网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

硅对植物抗逆性影响的研究进展  PDF

  • 苏素苗 1
  • 杨春雷 2
  • 饶雄飞 2
  • 李小坤 1,3
1. 华中农业大学资源与环境学院/农业农村部长江中下游耕地保育重点实验室/ 华中农业大学微量元素研究中心,武汉 430070; 2. 湖北省烟草科学研究院,武汉 430030; 3. 华中农业大学双水双绿研究院,武汉 430070

中图分类号: S143.7+1

最近更新:2022-12-08

DOI:10.13300/j.cnki.hnlkxb.2022.06.018

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

硅作为有益元素,具有促进植物生长、提高作物产量的作用,同时硅在增强植物抗逆性方面也发挥着重要作用。为进一步探究硅增强植物抗逆性的深层作用机制,本文综述了硅增强植物抵御生物胁迫(包括病原菌、害虫等)及非生物胁迫(干旱、盐害、重金属等)方面的研究进展,认为硅可通过改善植物形态、平衡养分吸收、调节激素代谢、改良土壤性状等多种作用机制缓解胁迫。针对硅的未来研究方向进行了展望,如硅抵抗各种胁迫的耦合机制,深入研究硅提高植物抗逆性的生物化学及分子机制以及加强新型硅肥及配套施用技术的研发。

硅是地壳中的第二丰富元素,其含量仅次于

1。植物根系主要以硅酸的形态吸收2,植物中的硅含量因植物种类的不同存在较大差异。作为禾本科(如水稻、小麦等)、甜菜、木贼属植物以及某些硅藻品种的必需元3,硅在水稻、小麦和甘蔗等禾本科作物上的作用效果极为显著。

水稻缺硅的典型症状是叶尖坏死、生长停滞、叶片萎蔫、植株呈“垂柳状

4,其主要原因是缺硅导致植株组织内的硅化细胞数量减少,细胞机械强度减弱,植株呈柔软易倒伏的形态,同时植株自身的物理防御屏障受损,在生长过程中更易受重金属及其他逆境因素的影响而表现出叶尖坏死、生长受阻的现象。而施用硅肥后,硅在细胞壁中沉积可以显著改善水稻植株和叶片的形态,使得植株挺拔、叶片伸长并增厚,叶片与茎秆间的夹角减5,受光照更加充分,从而提高群体光合作用。此外,龚金龙6研究发现施用硅肥可以促进水稻根系生长,增加根系活力,改善根系通气组织和根部的氧化能力,提高水稻根系对水分和养分的吸收,从而提高产量。Lavinsky7研究发现施硅处理水稻的每穗粒数、结实率和千粒重等产量性状显著增加。与水稻相同,甘蔗是喜硅禾本科作8,硅含量占其叶片干质量的0.1%~3.2%,每季可从土壤中获取70~800 kg/hm2有效9。施硅有利于促进甘蔗对营养元素的吸收,提高甘蔗叶中转化酶的活性,提高糖分累积。施硅处理甘蔗的出苗率可提高27%~39%,含糖量增加4.5%~12.7%,产量提高10%~21%8

番茄是“非喜硅作物

10,但在硅缺乏时却出现生长发育受阻的现象,具体表现为:叶片发黄,下部叶出现坏死斑点,并逐渐向上部叶片扩展;生长停滞、新叶畸形;严重时叶片枯萎、脱落;开花少,且开花后不能正常授粉,果实畸形或不结4。此外,诸多研究表明,硅在甜瓜、香蕉、棉花等多种作物中表现出类似促进作物生长、提高产量和改善品质的正效11-13

如今,随着人们对硅素营养的深入研究,硅在缓解植物各种生物胁迫和非生物胁迫、增强植物抗逆性方面的优势已被充分证实。本文对现有研究成果进行综述,归纳了硅增强植物对生物胁迫和非生物胁迫抗性的相关作用机制,以期为施用硅肥增强作物抗逆性的研究提供理论支撑。

1 硅缓解植物生物胁迫的相关机制

1.1 抗病性

矿质营养可以影响作物对病害的防御能力,被认为是调控作物病害的重要影响因素之一,通过调节矿质营养元素含量可以减轻许多作物病害的发生程度。硅增强作物对病害的抵御能力已被许多学者证实。作为水稻的必需元素,研究表明,施硅可以显著降低水稻稻瘟病的发病率及病情指

14。此外,施硅还可以抑制胡麻叶斑病、白叶枯病、番茄和苦瓜的腐霉菌、大豆锈病等多种病害的发15。硅营养通过加强作物对病菌的物理、生化及分子防御屏障以提高作物抗病性。具体机制如下:

1)物理防御。研究表明,禾本科植物叶片表皮细胞硅化现象明显,施硅处理增加了叶片表皮细胞单位面积硅化细胞的频

15,硅化细胞的数量增加可以增强植物的机械强度并形成保护层,防止病原菌的侵入。此外,硅在叶片角质层下面的表皮组织中形成角质-硅质双层,这一结构的形成进一步加固物理屏障,阻止病原菌入侵。易晓璇16研究认为,施硅处理的叶片表皮细胞中形成的乳突可以防御病原菌的侵染。施硅导致水稻叶片哑铃状体上的硅沉积增多,气孔保卫细胞上硅乳突积累,能降低稻瘟病的发病率和病情指17

2)生化防御。物理防御机制是防止病原菌入侵的第一道屏障,除此之外,硅还参与生物化学防御过程。通过诱导植物自身合成次生代谢抗性物质以激活植物的诱导性防御,增强抵抗病原菌入侵的能力。Ng

18研究发现施硅可增加水稻表皮细胞壁中的木质素和木质素-碳水化合物复合物的含量,以增强水稻对米曲霉感染的抗性。此外,硅通过提高植物中可溶性酚类化合物的含量来抑制入侵病原体的生长,同时提高植物对病害的抵抗19

3)分子防御。目前有关硅参与调控分子防御机制的相关研究较少。Rodrigues

20研究发现施硅能够促使水稻对稻瘟病原菌产生应激反应,诱导表达编码PR⁃1、POD等基因,同时积累大量的酚类物质和木质素,抑制病菌生长。Kauss21研究发现,在染病的黄瓜叶片中有一种新的编码富含脯氨酸的蛋白基因表达增强,同时二氧化硅沉积有利于细胞壁的强化,说明相关蛋白的结构性积累可能在某些细胞发育阶段的硅质沉积中起作用。

1.2 抗虫性

害虫是严重影响农作物产量和品质的重要因素。植物抗虫性指害虫与植物之间在一定条件下相互作用的表现,研究表明在单子叶和双子叶植物中,植物体内硅含量与抗虫性呈正相

22。作物吸收硅后,在作物体内形成硅化细胞,使茎、叶表层细胞壁加厚,角质层增加,从而提高抗虫能力。硅增强植物的抗虫机制表现为提高植物的抗生性、耐害性和不选择性3个方23

1)抗生性。抗生性是指由于植物具备某些特性,对害虫的侵害产生各种不利于害虫的反应,具体表现为害虫活动困难、食量减少、生殖力下降、生长发育延缓、体质量减轻、死亡率增高

24。Han25研究发现施硅可以显著延长稻纵卷叶螟幼虫的发育时间,降低幼虫的存活率和化蛹率,并降低稻纵卷叶螟的食物转化效率以增强水稻的抗生性。洪鼎剀26研究发现,取食外源施硅玉米会减轻草地贪夜蛾幼虫的体质量,影响其生育期,并通过提高玉米植株内超氧化物歧化酶、过氧化氢酶和多酚氧化酶等防御酶的活性以参与玉米对草地贪夜蛾的防御响应。

2)耐害性。耐害性是害虫对作物有正趋性,但作物能耐受害虫的侵害而不致显著降低产量和品

24。狄浩27研究发现,施硅处理可以有效抑制叶螨对棉花植株的受害指数,与对照相比,基施硅肥处理棉花的干物质含量增加35.22%,说明基施硅肥处理可以减轻叶螨胁迫下棉花干物质积累量的损失。

3)不选择性。不选择性是由于植物的某些特性,害虫不趋向植物取食、产卵或栖

28。贾路瑶29研究发现,施硅能显著降低白背飞虱成虫在水稻上的栖息率和产卵率,与不施硅相比,中硅浓度及高硅浓度处理的水稻白背飞虱成虫的栖息率分别降低48.0%和67.4%,产卵率分别降低34.8%和46.1%。同样韩永强23研究发现施硅对降低稻纵卷叶螟对水稻的选择性及着卵率有显著效果,与对照相比,低硅浓度和高硅浓度处理条件下稻纵卷叶螟初孵幼虫对水稻叶片的选择比例分别降低33.1%和26.7%,而成虫在水稻上的着卵量分别较对照减少45.3%和27.6%,着卵率分别降低18.6%和11.0%,证明硅有助于增强害虫对植物的不选择性以提高抗虫能力。

2 硅缓解植物非生物胁迫的相关机制

2.1 抗旱性

水作为生命之源,是保证农作物正常生长的第一要素,因此,干旱是影响农业生产的第一大威胁。干旱环境通常导致作物含水量降低、气孔关闭、生长受抑制、光合作用减弱、生理代谢紊乱等,严重时造成作物死亡。诸多研究证实,硅能显著提高干旱胁迫下水稻、玉米、黄瓜等多种作物的抗旱

30-32。而硅营养提高植物抗旱性的机制主要有以下几方面:

1)改善植物根系发育。植物根系是植物吸收土壤中水分和矿质养分的重要器官,当植物遭遇干旱胁迫时,根系会最先感知并作出相应改变,如主根增长、侧根和根毛数量增多等。已有研究证实硅可以改善根系生长包括形态特征以及总根和主根长

33。在干旱胁迫条件下,施用硅肥可以提高根系质膜完整性,增强抗氧化防御能力,减轻膜的氧化损伤以提高根系的导水34

2)参与硅化作用。植物吸收的硅主要以硅酸的形态运输到地上部,其中大部分硅酸沉积在细胞壁与表皮细胞的角质层之间,降低水分散失,减轻因强光失水过多而造成的萎蔫,提高植物对水分的吸收利

3。部分硅则在叶片角质层下面的表皮组织中形成角质-硅质双层结构,抑制蒸腾,减少气孔开合,从而降低水分蒸发,提高光合作用效率及水分利用33

3)调节干旱胁迫下植物的生理代谢活动。干旱胁迫下施用外源硅肥可以有效平衡花生的离子稳态,增强光合色素的合成,并诱导可溶性糖和多酚类化合物等渗透物质的积累以缓解氧化应激,改善干旱胁迫下花生的生长和产

35。Cao36研究发现施硅显著改善了干旱胁迫下番茄叶绿体PSⅡ和PSⅠ之间的吸收光分配,同时调节抗氧化酶活性,降低干旱胁迫下番茄叶绿体的活性氧水平,保护番茄的叶绿体结构在干旱胁迫下免受氧化损伤。曾瑞儿37研究发现,与单独干旱胁迫相比,干旱胁迫下施硅处理花生幼苗的净光合速率、气孔导度、胞间CO2浓度、实际光化学速率、最大光化学效率和光化学淬灭系数及抗氧化酶活性均显著升高,而叶绿素含量、丙二醛含量、蒸腾速率和非光化学淬灭系数下降,说明干旱胁迫下施硅能有效提高光能转化率和光合速率,提高叶片抗氧化酶活性,降低膜脂过氧化程度,增强花生的抗旱能力,缓解干旱胁迫对花生的伤害。郑世英38研究证实适宜浓度的外源硅肥能有效促进干旱胁迫下野生大豆幼苗的生长,提高抗氧化酶活性,降低细胞膜透性、游离脯氨酸及可溶性糖含量,缓解干旱胁迫对野生大豆幼苗的危害,提高野生大豆的抗旱能力。

4)调控矿质营养吸收,维持养分平衡。诸多研究证明在干旱胁迫条件下施用硅肥能够调节植物对养分的吸收和转运,维持植物体的养分平衡,提高植物对环境胁迫的抵抗力。Chen

39研究发现,与不施硅处理相比,施硅处理可以降低干旱胁迫下水稻植株中K、Na、Ca、Mg、Fe的含量,表明施硅可能通过调节植株对矿质养分的吸收来提高水稻的抗旱性。与Chen39的结论相似,Pei40研究发现,在水分胁迫下Na、Mg、K和Ca在小麦地上部无积累,硅的添加反而降低这些矿质元素的浓度。

2.2 耐盐性

植物生长环境中的盐分超过其耐盐阈值时,通常会导致土壤水势下降,引发渗透压力,使植物吸水困难,甚至引起细胞脱水,诱发离子毒害,影响植物正常的生理代谢,抑制其生长发育,最终引起作物产量降低,品质下

41。大量研究证明,缺硅导致植物对环境胁迫的适应能力减弱,适量施硅可显著提高作物的耐盐性,降低作物盐42-44。硅营养提高植物耐盐性的机制主要有以下几方面:

1)稳定盐胁迫下作物细胞的结构和功

42。甘草叶片的显微结构受盐胁迫影响较大,主要表现为叶肉细胞数目减少、细胞性状改变、排列松散等,而在施加外源硅后,叶肉细胞排列紧密且细胞结构完整,维管束面积增大,木质部导管数量增多,表明施用外源硅肥在一定程度上可以缓解盐胁迫对细胞造成的损43。房江育44研究发现,硅能调节盐胁迫下烟草细胞的长宽比例,改善细胞形态,保持细胞数量增长的同时,稳定细胞的均匀形态,减少畸形细胞的数量,以保证细胞的旺盛分裂及代谢。王建寰45研究发现,施加外源硅肥可缓解盐胁迫对叶片结构的损伤,保持叶绿体片层结构及膜系统完整,增加叶片中的淀粉粒、嗜锇颗粒含量,以防细胞空泡化,缓解盐胁迫对叶片叶绿体和线粒体造成的伤害。

2)调节离子的选择性吸收以平衡离子浓度,减轻离子毒害。盐胁迫下植物对Na+的高吸收会抑制K+和Ca2+等离子的吸收,扰乱细胞代谢,产生活性氧而减缓植物生长。闫国超

46研究发现,添加外源硅显著降低盐胁迫下水稻地上部Na含量,增加水稻地上部K含量,同时降低水稻地上部Na/K比值和选择性转运系数。施硅能减少盐胁迫下植物对Na的吸收、转运和生物积累,并降低Na/K比值从而减轻盐诱导的植物毒47

3)参与调控作物的生理代谢活动,提高作物耐盐性。Xie

48研究表明,在盐碱地种植玉米时,一定剂量的硅肥能够提高玉米的光合速率、气孔导度和胞间CO2浓度,同时显著降低玉米的蒸腾速率,意味着施用适量硅肥可显著提高盐碱胁迫下玉米的光合效率。研究表明,对处于盐胁迫下的金合欢增施硅肥,可促进叶绿素a、叶绿素b、总叶绿素和类胡萝卜素等光合色素的合成,提高净CO2同化的光合活性,同时可提高抗氧化酶活性和抗坏血酸含量以保护其免受盐胁迫诱导的氧化损49

2.3 重金属胁迫抗性

近年来,重金属污染成为农业生产活动中不可回避的问题,植物在生长过程中,其种子萌发、根系发育和生理代谢过程等相关指标都会受到重金属的影响。研究表明,施加适量的外源硅肥能有效缓解重金属胁迫对植物生长的抑制和毒害作

50。在实际生产中,硅肥常被推荐用于镉污染稻田修复。王怡璇51研究发现,土壤施硅可以促进水稻根表铁膜的形成,加强铁膜对镉的吸附作用,显著降低镉从根系铁膜向根部和镉从根部向茎秆的转运。彭华52研究发现,施硅降低了镉由茎秆向叶片和稻壳的转运,降低稻米的镉积累,并显著增加茎秆、叶片和稻壳的硅含量,增加幅度分别为44.1%、71.5%和28.8%。硅营养主要通过以下机制增强植物重金属胁迫抗性:

1)提高土壤介质pH,降低重金属生物有效性。王怡璇

51研究发现,施用硅肥提高了土壤pH,且土壤pH随硅肥施用量的增加而升高。土壤pH的升高使得带负电的土壤胶体吸附重金属离子的能力提高,从而降低重金属的生物有效性。pH的改变使Cd、Zn、Cu、Pb等重金属离子在土壤中发生沉淀,沉积在根系表面,从而抑制了植物对重金属离子的吸收,缓解重金属对根系的毒害作用,从而有效缓解重金属污50。彭华52的研究表明,施用硅肥能够提高土壤pH 0.160~0.290个单位,降低镉的生物有效性,并增加土壤有效硅含量。

2)参与植物体的生理代谢活动,减缓重金属的毒害作用。Wang

53研究发现,纳米硅能够促进镉胁迫下水稻幼苗的生长发育,提高镁、铁、锌、叶绿素含量和谷胱甘肽含量,降低丙二醛含量,改善抗氧化酶活性从而减轻水稻的镉毒害。张翠翠54的研究结果表明,施硅处理使得水稻叶片叶绿素含量及可溶性蛋白含量显著升高,叶片质膜透性、丙二醛含量、过氧化物活性和可溶性糖含量显著降低,产量增加,说明硅缓解植物重金属毒害的内在机制与其对抗氧化酶系统的调节作用有关。

3)调控相关基因的表达。Ma

55-56研究发现硅转运蛋白基因OsLSi1和硅外排转运蛋白基因OsLSi2可调控水稻对硅的吸收与转运。而砷可以借助硅的吸收转运蛋白基因OsLSi1OsLSi2进入水稻根57。Kim58研究表明,向重金属胁迫的水稻中添加硅,重金属转运蛋白基因(OsHMA2OsHMA3)的mRNA表达显著下调,而负责硅转运的基因(OsLSi1OsLSi2)的mRNA表达显著增加。

2.4 其他抗逆性

诸多研究证实硅在增强作物抗倒伏、耐高温及抗冻害能力等方面也具有积极作用。佘恒志

59研究发现,适量施硅肥能增加茎秆基部第二节间长度、直径、鲜质量和抗折力,降低甜荞倒伏率9%~22%。王怀鹏60研究结果显示,玉米叶面施硅处理下,基部第3节节间穿刺强度和抗折力分别较对照提高4.63%~13.35%和2.27%~28.43%,说明喷施适宜浓度硅肥可以提高硅质化程度以增强茎秆基部节间穿刺强度,从而改善玉米的抗倒伏性能。此外,施硅可以改善茎秆中的断裂阻力、纤维素、半纤维素和木质素含量,同时降低茎长和倒伏指数,从而降低水稻倒伏的风61。而硅提高作物抗倒伏性的主要机制是通过在作物体内沉积二氧化硅,增强硅化程度以提高作物的机械强度,从而发挥抗倒伏的作62

目前硅增强植物的耐高温机制的研究较少。现有研究表明,外源硅能诱导增强水稻花器官的抗热能力,减轻结实率的降低,提高杂交水稻的耐高温

63。吴晨阳64研究结果显示,与对照相比,施硅处理的2个杂交水稻品种的颖花受精率分别提高10.6和4.7个百分点,每柱头花粉萌发数增加16.9%和39.6%,花粉萌发率上升11.3和7.0个百分点,表明外源硅能改善高温胁迫下杂交水稻的花粉发育质量。李文彬65研究发现,与对照相比,加硅处理可使水稻花药的开裂率和柱头上的授粉量分别提高130%和66%,与此同时,沉积在小穗内稃和外稃中的硅可能通过减少花中水分的蒸腾损失,减轻花粉粒吸水膨胀过程受高温胁迫的影响。

低温胁迫包括冷害和冻害两方面,冷害和冻害都会使植物的各项活动减缓或停止,严重威胁作物的产量形成及品质优化。硅增强植株抗冻性的机制主要包括硅化细胞及角质-硅质双层的形成,除增强物理防御外,硅参与植物体内的代谢活动以调节植物的生理生化指标,进而提高植株的抗冻

10。陈海66研究表明,在低温胁迫下,增施硅制剂对水稻抗低温生理指标和保护酶活性具有积极影响,可显著提高过氧化物酶及过氧化氢酶活性,增加可溶性糖和脯氨酸含量,降低丙二醛含量。

综上所述,施用硅肥对缓解植物生物胁迫和非生物胁迫具有积极作用,现将硅增强植物在抗旱、耐盐、抗病虫害、抗倒伏等生物和非生物胁迫下抗逆能力的主要内在机制做如下归纳(图1)。

图1  硅缓解植物生物及非生物胁迫的内在作用机制及外在表征(改自文献[

33])

Fig. 1  Internal mechanism and external characterization of silicon alleviating biotic and abiotic stresses in plants (modified from the reference [

33])

3 结论与展望

硅作为地壳中除氧以外最丰富的元素,对植物的生长和发育起重要作用,并能增强植物抵抗各种生物胁迫和非生物胁迫的能力。目前,虽然已有大量报道阐述了硅可通过调控植株构型和影响生理生化代谢等途径缓解环境胁迫,但其深层作用机制尚未明确,还存在许多值得关注的问题,故对未来硅的研究方向提出以下几点展望:

1)硅抵抗各种胁迫的耦合机制。目前自然灾害频发,植物需同时抵御多重胁迫。例如高温伴随着干旱,生理性病害和虫害并发,这些情况下硅介导的植物主要生理代谢途径和分子生物学机制需要进一步探究,以便能在更加广泛的环境条件下,深入解析硅缓解多重胁迫的有效机制。

2)利用学科交叉技术,深入研究硅提高植物抗逆性的生物化学及分子机制。随着细胞生物学、基因组学、蛋白质组学以及代谢组学的发展,可将多学科技术手段应用于硅抗逆性的研究,进而将硅的研究从单一技术,拓展到细胞尺度代谢过程、基因调控多方面的研究领域,从而更加透彻地阐明硅素提高植物抗逆性的作用机制。

3)加强新型硅肥及配套施用技术的研发。由于硅素对植物的众多有益作用,目前硅肥也被广泛应用于农业生产。除了常见的速溶硅肥、液体硅肥、硅钾肥等,新型纳米硅肥和生物硅肥由于其良好的肥效也受到市场的积极推广。例如纳米硅粒子介导的分子靶向技术,有利于研发新的抵御各种生物胁迫和非生物胁迫的新型复合肥料。此外,生物硅肥采用先进生物发酵复合技术加工而成,可有效利用土壤中的含硅矿物,具有绿色环保的优点,因此,新型硅肥的研制尚需进一步加强。此外,新型肥料的应用需配套新的施用技术,要考虑施用时期和施用量等因素,并通过相应的田间试验,进行肥效对比,以更好地为农业生产服务。

参考文献References

1

秦曼丽,胡绪峰,刘德麒,等.硅对盐胁迫下黄瓜生长和多胺代谢的影响[J].植物生理学报,2022,58(6):1077-1091.QIN M L,HU X F,LIU D Q,et al.Effects of silicon on growth and polyamine metabolism in cucumber under salt stress[J].Plant physiology journal,2022,58(6):1077-1091(in Chinese with English abstract). [百度学术] 

2

张楠,闫国超,叶木军,等.野生型水稻及其低硅突变体中植硅体和植硅体碳的含量与分布特征[J].植物营养与肥料学报,2019,25(1):45-54.ZHANG N,YAN G C,YE M J,et al.The contents and distributions of phytolith and phytolith-occluded carbon in different rice genotypes[J].Journal of plant nutrition and fertilizers,2019,25(1):45-54(in Chinese with English abstract). [百度学术] 

3

张万洋,李小坤.水稻硅营养及硅肥高效施用技术研究进展[J].中国土壤与肥料,2020(4):231-239.ZHANG W Y,LI X K.Research progress on silicon nutrition and efficient application of silicon fertilizer in rice[J].Soil and fertilizer sciences in China,2020(4):231-239(in Chinese with English abstract). [百度学术] 

4

徐呈祥,刘兆普,刘友良.硅在植物中的生理功能[J].植物生理学通讯,2004,40(6):753-757.XU C X,LIU Z P,LIU Y L.The physiological function of silicon in plants[J].Plant physiology communications,2004,40(6):753-757(in Chinese). [百度学术] 

5

CUONG T X,ULLAH H,DATTA A,et al.Effects of silicon-based fertilizer on growth,yield and nutrient uptake of rice in tropical zone of vietnam[J].Rice science,2017,24(5):283-290. [百度学术] 

6

龚金龙,张洪程,龙厚元,等.水稻中硅的营养功能及生理机制的研究进展[J].植物生理学报,2012,48(1):1-10.GONG J L,ZHANG H C,LONG H Y,et al.Progress in research of nutrition functions and physiological mechanisms of silicon in rice[J].Plant physiology journal,2012,48(1):1-10(in Chinese with English abstract). [百度学术] 

7

LAVINSKY A O,DETMANN K C,REIS J V,et al.Silicon improves rice grain yield and photosynthesis specifically when supplied during the reproductive growth stage[J].Journal of plant physiology,2016,206:125-132. [百度学术] 

8

蒋雄英,陈桂芬,尹辉,等.硅肥对甘蔗的生长、产量和品质的影响[J].西南农业学报,2014,27(6):2460-2464.JIANG X Y,CHEN G F,YIN H,et al.Effects of silicon fertilization on growth,yield and quality of sugarcane[J].Southwest China journal of agricultural sciences,2014,27(6):2460-2464(in Chinese with English abstract). [百度学术] 

9

林兆里,张华,罗俊,等.施用硅肥对甘蔗抗条螟性及其产量的影响[J].热带作物学报,2021,42(4):1071-1079.LIN Z L,ZHANG H,LUO J,et al.Effect of silicon fertilizer on sugarcane production and its resistance to stalk borer[J].Chinese journal of tropical crops,2021,42(4):1071-1079(in Chinese with English abstract). [百度学术] 

10

刘春成,李中阳,胡超,等.逆境条件下硅肥调控效应研究进展[J].中国土壤与肥料,2021(4):337-346.LIU C C,LI Z Y,HU C,et al.Advances in the regulation effects of silicon fertilizer under adversity stress[J].Soil and fertilizer sciences in China, 2021(4):337-346(in Chinese with English abstract). [百度学术] 

11

刘月,刘海河,张彦萍,等.外源硅对厚皮甜瓜果实品质及相关酶活性的影响[J].中国瓜菜,2021,34(12):28-32.LIU Y,LIU H H,ZHANG Y P,et al.Effects of exogenous silicon on fruit quality and related enzyme activities of muskmelon[J].China cucurbits and vegetables,2021,34(12):28-32(in Chinese with English abstract). [百度学术] 

12

王露,杨帅,陈玉子,等.不同供氮水平下加硅对香蕉生长与氮营养的影响[J].热带作物学报,2019,40(4):664-669.WANG L,YANG S,CHEN Y Z,et al.Effect of silicate on banana growth and nitrogen nutrition with different nitrogen supply level[J].Chinese journal of tropical crops,2019,40(4):664-669(in Chinese with English abstract). [百度学术] 

13

张大伟,魏鑫,徐海江,等.滴施硅肥对棉花生长发育和产量品质的影响[J].新疆农业科学,2020,57(11):1998-2003.ZHANG D W,WEI X,XU H J,et al.Effects of silicon fertilizer on cotton growth,yield and quality[J].Xinjiang agricultural sciences,2020,57(11):1998-2003(in Chinese with English abstract). [百度学术] 

14

HAN Y Q,WEN J H,PENG Z P,et al.Effects of silicon amendment on the occurrence of rice insect pests and diseases in a field test[J].Journal of integrative agriculture,2018,17(10):2172-2181. [百度学术] 

15

宁东峰,梁永超.硅调节植物抗病性的机理:进展与展望[J].植物营养与肥料学报,2014,20(5):1280-1287.NING D F,LIANG Y C.Silicon-mediated plant disease resistance:advance and perspectives[J].Journal of plant nutrition and fertilizer,2014,20(5):1280-1287(in Chinese with English abstract). [百度学术] 

16

易晓璇,马肖,刘木兰,等.硅对植物逆境胁迫耐受能力的影响及其机理研究进展[J].作物研究,2020,34(4):398-404.YI X X,MA X,LIU M L,et al.Research progress on effect of silicon on plant stress tolerance and its mechanism[J].Crop research,2020,34(4):398-404(in Chinese with English abstract). [百度学术] 

17

CAI K Z,GAO D,LUO S M,et al.Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease[J].Physiologia plantarum,2008,134(2):324-333. [百度学术] 

18

NG L C,HAFIZ E S,SARIAM O,et al.The effect of calcium silicate as foliar application on aerobic rice blast disease development[J].European journal of plant pathology,2019,153(2):533-543. [百度学术] 

19

CARNEIRO-CARVALHO A,PINTO T,FERREIRA H,et al.Effect of silicon fertilization on the tolerance of Castanea sativa Mill.seedlings against Cryphonectria parasitica Barr[J].Journal of plant diseases and protection,2020,127(2):197-210. [百度学术] 

20

RODRIGUES F Á,JURICK W M I I,DATNOFF L E,et al.Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions[J].Physiological and molecular plant pathology,2005,66(4):144-159. [百度学术] 

21

KAUSS H,SEEHAUS K,FRANKE R,et al.Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants[J].The plant journal,2003,33(1):87-95. [百度学术] 

22

沈彦辉,周新刚,吴凤芝.不同施硅方式对土壤化学性状及土壤酶活性的影响[J].中国蔬菜,2015(11):34-39.SHEN Y H,ZHOU X G,WU F Z.Effects of different silicon fertilization patterns on soil chemical property and soil enzyme activity[J].China vegetables,2015(11):34-39(in Chinese with English abstract). [百度学术] 

23

韩永强,弓少龙,文礼章,等.水稻施用硅肥对稻纵卷叶螟幼虫取食和成虫产卵选择性的影响[J].生态学报,2017,37(5):1623-1629.HAN Y Q,GONG S L,WEN L Z,et al.Effect of silicon addition to rice plants on Cnaphalocrocis medinalis feeding and oviposition preference[J].Acta ecologica sinica,2017,37(5):1623-1629(in Chinese with English abstract). [百度学术] 

24

王小珊.牛角花齿蓟马(Odontothrips loti)为害对苜蓿叶片次生代谢物质含量的影响[D].兰州:甘肃农业大学,2014.WANG X S.Effect of Odontothrips loti feeding on the secondary metabolites content in alfalfa leaf[D].Lanzhou:Gansu Agricultural University,2014(in Chinese with English abstract). [百度学术] 

25

HAN Y Q,LEI W B,WEN L Z,et al.Silicon-mediated resistance in a susceptible rice variety to the rice leaf folder,Cnaphalocrocis medinalis Guenée (Lepidoptera:Pyralidae)[J/OL].PLoS One,2015,10(3):e0120557[2022⁃05⁃09].http://doi.org/10.1371/journal.pone.0120557. [百度学术] 

26

洪鼎剀,卞润恬,库木克努尔,等.施硅玉米对草地贪夜蛾的影响[J].南方农业学报,2021,52(3):589-595.HONG D K,BIAN R T,KUMUKENUER,et al.Effects of silicon application in corn on Spodotera frugiperda (J.E.Smith)[J].Journal of southern agriculture,2021,52(3):589-595(in Chinese with English abstract). [百度学术] 

27

狄浩,赵伊英,褚贵新,等.硅对叶螨危害后棉花防御酶活性的调控作用及其与抗虫性的关系[J].石河子大学学报(自然科学版),2013,31(6):661-668.DI H,ZHAO Y Y,CHU G X,et al.Silicon-mediated defense enzyme activities in cotton attacked by Tetranychus turkestani and its insect resistance[J].Journal of Shihezi University (natural science),2013,31(6):661-668(in Chinese with English abstract). [百度学术] 

28

王明飞,戚秀秀,王中华,等.施硅降低麦长管蚜对小麦寄主选择偏好的化学机理[J].植物营养与肥料学报,2022,28(3):555-565.WANG M F,QI X X,WANG Z H,et al.Silicon application decreases host selection preference of Sitobion avenae(Fabricius)[J].Journal of plant nutrition and fertilizers,2022,28(3):555-565(in Chinese with English abstract). [百度学术] 

29

贾路瑶,刘丹丹,侯茂林.水稻施硅对白背飞虱刺吸和寄主选择行为的影响[J].昆虫学报,2020,63(2):199-206.JIA L Y,LIU D D,HOU M L.Effects of silicon amendment to rice on piercing and host selection behaviors of the white-backed planthopper,Sogatella furcifera (Hemiptera:Delphacidae)[J].Acta entomologica sinica,2020,63(2):199-206(in Chinese with English abstract). [百度学术] 

30

WANG Y W,ZHANG B B,JIANG D X,et al.Silicon improves photosynthetic performance by optimizing thylakoid membrane protein components in rice under drought stress[J].Environmental and experimental botany,2019,158:117-124. [百度学术] 

31

BESHARAT S,BARÃO L,CRUZ C.New strategies to overcome water limitation in cultivated maize:results from sub-surface irrigation and silicon fertilization[J/OL].Journal of environmental management,2020,263:110398[2022⁃05⁃09].http://doi.org/10.1016/j.jenvman.2020.110398. [百度学术] 

32

ALSAEEDI A,EL-RAMADY H,ALSHAAL T,et al.Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake[J].Plant physiology and biochemistry,2019,139:1-10. [百度学术] 

33

ETESAMI H,JEONG B R.Silicon (Si):review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants[J].Ecotoxicology and environmental safety,2018,147:881-896. [百度学术] 

34

WANG M,WANG R R,MUR L A J,et al.Functions of silicon in plant drought stress responses[J/OL].Horticulture research,2021,8:254[2022⁃05⁃09].https://doi.org/10.1038/s41438-021-00681-1. [百度学术] 

35

PATEL M,FATNANI D,PARIDA A K.Silicon-induced mitigation of drought stress in peanut genotypes (Arachis hypogaea L.) through ion homeostasis,modulations of antioxidative defense system,and metabolic regulations[J].Plant physiology and biochemistry,2021,166:290-313. [百度学术] 

36

CAO B L,MA Q,ZHAO Q,et al.Effects of silicon on absorbed light allocation,antioxidant enzymes and ultrastructure of chloroplasts in tomato leaves under simulated drought stress[J].Scientia horticulturae,2015,194:53-62. [百度学术] 

37

曾瑞儿,王鑫悦,侯雪蓥,等.硅对干旱胁迫下花生幼苗生长和生理特性的影响[J].花生学报,2018,47(4):13-18.ZENG R E,WANG X Y,HOU X Y,et al.Effects of silicon on growth and physiological characteristics of peanut seedling under drought stress[J].Journal of peanut science,2018,47(4):13-18(in Chinese with English abstract). [百度学术] 

38

郑世英,郑晓彤,耿建芬,等.硅对干旱胁迫下野生大豆幼苗生长和生理特性的影响[J].大豆科学,2018,37(2):263-267.ZHENG S Y,ZHENG X T,GENG J F,et al.Effects of silicon on growth and physiological characteristics of wild soybean seedlings under drought stress[J].Soybean science,2018,37(2):263-267(in Chinese with English abstract). [百度学术] 

39

CHEN W,YAO X Q,CAI K Z,et al.Silicon alleviates drought stress of rice plants by improving plant water status,photosynthesis and mineral nutrient absorption[J].Biological trace element research,2011,142(1):67-76. [百度学术] 

40

PEI Z F,MING D F,LIU D,et al.Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings[J].Journal of plant growth regulation,2010,29(1):106-115. [百度学术] 

41

赵海燕,魏宁,孙聪聪,等.NaCl胁迫对银杏幼树组织解剖结构和光合作用的影响[J].北京林业大学学报,2018,40(11):28-41.ZHAO H Y,WEI N,SUN C C,et al.Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J].Journal of Beijing Forestry University,2018,40(11):28-41(in Chinese with English abstract). [百度学术] 

42

LIANG Y C,CHEN Q,LIU Q,et al.Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.)[J].Journal of plant physiology,2003,160(10):1157-1164. [百度学术] 

43

解植彩,罗栋,张文晋,等.硅对盐胁迫下甘草叶片显微结构的影响[J].中药材,2016,39(12):2698-2701.XIE Z C,LUO D,ZHANG W J,et al.Effect of silicon on microstructure of glycyrrhiza uralensis leaves under salt stress[J].Journal of Chinese medicinal materials,2016,39(12):2698-2701(in Chinese). [百度学术] 

44

房江育,王贺,张福锁.硅对盐胁迫烟草悬浮细胞的影响[J].作物学报,2003,29(4):610-614.FANG J Y,WANG H,ZHANG F S.Effect of silicon on tobacco suspension cells under salt stress and related mechanism[J].Acta agronomica sinica,2003,29(4):610-614(in Chinese with English abstract). [百度学术] 

45

王建寰,解植彩,王强,等.不同程度盐胁迫下甘草叶片超微结构对外源硅的响应[J].时珍国医国药,2019,30(6):1464-1468.WANG J H,XIE Z C,WANG Q,et al.Response of ultrastructure in leaves of Glycyrrhiza uralensis under different levels of salinity[J].Lishizhen medicine and materia medica research,2019,30(6):1464-1468(in Chinese with English abstract). [百度学术] 

46

闫国超,樊小平,谭礼,等.盐胁迫下添加外源硅提高水稻抗氧化酶活性与钠钾平衡相关基因表达[J].植物营养与肥料学报,2020,26(11):1935-1943.YAN G C,FAN X P,TAN L,et al.Exogenous silicon effectively enhances salt stress resistance of rice by upregulating antioxidant enzymes activities and expression of genes related to Na/K homeostasis[J].Journal of plant nutrition and fertilizers,2020,26(11):1935-1943(in Chinese with English abstract). [百度学术] 

47

ALI M,AFZAL S,PARVEEN A,et al.Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress[J].Plant physiology and biochemistry,2021,158:208-218. [百度学术] 

48

XIE Z M,SONG R,SHAO H B,et al.Silicon improves maize photosynthesis in saline-alkaline soils[J/OL].The scientific world journal,2015,2015:245072[2022-05-09].http://dx.doi.org/10.1155/2015/245072. [百度学术] 

49

AL-HUQAIL A A,ALQARAWI A A,HASHEM A,et al.Silicon supplementation modulates antioxidant system and osmolyte accumulation to balance salt stress in Acacia gerrardii Benth[J].Saudi journal of biological sciences,2019,26(7):1856-1864. [百度学术] 

50

王会方,於朝广,王涛,等.硅缓解植物重金属毒害机理的研究进展[J].云南农业大学学报(自然科学版),2016,31(3):528-535.WANG H F,YU C G,WANG T,et al.The research progresses on mitigative mechanism of silicon on heavy metal toxicity in plant[J].Journal of Yunnan Agricultural University (natural science edition),2016,31(3):528-535(in Chinese with English abstract). [百度学术] 

51

王怡璇,刘杰,唐云舒,等.硅对水稻镉转运的抑制效应研究[J].生态环境学报,2016,25(11):1822-1827.WANG Y X,LIU J,TANG Y S,et al.Inhibitory effect of silicon on cadmium accumulation and transportation in rice[J].Ecology and environmental sciences,2016,25(11):1822-1827(in Chinese with English abstract). [百度学术] 

52

彭华,田发祥,魏维,等.不同生育期施用硅肥对水稻吸收积累镉硅的影响[J].农业环境科学学报,2017,36(6):1027-1033.PENG H,TIAN F X,WEI W,et al.Effects of silicon fertilizer application on the cadmium and silicon content of rice at different growth stages[J].Journal of agro-environment science,2017,36(6):1027-1033(in Chinese with English abstract). [百度学术] 

53

WANG S H,WANG F Y,GAO S C.Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings[J].Environmental science and pollution research international,2015,22(4):2837-2845. [百度学术] 

54

张翠翠,常介田,高素玲,等.硅处理对镉锌胁迫下水稻产量及植株生理特性的影响[J].核农学报,2012,26(6):936-941.ZHANG C C,CHANG J T,GAO S L,et al.Effects of silicon on yield and physiological characteristics of rice plants under cadmium and zinc stress[J].Journal of nuclear agricultural sciences,2012,26(6):936-941(in Chinese with English abstract). [百度学术] 

55

MA J F,TAMAI K,YAMAJI N,et al.A silicon transporter in rice[J].Nature,2006,440(7084):688-691. [百度学术] 

56

MA J F,YAMAJI N,MITANI N,et al.An efflux transporter of silicon in rice[J].Nature,2007,448(7150):209-212. [百度学术] 

57

史高玲,周东美,余向阳,等.水稻和小麦累积镉和砷的机制与阻控对策[J].江苏农业学报,2021,37(5):1333-1343.SHI G L,ZHOU D M,YU X Y,et al.Mechanisms of cadmium and arsenic accumulation in rice and wheat and related mitigation strategies[J].Jiangsu journal of agricultural sciences,2021,37(5):1333-1343(in Chinese with English abstract). [百度学术] 

58

KIM Y H,KHAN A L,KIM D H,et al.Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases,Oryza sativa low silicon genes,and endogenous phytohormones[J/OL].BMC plant biology,2014,14:13[2022⁃05⁃09].https://doi.org/10.1186/1471-2229-14-13. [百度学术] 

59

佘恒志,聂蛟,李英双,等.施硅量对甜荞倒伏及产量的影响[J].中国农业科学,2018,51(14):2664-2674.SHE H Z,NIE J,LI Y S,et al.Effects of silicon application rate on common buckwheat lodging and yield[J].Scientia agricultura sinica,2018,51(14):2664-2674(in Chinese with English abstract). [百度学术] 

60

王怀鹏,张翼飞,杨克军,等.硅肥不同喷施浓度对玉米抗倒伏性能及产量构成的调控效应[J].玉米科学,2020,28(3):111-118.WANG H P,ZHANG Y F,YANG K J,et al.Regulating effects of different silicon fertilizer concentrations for foliar application on maize lodging resistance and yield components[J].Journal of maize sciences,2020,28(3):111-118(in Chinese with English abstract). [百度学术] 

61

DORAIRAJ D,ISMAIL M R,SINNIAH U R,et al.Influence of silicon on growth,yield,and lodging resistance of MR219,a lowland rice of Malaysia[J].Journal of plant nutrition,2017,40(8):1111-1124. [百度学术] 

62

刘红芳,宋阿琳,范分良,等.高供氮水平下不同硅肥对水稻茎秆特征的影响[J].植物营养与肥料学报,2018,24(3):758-768.LIU H F,SONG A L,FAN F L,et al.Characteristics of rice stem in response to different silicon fertilizers under high nitrogen supply level[J].Journal of plant nutrition and fertilizers,2018,24(3):758-768(in Chinese with English abstract) [百度学术] 

63

吴晨阳.高温胁迫下外源硅对杂交水稻结实、生理影响及施用技术研究[D].荆州:长江大学,2013.WU C Y.Effects of exogenous silicon on seed fertility and heat-stress physiology of hybrid rice under heat stress and its application[D].Jingzhou:Yangtze University,2013(in Chinese with English abstract). [百度学术] 

64

吴晨阳,姚仪敏,邵平,等.外源硅减轻高温引起的杂交水稻结实降低[J].中国水稻科学,2014,28(1):71-77.WU C Y,YAO Y M,SHAO P,et al.Exogenous silicon alleviates spikelet fertility reduction of hybrid rice induced by high temperature under field conditions[J].Chinese journal of rice science,2014,28(1):71-77(in Chinese with English abstract). [百度学术] 

65

李文彬,王贺,张福锁.高温胁迫条件下硅对水稻花药开裂及授粉量的影响[J].作物学报,2005,31(1):134-136.LI W B,WANG H,ZHANG F S.Effects of silicon on anther dehiscence and pollen shedding in rice under high temperature stress[J].Acta agronomica sinica,2005,31(1):134-136(in Chinese with English abstract). [百度学术] 

66

陈海燕.外源硅对低温胁迫下苗期水稻生理生化特性的影响[D].哈尔滨:东北农业大学,2018.CHEN H Y.Effects of exogenous silicon on physiological and biochemical characteristics of rice under low temperature stress at seedling stage[D].Harbin:Northeast Agricultural University,2018(in Chinese with English abstract). [百度学术]