌,参考Sow
采用PAS-萘酚黄S双染结合光学显微镜观察淀粉和蛋白质在鱼丝中的形态和空间分布,参考Fan
采用动态流变仪测定鱼浆流变学特性。取少量鱼浆样品置于载物台,配40 mm平板,载物间距1 mm,并使用表面覆有甘油的保温盖以减少实验过程中水分蒸发。测定参数:温度分别为4、15、25 ℃,频率范围0.1~100 Hz,应变2%(线性黏弹区内)。
鱼浆在物料温度4、15和25 ℃下静置不同时间制得鱼丝的表面形态如

图1 不同静置时间制得鱼丝的表面形态
Fig.1 The smoothness of FV under different setting time

图2 静置时间对鱼丝吐浆值(A)、水分含量(B)、持水性(C)和断条率(D)的影响
Fig.2 Effects of setting time on the cooking loss (A),moisture content (B),water-holding capacity (C)and the ratio of broken noodles (D) of FV
同温度组中不同字母表示差异显著(P<0.05),下同。Different letters on the bar mean significant differences in the same material temperature (P<0.05). The same as below.
由
由
不同物料温度下经静置处理的鱼丝的拉伸特性如
物料温度/℃ Material temperature | 静置时间/h Setting time | 拉伸强度/(g/m | 最大形变量/mmTensile distance |
---|---|---|---|
4 | 0 | 2.14±0.06b | 18.71±1.69b |
4 | 2.87±0.28a | 32.45±3.67a | |
8 | 2.76±0.26a | 31.40±1.64a | |
12 | 2.32±0.19b | 23.30±3.20b | |
16 | 2.06±0.07b | 22.45±2.09b | |
15 | 0 | 2.82±0.20b | 26.99±1.04b |
2 | 3.53±0.27a | 33.68±3.54a | |
4 | 3.50±0.12a | 36.87±3.19a | |
6 | 2.83±0.14b | 20.77±1.64c | |
8 | 2.42±0.12c | 16.66±2.14c | |
25 | 0 | 3.03±0.17a | 41.84±3.36a |
0.5 | 3.07±0.33a | 42.38±4.32a | |
1.0 | 1.75±0.07b | 22.12±3.49b | |
1.5 | 0.98±0.02c | 3.40±0.18c | |
2.0 | 空白Blank | 空白 Blank |
注: “空白”表示无法检测。同温度组中不同字母表示差异显著(P<0.05),下同。Note: “Blank” means the parameters could not be detected. Different letters in the same material temperature group mean significant differences (P<0.05). The same as below.

图3 静置时间对鱼丝硬度(A)、弹性(B)、咀嚼性(C)、回复性(D)的影响
Fig.3 Effects of setting time on hardness (A),springiness (B),chewiness (C) and resilience (D) of FV
不同静置时间制得鱼丝的色度值如
物料温度/℃ Material temperature | 静置时间/h Setting time | W | |||
---|---|---|---|---|---|
4 | 0 | 81.98±0.57a | -1.83±0.08a | 6.27±0.24a | 80.83±0.51a |
4 | 81.23±0.35a | -1.94±0.03b | 5.87±0.12b | 80.24±0.31a | |
8 | 80.28±0.59b | -1.96±0.05b | 5.69±0.17bc | 79.38±0.56b | |
12 | 79.49±0.39c | -1.98±0.04bc | 5.55±0.17c | 78.66±0.38c | |
16 | 78.38±0.80d | -2.04±0.03c | 5.23±0.14d | 77.66±0.77d | |
15 | 0 | 80.49±0.23a | -1.93±0.09a | 5.39±0.17a | 80.54±0.62a |
2 | 79.96±0.25b | -1.95±0.04ab | 5.14±0.16b | 80.24±0.31a | |
4 | 79.40±0.31c | -1.98±0.04ab | 5.05±0.14bc | 79.35±0.51b | |
6 | 78.70±0.09d | -1.98±0.04ab | 4.93±0.13cd | 78.26±0.47c | |
8 | 78.01±0.73e | -2.01±0.04b | 4.78±0.12d | 77.01±0.94d | |
25 | 0 | 80.48±0.14a | -2.07±0.07a | 5.46±0.05a | 79.62±0.14a |
0.5 | 80.43±0.14a | -2.10±0.02a | 5.36±0.05b | 79.60±0.14a | |
1.0 | 80.08±0.16a | -2.09±0.06a | 5.27±0.03c | 79.29±0.15a | |
1.5 | 79.43±0.26b | -2.14±0.03ab | 5.18±0.03d | 78.68±0.24b | |
2.0 | 78.65±0.37c | -2.21±0.02b | 5.16±0.04d | 77.92±0.35c |
物料温度/℃Material temperature | 静置时间/h Setting time | 色泽 Color | 外观 Appearance | 风味 Flavor | 口感 Mouthfeel | 总分 Total score |
---|---|---|---|---|---|---|
4 | 0 | 19.33±1.21a | 14.50±1.52b | 16.83±1.47ab | 15.67±1.86bc | 66.33±2.94bc |
8 | 18.33±1.21ab | 20.83±0.98a | 17.17±1.47ab | 20.50±1.64a | 76.83±2.14a | |
16 | 16.50±1.76b | 13.50±1.38bc | 14.50±1.76c | 14.17±1.17c | 58.67±2.94d | |
15 | 0 | 19.50±1.64a | 14.83±1.83b | 17.17±1.60ab | 16.67±1.63b | 68.17±2.93b |
4 | 18.83±1.94a | 20.83±1.47a | 17.33±1.47ab | 21.17±1.47a | 78.00±3.57a | |
8 | 16.33±1.21b | 14.33±1.37b | 15.17±1.47bc | 16.83±1.47b | 62.67±3.45c | |
25 | 0 | 19.17±2.32a | 21.17±1.72a | 18.67±1.86a | 21.33±1.37a | 80.33±3.72a |
0.5 | 18.83±2.40a | 20.5±1.64a | 17.33±1.63a | 20.83±1.33a | 77.50±4.51a | |
2 | 16.67±0.82b | 12.17±1.47c | 15.17±1.33bc | 11.33±1.75d | 55.33±3.33d |
根据不同静置时间制得鱼丝的蒸煮品质及质构特性分别选择了具有代表性的4 ℃(0、8和16 h)、15 ℃(0、4和8 h)、25 ℃(0、0.5和2 h)共9组样品进行荧光染色切片观察,结果见

图4 不同静置时间制得鱼丝的CLSM图(红色区域代表蛋白)
Fig.4 CLSM images of FV underr different setting time (protein in red)

图5 不同静置时间制得鱼丝的双染观察(紫色区域代表淀粉、黄色区域代表蛋白)
Fig.5 Light micrographs of FV under different setting time with double staining (starch in purple,protein in yellow)
为探究不同物料温度下静置处理对鱼浆黏弹性的影响,选取4 ℃下静置了0、8 和16 h,15 ℃下静置了0、4和8 h,25 ℃下静置了0、0.5和2 h共9组鱼浆进行频率扫描。不同静置时间鱼浆的弹性模量G´和tanδ在频率扫描下的变化如

图6 4 ℃(A)、15 ℃(B)、25 ℃(C)下静置时间对鱼浆流变特性的影响
Fig.6 Effects of setting time on the dynamic rheological properties of fish paste under 4 ℃(A),15 ℃(B) and 25 ℃(C)
弱凝胶网络结构通常对淀粉颗粒束缚能力较差,进而会导致淀粉在蒸煮过程中损失至蒸煮水中或从网络中渗出并分布在凝胶表
作为鱼丝的原料,鱼糜是一种假塑性溶胶,在非剪切过程中呈现较高的黏度,而在挤压、剪切等外力作用下其黏度会大大降低。已有学者通过螺旋挤压等方式制得鱼糜凝胶产
综上所述,静置时间对鱼丝品质及其微观结构有显著影响,且不同物料温度下的最长静置时间存在差异。在较低物料温度(4 ℃和15 ℃)下,静置处理可以显著提高鱼丝的蒸煮品质、质构特性和感官评分。适当静置后促进鱼浆中蛋白溶出,有利于蛋白质分子间的交联与致密凝胶网络的形成,更好地将淀粉包裹在网络中。但经过长时间静置鱼浆会形成一定的结构,后续挤压成型时破坏已形成的凝胶结构,最终导致其品质的下降。综上,物料温度4、15和25 ℃下的最长静置时间分别为8、4和0.5 h,过度静置则会导致鱼丝品质及其微观结构的劣化。
参考文献References
LI J R,LU H X,ZHU J L,et al.Aquatic products processing industry in China: challenges and outlook[J].Trends in food science & technology,2009,20(2): 73-77. [百度学术]
朱燕.后疫情时代我国水产品市场发展趋势的思考[J].中国水产,2022(3): 74-77.ZHU Y.Reflections on the development trend of Chinese aquatic product market in the postepidemic era[J].China fisheries,2022(3): 74-77(in Chinese with English abstract). [百度学术]
SAMPELS S.The effects of processing technologies and preparation on the final quality of fish products[J].Trends in food science & technology,2015,44(2): 131-146. [百度学术]
BENJAKUL S,VISESSANGUAN W,CHANTARASUWAN [百度学术]
C.Effect of high-temperature setting on gelling characteristic of surimi from some tropical fish[J]. International journal of food science and technology,2004,39(6):671-680. [百度学术]
ESTURK O,PARK J W,THAWORNCHINSOMBUT S.Effects of thermal sensitivity of fish proteins from various species on rheological properties of gels[J].Journal of food science,2004,69(8): E412-E416. [百度学术]
LUO Y K,SHEN H X,PAN D D,et al.Gel properties of surimi from silver carp (Hypophthalmichthys molitrix) as affected by heat treatment and soy protein isolate[J].Food hydrocolloids,2008,22(8): 1513-1519. [百度学术]
李浩琪.基于系统动力学的水产品冷链配送体系优化研究[D].青岛: 青岛理工大学,2019.LI H Q.Optimization of aquatic products cold chain distribution system based on system dynamics[D].Qingdao: Qingdao Technological University,2019(in Chinese with English abstract). [百度学术]
高洁.高蛋白鱼丝生产工艺及质构特性研究[D].武汉:华中农业大学,2014.GAO J.Studies on the processing technology and textual properties of high protein fish vermicelli[D].Wuhan: Huazhong Agricultural University,2014(in Chinese with English abstract). [百度学术]
谭力,周春霞,洪鹏志.淡水鱼鱼糜制品加工特性及品质影响因素[J].食品与机械,2018,34(8): 165-168.TAN L,ZHOU C X,HONG P Z.Research progresses om processing and utilization of freshwater fish surimi and surimi products[J].Food & mechinery,2018,34(8): 165-168(in Chinese with English abstract). [百度学术]
雷婉莹,吴卫国,廖卢艳,等.鲜湿米粉品质评价及原料选择[J].食品科学,2020,41(1): 74-79.LEI W Y,WU W G,LIAO L Y,et al.Quality evaluation of and raw material selection for wet rice noodles[J].Food science,2020,41(1): 74-79(in Chinese with English abstract). [百度学术]
张玉荣,周显青,彭超,等.不同储藏年限稻谷的品质及鲜湿米粉加工适应性分析[J].食品科学,2020,41(23): 42-48.ZHANG Y R,ZHOU X Q,PENG C,et al.Analysis of the quality and suitability for fresh rice noodle processing of rice at different storage times[J].Food science,2020,41(23): 42-48(in Chinese with English abstract). [百度学术]
WU J P,CORKE H.Quality of dried white salted noodles affected by microbial transglutaminase[J].Journal of the science of food and agriculture,2005,85(15): 2587-2594. [百度学术]
GAO X,YONGSAWATDIGUL J,WU R L,et al.Effect of ultrasound pre-treatment modes on gelation properties of silver carp surimi[J/OL].LWT-Food science and technology,2021,150: 111945[2022-05-09].https://doi.org/10.1016/j.ultsonch.2022.105942. [百度学术]
SOW L C,TOH N Z Y,WONG C W,et al.Combination of sodium alginate with tilapia fish gelatin for improved texture properties and nanostructure modification[J].Food hydrocolloids,2019,94: 459-467. [百度学术]
FAN M C,HUANG Q L,ZHONG S Y,et al.Gel properties of myofibrillar protein as affected by gelatinization and retrogradation behaviors of modified starches with different crosslinking and acetylation degrees[J].Food hydrocolloids,2019,96: 604-616. [百度学术]
ARAVIND N,SISSONS M J,FELLOWS C M,et al.Effect of insoluble dietary fibre addition on technological,sensory,and structural properties of durum wheat spaghetti[J].Food chemistry,2012,130(2): 299-309. [百度学术]
梁雯雯,杨天,郑志红,等.升温方式对二段加热鲢鱼糜水分分布和品质的影响[J].大连海洋大学学报,2021,36(4): 646-652.LIANG W W,YANG T,ZHENG Z H,et al.Effects of heating methods on water distribution and quality of silver carp surimi during two stage heating[J].Journal of Dalian Ocean University,2021,36(4): 646-652(in Chinese with English abstract). [百度学术]
王金余,刘承初,赵善贞,等.白鲢鱼糜肌球蛋白交联反应和凝胶化最适条件的研究[J].食品科学,2008,29(11): 223-227.WANG J Y,LIU C C,ZHAO S Z,et al.Optimal conditions for maximal cross-linkage of myosin heavy chain (MHC) and gelation of surimi product from silver carp (Hypophthalmichthys molitrix)[J].Food science,2008,29(11): 223-227(in Chinese with English abstract). [百度学术]
PAN Y M,SUN Q X,LIU Y,et al.The relationship between rheological and textural properties of shrimp surimi adding starch and 3D printability based on principal component analysis[J].Food science & nutrition,2021,9(6): 2985-2999. [百度学术]
LIU Y,SUN Q X,WEI S,et al.Insight into the correlations among rheological behaviour,protein molecular structure and 3D printability during the processing of surimi from golden pompano (Trachinotus ovatus)[J/OL].Food chemistry,2022,371: 131046[2022-05-06].https://doi.org/10.1016/j.foodchem.2021.131046. [百度学术]
HAN Z Y,ZHANG J L,ZHENG J Y,et al.The study of protein conformation and hydration characteristics of meat batters at various phase transition temperatures combined with Low-field nuclear magnetic resonance and Fourier transform infrared spectroscopy[J].Food chemistry,2019,280: 263-269. [百度学术]
GUO M H,LIU S C,ISMAIL M,et al.Changes in the myosin secondary structure and shrimp surimi gel strength induced by dense phase carbon dioxide[J].Food chemistry,2017,227: 219-226. [百度学术]