摘要
为揭示红壤旱地种植模式对土壤有机碳库组分及碳库管理指数的影响差异,以有效反映种植模式与土壤质量的关系,以紫云英-玉米为对照(CK),设置马铃薯-玉米||大豆、“三花”混播(紫云英×油菜×肥田萝卜)-玉米||花生(TMP)、蚕豆-玉米||甘薯(BMS)、油菜-玉米||大豆(RMS)5种以玉米为主体的种植模式,分析了第1、2季收获后土壤有机碳及碳库管理指数的变化。结果显示:第2季间作玉米收获后,与CM处理(CK)相比,PMS、TMP、BMS、RMS的活性有机碳分别提高53.67%、67.89%、11.01%、57.80%;PMS、TMP、RMS处理的碳库活度、碳库活度指数与对照相比分别显著提高了52.63%~89.47%和53.49%~93.80%(P<0.05),土壤碳库管理指数显著高于对照59.24%、60.71%、80.91%(P<0.05)。土壤碳库管理指数与活性有机碳含量呈极显著正相关(P<0.01)。玉米间作产量均高于单作,且不同种植模式经济产量都高于对照。综合分析认为,红壤旱地以玉米为主体的不同种植模式有利于提高活性有机碳含量及碳素有效率、土壤碳库管理指数,也有利于提高玉米产量;马铃薯-玉米||大豆处理经济产量最高,三花-玉米||花生处理最有利于提高碳库管理指数,油菜-玉米||大豆处理次之。
红壤是我国主要土壤类型之一,我国南方旱地主要以红壤旱地为主,南方红壤区水、光、热资源丰富,自然条件优越,生产潜力巨大,是区域经济(粮、经、饲、菜)农业重要资源、重要生产基地。但由于红壤旱地限制因子多,加上耕作管理措施不当进而导致农田环境恶化,效益不
试验于2020年10月至2021年10月在江西农业大学科技园(28°76′N,115°84′E)进行,该处地势平坦,属亚热带季风气候,光热资源充足,年均降水量为2 223.2 mm,年均气温16.5 ℃。试验初始土壤性状:pH 4.48,全氮1.29 g/kg,全磷1.08 g/kg,全钾53.40 g/kg,有效磷62.27 mg/kg,速效钾96.75 mg/kg,有机质26.03 g/kg,碱解氮96.49 mg/kg。
本研究采用随机区组设计,共设计5个处理,分别是紫云英(Astragalus sinicus L.)-玉米(Zea mays L.)(CM)为对照(CK)、马铃薯(Solanum tuberosum L.)-玉米||大豆(Glycine max (Linn.) Merr.)(PMS)、“三花”混播(紫云英×油菜×肥田萝卜(Raphanus sativus L.))-玉米||花生(Arachis hypogaea Linn.)(TMP)、蚕豆(Vicia faba L.)-玉米||甘薯(Dioscorea esculenta (Lour.)Burkill)(BMS)、油菜(Brassica campestris L.)-玉米||大豆(RMS)。每处理设置3次重复,共15个小区,小区长6 m,宽5.5 m,小区面积33.0
于2020年10月26日播种紫云英和“三花”,2021年3月31日盛花期进行翻压。2020年10月27日播种油菜,2021年4月26日收获。2020年11月6日播种蚕豆,2021年4月23日收获。2020年12月8日播种马铃薯,2021年4月19日收获。2021年5月5日同时播种玉米、大豆、花生和甘薯,2021年玉米和大豆于7月29日收获,花生于8月30日收获,甘薯于10月7日收获。第1、2季作物基肥:复合肥750 kg/h
处理 Treatment | 作物 Crop | 施肥量 Fertilizer application rate |
---|---|---|
CM(CK) | 紫云英 Chinese milk vetch |
钙镁磷肥45 Calcium and magnesium phosphate fertilizer 45 |
玉米Maize | N 190、P 86、K 165 | |
PMS | 马铃薯Potato | N 102、P68、K 155 |
玉米Maize | N 190、P 86、K 165 | |
大豆Soybean | ||
TMP |
“三花”混播 “Three flowers” mixed sowing |
钙镁磷肥45 Calcium and magnesium phosphate fertilizer 45 |
玉米 Maize | N 190、P 86、K 165 | |
花生 Peanut | ||
BMS | 蚕豆 Broad bean | N 102、P 68、K 155 |
玉米 Maize | N 190、P 86、K 165 | |
甘薯 Sweet potato | ||
RMS | 油菜 Rape | N 102、P 68、K 155 |
玉米 Maize | N 190、P 86、K 165 | |
大豆 Soybean |
1)作物产量测定。各小区实打实收,测定各作物产量。
2)土壤样品采集与测定。在第1、2季作物收获时,每个小区采用5点取样法,在单、间作植株根际周围钻土,取0~20 cm耕层土,混合均匀,用于测定各指标。土壤有机碳 (total organic carbo,TOC)采用重铬酸钾外加热法测定,土壤活性有机碳(active organic carbon,AOC)采用高锰酸钾氧化法测
由
采样时间 Sampling time | 处理 Treatment | 总有机碳 Total organic carbon | 活性有机碳 Active organiccarbon | 可溶性有机碳 Dissolved organic carbon | 微生物量碳 Microbial biomass carbon | 易氧化有机碳Readily oxidizable organic carbon |
---|---|---|---|---|---|---|
第1季收获后 After the first harvest | CM(CK) | 14.17±1.06a | 2.48±0.07b | 0.33±0.02a | 0.67±0.02a | 1.94±0.16a |
PMS | 15.94±1.74a | 2.52±0.12ab | 0.27±0.01ab | 0.58±0.02a | 2.13±0.17a | |
TMP | 14.90±0.19a | 2.68±0.19ab | 0.28±0.01ab | 0.58±0.03a | 1.96±0.21a | |
BMS | 15.49±1.49a | 2.90±0.11a | 0.25±0.02b | 0.60±0.07a | 1.78±0.20a | |
RMS | 15.89±0.44a | 2.48±0.10b | 0.28±0.04ab | 0.56±0.04a | 2.14±0.23a | |
第2季收获后 After the second harvest | CM(CK) | 14.73±0.53a | 2.18±0.18ab | 0.31±0.04a | 0.48±0.03ab | 2.05±0.02a |
PMS | 14.34±1.27a | 3.35±0.18a | 0.32±0.01a | 0.37±0.02b | 1.81±0.08b | |
TMP | 13.80±0.71a | 3.66±0.03a | 0.33±0.01a | 0.54±0.08a | 1.89±0.02ab | |
BMS | 12.95±0.57a | 2.42±0.15ab | 0.33±0.01a | 0.41±0.04ab | 1.78±0.05b | |
RMS | 15.40±0.46a | 3.44±0.15a | 0.27±0.03a | 0.46±0.03ab | 1.89±0.08ab |
注: 数据为3次重复平均值,同列不同小写字母表示0.05水平差异显著,下同。Note:The data is the average value of three repetitions. Different lowercase letters in the same column mean that the level of 0.05 is significantly different,the same as below.
由
采样时间 Sampling time | 处理 Treatment | 活性有机碳有效率 Efficiency of activated organic carbon(AOCE) | 可溶性有机碳有效率Efficiency of dissolved organic carbon(DOCE) | 微生物量碳有效率 Efficiency of microbial biomass carbon(MBCE) |
---|---|---|---|---|
第1季收获后 After the first harvest | CM(CK) | 17.87±1.67a | 4.77±0.36a | 2.36±0.17a |
PMS | 16.27±2.24a | 3.75±0.41a | 1.72±0.13b | |
TMP | 18.00±1.50a | 3.88±0.17a | 1.87±0.12ab | |
BMS | 19.15±2.13a | 4.03±0.78a | 1.62±0.16b | |
RMS | 15.56±0.23a | 3.50±0.24a | 1.74±0.19b | |
第2季收获后 After the second harvest | CM(CK) | 15.79±1.55d | 1.88±0.24ab | 3.31±0.33ab |
PMS | 23.61±1.65ab | 2.29±0.27ab | 2.62±0.12b | |
TMP | 26.64±1.25a | 2.44±0.20ab | 3.84±0.37a | |
BMS | 18.69±0.69cd | 2.52±0.03a | 3.16±0.38ab | |
RMS | 22.34±1.14bc | 1.76±0.18b | 3.03±0.25ab |
由

图1 第1季收获后不同种植模式下土壤碳库管理指数
Fig.1 Soil carbon pool management index under different planting patterns after the first harvest

图2 第2季收获后不同种植模式下土壤碳库管理指数
Fig.2 Soil carbon pool management index under different planting patterns after the second harvest
由
处理 Treatment | 作物 Crop | 经济产量 Economic output | 秸秆产量 Straw yield | 总生物量 Total biomass |
---|---|---|---|---|
CM(CK) | 紫云英 Chinese milk vetch | - | 2 840.62 | 2 840.62 |
玉米 Maize | 11 170.90 | 10 121.62 | 21 292.52 | |
总计 Total | 11 170.9 | 12 962.24 | 24 133.14 | |
PMS | 马铃薯 Potato | 16 100.00 | 8 040.00 | 24 140 |
玉米 Maize | 13 963.62 | 10 268.67 | 24 232.29 | |
大豆 Soybean | 2 661.76 | 4 320.00 | 6 981.76 | |
总计 Total | 32 725.38 | 22 628.67 | 55 354.05 | |
TMP | “三花”混播 “Three flowers” mixed sowing | - | 8 038.31 | 8 038.31 |
玉米 Maize | 12 392.71 | 11 241.04 | 23 633.75 | |
花生 Peanut | 3 253.52 | 12 746.67 | 16 000.19 | |
总计 Total | 15 646.23 | 32 026.02 | 47 672.25 | |
BMS | 蚕豆 Broad bean | 2 489.16 | 5 092.33 | 7 581.49 |
玉米 Maize | 11 830.29 | 10 719.08 | 22 549.37 | |
甘薯 Sweet potato | 17 226.67 | 7 360.00 | 24 586.67 | |
总计 Total | 31 546.12 | 23 171.41 | 54 717.53 | |
RMS | 油菜 Rape | 2 243.58 | 3 115.26 | 5 358.84 |
玉米 Maize | 12 761.20 | 11 562.55 | 24 323.75 | |
大豆 Soybean | 31 15.44 | 4 320.00 | 7 435.44 | |
总计 Total | 18 120.22 | 18 997.81 | 37 118.03 |
从
指标 Index | 总有机碳TOC | 活性有机碳 AOC | 可溶性有机碳DOC | 微生物量碳MBC | 易氧化有机碳ROC | 活性有机碳有效率 AOCE | 微生物量碳有效率 MBCE | 可溶性有机碳有效率DOCE | 土壤碳库管理指数 CPMI |
---|---|---|---|---|---|---|---|---|---|
总有机碳 TOC | 1 | ||||||||
活性有机碳AOC | 0.266 | 1 | |||||||
可溶性有机碳 DOC | -0.262 | 0.072 | 1 | ||||||
微生物量碳 MBC | 0.248 | 0.183 | -0.475 | 1 | |||||
易氧化有机碳 ROC |
0.51 | -0.158 | -0.124 | 0.072 | 1 | ||||
活性有机碳有效率 AOCE | -0.234 |
0.87 | 0.222 | 0.042 | -0.383 | 1 | |||
微生物量碳有效率 MBCE | -0.230 | 0.050 | -0.339 |
0.88 | -0.180 | 0.148 | 1 | ||
可溶性有机碳有效率 DOCE |
-0.69 | -0.072 |
0.87 | -0.492 | -0.348 | 0.290 | -0.153 | 1 | |
土壤碳库管理指数 CPMI | 0.153 |
0.99 | 0.126 | 0.154 | -0.194 |
0.92 | 0.074 | 0.024 | 1 |
玉米产量 Maize yield | 0.349 | 0.463 | -0.057 | -0.150 | -0.108 | 0.296 | -0.323 | -0.177 | 0.407 |
注: *表示显著相关(P<0.05),**表示极显著相关(P<0.01)。Note:* indicates significant correlation (P < 0.05),** indicates extremely significant correlation (P < 0.01).
旱地施肥因不同作物对养分的需求、吸收而存在差异,导致土壤肥力的高
另外,土壤AOC是能灵敏监测、反映土壤质量的指标。不同作物轮作的残留根系、分泌物等影响SOC的矿化,同时也会使土壤AOC的量发生变
相比土壤总有机碳,以土壤碳库管理指数(CPMI)评价土壤质量变化、土壤肥力状况以及管理措施的影响更全面、客
土壤CPMI与土壤AOC含量、活性有机碳有效率呈极显著相关(P<0.01),活性有机碳组分与碳素有效率呈极显著相关(P<0.01),可见,土壤碳库管理指数与活性有机碳含量的关系更为密切,活性有机碳组分与碳素有效率息息相关。玉米产量与有机碳、活性有机碳及碳素效率、碳库管理指数没有相关关系,这与第2季是间作处理有关,间作中存在其他作物竞争养分。但间作处理产量高于单作玉米产量,这与前人研究结
以玉米为主体的不同种植模式中,土壤有机碳的表现最好的是油菜-玉米||大豆处理,对照次之;土壤活性有机碳和土壤碳库管理指数表现较好的是“三花”-玉米||花生、油菜-玉米||大豆处理;玉米产量均高于对照。马铃薯-玉米||大豆(PMS)、“三花”-玉米||花生(TMP)、油菜-玉米||大豆(RMS) 3种红壤旱地种植模式均有利于提高土壤活性有机碳含量,从而促进碳库活度、碳库活度指数、碳库管理指数的提高。本研究中“三花”-玉米||花生(TMP)处理最有利于积累活性有机碳及微生物量碳,其碳库管理指数也表现最佳。马铃薯-玉米||大豆(PMS)处理的玉米产量最高。土壤活性有机碳与碳库管理指数呈极显著正相关。综上,红壤旱地以玉米为主体的各种植模式有利于提高活性有机碳各组分及碳素有效率、土壤碳库管理指数,也有利于提高玉米产量,其中马铃薯-玉米||大豆处理有利于提高经济产量,“三花”-玉米||花生处理最有利于提高碳库管理指数,油菜-玉米||大豆处理次之。
参考文献References
黄国勤,刘秀英,刘隆旺,等.红壤旱地多熟种植系统的综合效益评价[J].生态学报,2006,26(8):2532-2539.HUANG G Q,LIU X Y,LIU L W,et al.Evaluation on comprehensive benefits of multiple cropping systems on upland red soil[J].Acta ecologica sinica,2006,26(8):2532-2539(in Chinese with English abstract). [百度学术]
武琳,黄尚书,叶川,等.土地利用方式对江西红壤旱地碳库管理指数的影响[J].土壤,2017,49(6):1275-1279.WU L,HUANG S S,YE C,et al.Effects of land uses on carbon pool management index of read soil in Jiangxi[J].Soils,2017,49(6):1275-1279(in Chinese with English abstract). [百度学术]
柳敏,宇万太,姜子绍,等.土壤活性有机碳[J].生态学杂志,2006(11):1412-1417.LIU M,YU W T,JIANG Z S,et al.Soil active organic carbon[J].Chinese journal of ecology,2006(11):1412-1417(in Chinese with English abstract). [百度学术]
HAYNES R J.Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand[J].Soil biology & biochemistry,2000,32(2):211-219. [百度学术]
薛菁芳,高艳梅,汪景宽,等.土壤微生物量碳氮作为土壤肥力指标的探讨[J].土壤通报,2007,38(2):247-250.XUE J F,GAO Y M,WANG J K,et al.Microbial biomass carbon and nitrogen as an indicator for evaluation of soil fertility[J].Chinese journal of soil science,2007,38(2):247-250(in Chinese with English abstract). [百度学术]
李增强,赵炳梓,张佳宝.土地利用和轮作方式对旱地红壤生化性质的影响[J].土壤,2014,46(1):53-59.LI Z Q,ZHAO B Z,ZHANG J B,et al.Effects of land management and crop rotation on upland red soil biochemical properties[J].Soils,2014,46(1):53-59(in Chinese with English abstract). [百度学术]
VIEIRA F,BAYER C,ZANATTA J A,et al.Carbon management index based on physical fractionation of soil organic matter in an Acrisol under long-term no-till cropping systems[J].Soil & tillage research,2007,96(1/2):195-204. [百度学术]
陈先茂,彭春瑞,关贤交,等.红壤旱地不同轮作模式的效益及其对土壤质量的影响[J].江西农业学报,2009,21(6):75-77.CHEN X M,PENG C R,GUAN X J,et al.Benefit of different crop rotation modes and their effects on quality of red-yellow dry soil[J].Acta agriculturae Jiangxi,2009,21(6):75-77(in Chinese with English abstract). [百度学术]
袁嘉欣,杨滨娟,胡启良,等.长江中游稻田种植模式对土壤有机碳及碳库管理指数的影响[J].中国生态农业学报(中英文),2021,29(7):1205-1214.YUAN J X,YANG B J,HU Q L,et al.Effects of paddy field cropping patterns on soil organic carbon and carbon pool management index in the middle reaches of the Yangtze River[J].Chinese journal of eco-agriculture,2021,29(7):1205-1214(in Chinese with English abstract). [百度学术]
韩明政,田佶,姚允聪,等.土壤碳库对苹果幼树间作芳香植物的响应研究[J].北京农学院学报,2020,35(3):28-32.HAN M Z,TIAN J,YAO Y C,et al.Response of soil carbon pool to intercropping aromatic plants in apple treelet[J].Journal of Beijing University of Agriculture,2020,35(3):28-32(in Chinese with English abstract). [百度学术]
张洋,刘月娇,倪九派,等.柑橘/大球盖菇间作对三峡库区紫色土活性有机碳库的影响[J].草业学报,2015,24(5):53-65.ZHANG Y,LIU Y J,NI J P,et al.Effect of Citrus tree/Stropharia mushrooms intercroping on “Purple soil” labile organic carbon in the Three Gorges Reservoir region[J].Acta prataculturae sinica,2015,24(5):53-65(in Chinese with English abstract). [百度学术]
蒲玉琳,叶春,张世熔,等.若尔盖沙化草地不同生态恢复模式土壤活性有机碳及碳库管理指数变化[J].生态学报,2017,37(2):367-377.PU Y L,YE C,ZHANG S R,et al.Effects of different ecological restoration patterns on labile organic carbon and carbon pool management index of desertification grassland soil in zoige[J].Acta ecologica sinica,2017,37(2):367-377(in Chinese with English abstract). [百度学术]
张继光,秦江涛,要文倩,等.长期施肥对红壤旱地土壤活性有机碳和酶活性的影响[J].土壤,2010,42(3):364-371.ZHANG J G,QIN J T,YAO W Q,et al.Effects of long-term fertilization on soil active organic carbon and soil enzyme activities in upland red soils[J].Soils,2010,42(3):364-371(in Chinese with English abstract). [百度学术]
夏文建,王萍,刘秀梅,等.长期施肥对红壤旱地有机碳、氮和磷的影响[J].江西农业学报,2017,29(12):27-31.XIA W J,WANG P,LIU X M,et al.Effects of long-term fertilization on organic carbon,nitrogen and phosphorus in upland red soil[J].Acta agriculturae Jiangxi,2017,29(12):27-31(in Chinese with English abstract). [百度学术]
邰继承.不同土地利用和起源农田土壤有机碳及其组分含量变化[D].南京:南京农业大学,2012.TAI J C.Vartiation of soil organic carbon and the fractions with land use and soil origin of croplands:a case study of Jianghan and Poyang Lake Plains China[D].Nanjing:Nanjing Agricultural University,2012(in Chinese with English abstract). [百度学术]
徐明岗,于荣,王伯仁.长期不同施肥下红壤活性有机质与碳库管理指数变化[J].土壤学报,2006,43(5):17-23.XU M G,YU R,WANG B R.Labile organic matter and carbon management index in red soil underlong-term fertilization[J].Acta pedologica sinica,2006,43(5):723-729(in Chinese with English abstract). [百度学术]
韩琳,张玉龙,金烁,等.灌溉模式对保护地土壤可溶性有机碳与微生物量碳的影响[J].中国农业科学,2010,43(8):1625-1633.HAN L,ZHANG Y L,JIN S,et al.Effect of different irrigation patterns on soil dissolved organic carbon and microbial biomass carbon in protected field[J].Scientia agricultura sinica,2010,43(8):1625-1633(in Chinese with English abstract). [百度学术]
鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.LU R K.Methods of soil agriculnral chemical ainalysis[M].Beijing:China Agricultural Science and Technology Press,1999 (in Chinese). [百度学术]
BLAIR G.Soil carbon fractions based on their degree of oxidation,and the development of a carbon management index for agricultural system[J].Australian journal of agricultural research,1995,46(7):1459-1466. [百度学术]
曾希柏,李菊梅,徐明岗,等.红壤旱地的肥力现状及施肥和利用方式的影响[J].土壤通报,2006,37(3):434-437.ZENG X B,LI J M,XU M G,et al.Fertility of red upland soil and effects of fertilization and utilization on its fertility[J].Chinese journal of soil science,2006,37(3):434-437(in Chinese with English abstract). [百度学术]
官会林,段庆钟,沈有信.不同轮作方式下高原山地红壤肥力变化特征[J].西南大学学报(自然科学版),2008(5):116-121.GUANG H L,DUAN Q Z,SHEN Y X,et al.Effects of different rotation systems on variation in soil fertility in upland red soil of Yunnan Plateau[J].Journal of Southwest University(natural science edition),2008(5):116-121(in Chinese with English abstract). [百度学术]
戴伊莎,成欣,刘帮艳,等.秸秆和紫云英协同覆盖对西南旱地土壤养分、酶活性及小麦产量的影响[J].土壤通报,2021,52(6):1339-1347.DAI Y S,CHENG X,LIU B Y,et al.Impacts of synergistic mulching of straw and milk vetch on soil nutrients,enzyme activities and wheat yield in upland of Southwest China[J].Chinese journal of soil science,2021,52(6):1339-1347(in Chinese with English abstract). [百度学术]
向蕊,伊文博,赵薇,等.间作对土壤团聚体有机碳储量的影响及其氮调控效应[J].水土保持学报,2019,33(5):303-308.XIANG R,YI W B,ZHAO W,et al.Effects of intercropping on soil aggregate-associated organic carbon storage and nitrogen regulation[J].Journal of soil and water conservation,2019,33(5):303-308(in Chinese with English abstract). [百度学术]
孙涛,冯晓敏,赵财,等.西北绿洲区间作模式对土壤团聚体组成及其有机碳含量的影响[J].农业资源与环境学报,2021,38(5):874-881.SUN T,FENG X M,ZHAO C,et al.Effects of intercropping regimes on soil aggregate composition and their organic carbon content in an oasis area of northwest China[J].Journal of agricultural resources and environment,2021,38(5):874-881(in Chinese with English abstract). [百度学术]
DIJKSTRA F A,HOBBIE S E,REICH P B,et al.Divergent effects of elevated CO2,N fertilization,and plant diversity on soil C and N dynamics in a grassland field experiment[J].Plant & soil,2005,272(1):41-52. [百度学术]
HAO Y,LAL R,OWENS L B,et al.Effect of cropland management and slope position on soil organic carbon pool at the North Appalachian Experimental Watersheds[J].Soil and tillage research,2002,68(2):133-142. [百度学术]
张春霞,郝明德,魏孝荣,等.不同农田生态系统土壤微生物生物量碳的变化研究[J].中国生态农业学报,2006,14(1):81-83.ZHANG C X,HAO M D,WEI X R,et al.Change of soil microbial biomass carbon in different agroecosystems[J].Chinese journal of eco-agriculture,2006,14(1):81-83(in Chinese with English abstract). [百度学术]
PATRA D D,CHAND S,ANWAR M.Seasonal changes in microbial biomass in soils cropped with palmarosa (Cymbopogon martinii L.) and Japanese mint (Mentha arvensis L.) in subtropical India[J].Biology & fertility of soils,1995,19(2/3):193-196. [百度学术]
JENKINSON D S,RAYNER J H.The turnover of soil organic matter in some of the rothamsted classical experiments[J].Soil science,2006,123(5):298-305. [百度学术]
BLAIR N,CROCKER G J.Crop rotation effects on soil carbon and physical fertility of two Australian soils[J].Soil research,2000,38(1):71-84. [百度学术]
张鹏,钟川,周泉,等.不同冬种模式对稻田土壤碳库管理指数的影响[J].中国生态农业学报(中英文),2019,27(8):1163-1171.ZHANG P,ZHONG C,ZHOU Q,et al.Effects of different winter planting patterns on carbon management index of paddy field[J].Chinese journal of eco-agriculture,2019,27(8):1163-1171(in Chinese with English abstract). [百度学术]
张向前,黄国勤,卞新民,等.间作对玉米品质、产量及土壤微生物数量和酶活性的影响[J].生态学报,2012,32(22):7082-7090.ZHANG X Q,HUNAG G Q,BIAN X M,et al.Effects of intercropping on quality and yield of maize grain,microorganism quantity,and enzyme activities in soils[J].Acta ecologica sinica,2012,32(22):7082-7090(in Chinese with English abstract). [百度学术]