摘要
为探究长江中游稻田不同种植模式的综合效益,筛选适合长江中游地区利用的高效种植模式,选取紫云英-早稻-晚稻(CK,CRR)、紫云英-早稻-甘薯||晚大豆(CRI)、油菜-早稻-晚稻(RRR)、油菜-早稻-甘薯||晚大豆(RRI)和马铃薯-早稻-晚稻(PRR) 5种长江中游典型稻田种植模式,通过2018年9月至2020年12月连续的田间试验,比较长江中游典型种植模式的资源利用率和综合效益,结果显示:2 a间,各处理的年总光能利用率均高于对照处理,除2020年油菜-早稻-晚稻外,各处理的年总光能利用率显著高出对照处理10.98%~35.37%和22.22%~50.00%(P<0.05)。2 a间,油菜-早稻-甘薯||晚大豆的周年光能生产效率和年总光能利用率较高,其次是紫云英-早稻-甘薯||晚大豆。2 a间,除CRI外,其余3个处理的周年积温生产效率均显著高出对照处理8.28%~25.44%(2019年)和21.09%~26.78%(2020年)(P<0.05)。冬种紫云英处理(CRR、CRI)的年有效积温利用率均较高,处理CRI和处理CRR(紫云英-早稻-晚稻)表现较好,提高了积温利用率。连续2 a均是处理CRI的综合效益加权关联度最大,分别为0.75和0.81,综合效益最优。在综合考虑产量、温室气体排放、土壤质量、资源利用效率和综合效益的情况下,紫云英-早稻-甘薯||晚大豆模式表现较好。
在农业生产中,充分合理地利用光、温、水、土等资源,是农业可持续发展的重要前提和保障。但近年来长江中游普遍存在种植制度单一,光、温、水资源利用率不足,过量施用化学肥料等一系列问题,严重影响了该区域的粮食生产结构和农业生态环境。发展多熟种植可以在时间和空间上高效集约化利用光、温、水、土等资源,可以获得更高的资源利用
试验于2018年9月至2020年12月,在江西农业大学科技园水稻试验田(28°46′N、115°55′E)进行。试验地属于亚热带季风性湿润气候,雨热同期、光照充足。年均太阳总辐射量为 6 330.25 MJ/

图1 试验期间日平均气温与降水量变化
Fig.1 Daily mean temperature and precipitation changes during the test period
根据试验要求,设5个处理,每个处理3次重复,随机区组排列,共15个小区。以“紫云英-早稻-晚稻”为对照,另设置4个不同种植模式,每个试验小区面积为33
处理 Treatments | 作物 Crops | 2019 | 2020 | ||
---|---|---|---|---|---|
鲜质量 Fresh weight | 干质量 Dry weight | 鲜质量 Fresh weight | 干质量 Dry weight | ||
CRR(CK) | 紫云英 Chinese milk vetch | 31 527.9 | 6 107.53 | 33 528.87 | 6 405.92 |
CRI | 紫云英 Chinese milk vetch | 34 651.37 | 6 583.76 | 36 690.28 | 6 812.34 |
RRR | 油菜 Rapeseed | 20 611.89 | 5 173.58 | 23 148.61 | 5 902.90 |
RRI | 油菜 Rapeseed | 23 169.33 | 5 757.57 | 24 327.47 | 6 348.51 |
PRR | 马铃薯 Potato | 18 435.17 | 3 746.03 | 20 314.50 | 4 022.27 |
作物 Crop | 品种 Variety | 种植日期-收获日期 Cropping date- Harvest date | 种植方式 Cropping pattern | 施肥量/( kg/h Fertilizing amount |
---|---|---|---|---|
紫云英Chinese milk vetch | 余江大叶籽Yujiangdayezi |
2018-09-30-2019-04-07 2019-09-30-2020-04-07 | 套播、撒播Interplanting and sowing |
钙镁磷肥45 Calcium-magnesia phosphate fertilizer 45 |
油菜 Rapeseed | 德油558Deyou 558 |
2018-11-08-2019-04-07 2019-11-06-2020-04-07 | 撒播 Sowing | N 63.75、P2O5 45、K2O 225 |
马铃薯 Potato |
东农303 Dongnong 303 |
2018-11-26-2019-04-10 2019-11-28-2020-04-10 | 条播 Sowing in line | N 63.75、P2O5 45、K2O 225 |
大豆 Soybean |
奎鲜二号 Kuixian No.2 |
2019-08-01-2019-10-25 2020-08-18-2020-11-10 | 穴播 Hole sowing | N 150、P2O5 150、K2O 375 |
甘薯 Sweet potato | 广薯87Guangshu 7 |
2019-08-01-2019-10-31 2020-08-18-2020-11-17 | 条播 Sowing in line | N 80、P2O5 375、K2O 80 |
早稻 Early rice |
中嘉早17 Zhongjiazao 17 |
2019-04-26-2019-07-24 2020-05-04-2020-07-30 | 移栽 Transplanting | N 180、P2O5 90、K2O 120 |
晚稻 Late rice | 天优华占Tianyouhuazhan |
2019-08-03-2019-10-30 2020-08-02-2020-12-03 | 移栽 Transplanting | N 180、P2O5 90、K2O 120 |
在作物成熟期每小区按平均茎蘖法随机取5穴(小区边行不取),分成叶片、茎鞘和穗(抽穗后)等部分装袋,于105 ℃条件下杀青30 min,再经80 ℃烘干至恒质量,用于测定各处理植株干物质积累与分配情况。
记录不同作物的播种(移栽)、收获或翻压时间(计算生育期),统计不同作物季的光、温资源量,其中光以总辐射量计算,温度以作物有效积温计算。以最早播种的冬季作物开始到次年晚稻收获为1周年(即本试验的2 a时间为2018-09-30-2019-10-30和2019-09-30-2020-12-03),试验地2 a的气象资料来自中国气象数据网。具体的光、温及土地资源利用率的计算公式参照文献[
统计不同作物生产过程中的投入产出情况,计算不同种植模式的投入产出指标。采用灰色关联度
1)各种植模式光能生产效率及周年利用率。 根据各作物单位干物质热
年份 Year | 处理 Treatment | 太阳辐射/(MJ/ Solar radiation | 光能生产效率/(g/MJ) Solar radiation production efficiency | 年总光能利用率/% Use efficiency of annual solar radiation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
冬作季 Winter crop season | 早稻季 Early riceseason | 晚稻季 Late riceseason | 周年Rotation cycle | 冬作季 Winter crop season | 早稻季 Early rice season | 晚稻季 Late riceseason | 周年Rotation cycle | |||
2019 | CRR(CK) | 2 272.8 | 1 667.2 | 1 796.8 | 5 736.8 | 0.27±0.02d | 0.86±0.03ab | 1.06±0.01b | 0.69±0.02c | 0.82±0.02d |
CRI | 2 272.8 | 1 667.2 | 1 757.5 | 5 776.1 | 0.29±0.01cd | 0.80±0.03bc | 1.47±0.09a | 0.81±0.02b | 0.99±0.03b | |
RRR | 1 655.3 | 1 667.2 | 1 796.8 | 5 119.3 | 0.43±0.02b | 0.75±0.02bc | 1.11±0.02b | 0.78±0.01b | 0.98±0.01b | |
RRI | 1 655.3 | 1 667.2 | 1 757.5 | 5 080.1 | 0.49±0.01a | 0.69±0.07c | 1.37±0.07a | 0.86±0.02a | 1.11±0.02a | |
PRR | 1 515.8 | 1 667.2 | 1 796.8 | 4 979.8 | 0.31±0.01c | 0.93±0.02a | 1.15±0.05b | 0.82±0.02ab | 0.91±0.02c | |
2020 | CRR(CK) | 2 439.3 | 1 521.9 | 1 950.6 | 5 911.8 | 0.26±0.01d | 0.93±0.04a | 0.84±0.02b | 0.63±0.01d | 0.72±0.02c |
CRI | 2 439.3 | 1 521.9 | 1 598.0 | 5 559.2 | 0.28±0.01d | 0.99±0.07a | 1.41±0.05a | 0.80±0.03b | 0.92±0.04b | |
RRR | 1 818.6 | 1 521.9 | 1 950.6 | 5 291.1 | 0.44±0.01b | 0.85±0.04a | 0.82±0.02b | 0.70±0.01cd | 0.88±0.01b | |
RRI | 1 818.6 | 1 521.9 | 1 598.0 | 4 938.5 | 0.49±0.00a | 0.94±0.08a | 1.31±0.06a | 0.89±0.04a | 1.08±0.05a | |
PRR | 1 626.9 | 1 521.9 | 1 950.6 | 5 099.4 | 0.32±0.01c | 0.95±0.05a | 0.90±0.03b | 0.75±0.02bc | 0.82±0.03bc |
注: 数据为3个重复的平均值±标准差;同列不同的字母分别表示差异达5%显著水平。下同。Note:Data is average ± SD of 3 replicates.The different letter in same column indicated significantly at 5% levels.The same as follows.
2)积温生产效率及周年利用率。
年份 Year | 处理 Treatment | 有效积温/℃ GDD | ≥10 ℃有效积温生产效率/(kg/(h GDD production efficiency | 年有效积温利用率/% Use efficiency of annual GDD | ||||||
---|---|---|---|---|---|---|---|---|---|---|
冬作季 Winter crop season | 早稻季 Early rice season | 晚稻季 Late rice season | 周年Rotation cycle | 冬作季 Winter crop season | 早稻季 Early rice season | 晚稻季 Late rice season | 周年Rotationcycle | |||
2019 | CRR(CK) | 628.2 | 1 371.2 | 1 498.6 | 3 498.0 | / | 5.51±0.18ab | 6.79±0.09ab | 5.07±0.10c | 86.79 |
CRI | 628.2 | 1 371.2 | 1 513.7 | 3 531.1 | / | 5.03±0.17bc | 6.48±0.40ab | 4.73±0.12c | 87.61 | |
RRR | 264.9 | 1 371.2 | 1 498.6 | 3 134.7 | 7.86±0.04b | 4.75±0.11bc | 7.11±0.09a | 5.73±0.07b | 77.78 | |
RRI | 264.9 | 1 371.2 | 1 513.7 | 3 149.8 | 9.93±0.15a | 4.33±0.46c | 5.94±0.32b | 5.49±0.14b | 78.15 | |
PRR | 244.7 | 1 371.2 | 1 498.6 | 3 114.5 | 3.96±0.08c | 5.90±0.14a | 7.18±0.28a | 6.36±0.13a | 77.28 | |
2020 | CRR(CK) | 818.6 | 1 500.5 | 1 513.5 | 3 832.6 | / | 4.98±0.22a | 5.75±0.14b | 4.22±0.11b | 92.88 |
CRI | 818.6 | 1 500.5 | 1 082.9 | 3 402.0 | / | 5.22±0.33a | 7.65±0.34a | 4.74±0.23ab | 82.45 | |
RRR | 387.0 | 1 500.5 | 1 513.5 | 3 401.0 | 2.60±0.03c | 4.45±0.21a | 5.66±0.20b | 5.11±0.08a | 82.42 | |
RRI | 387.0 | 1500.5 | 1 082.9 | 2 970.4 | 6.70±0.10a | 4.91±0.41a | 7.28±0.34a | 5.35±0.41a | 71.99 | |
PRR | 288.5 | 1 500.5 | 513.5 | 3 302.5 | 3.90±0.15b | 5.04±0.23a | 5.89±0.16b | 5.33±0.15a | 80.04 |
从年有效积温利用率来看,冬种紫云英处理(CRR、CRI)的年有效积温利用率均较高,其次是冬种油菜处理(RRR、RRI)。原因主要是紫云英在晚稻成熟期时与其套播,加之紫云英生育期较长,能利用的有效积温高,因此,处理CRI和处理CRR表现较好,提高了积温利用率。
3)土地利用率。由
年份 Year | 处理 Treatment | 生育期/d Growth period | 土地利用率/% Land use efficiency | |||
---|---|---|---|---|---|---|
冬作季 Winter crop season | 早稻季 Early rice season | 晚稻季 Late rice season | 周年Rotation cycle | |||
2019 | CRR(CK) | 190 | 90 | 89 | 369 | 101.10 |
CRI | 190 | 90 | 92 | 372 | 101.92 | |
RRR | 151 | 90 | 89 | 330 | 90.41 | |
RRI | 151 | 90 | 92 | 333 | 91.23 | |
PRR | 134 | 90 | 89 | 315 | 86.30 | |
2020 | CRR(CK) | 190 | 88 | 124 | 402 | 110.14 |
CRI | 190 | 88 | 92 | 370 | 101.37 | |
RRR | 153 | 88 | 124 | 365 | 100.00 | |
RRI | 153 | 88 | 92 | 333 | 91.23 | |
PRR | 134 | 88 | 124 | 346 | 94.79 |
为分析比较稻田不同种植模式的综合效益,选取13个指标(
年份 Year | 效益评价指标 Benefits evaluation indexes | 模式 Pattern | ||||
---|---|---|---|---|---|---|
CRR(CK) | CRI | RRR | RRI | PRR | ||
2019 |
I1经济总产值/(元/h | 46 114.28 | 53 677.79 | 44 622.38 | 49 111.28 | 49 010.81 |
I2总成本/(元/h | 22 167.28 | 27 697.64 | 21 897.28 | 28 124.94 | 22 057.28 | |
I3纯收入/(元/h | 24 446.20 | 25 888.00 | 23 164.30 | 21 531.49 | 27 392.73 | |
I4经济产投比Output input ratio | 2.13 | 1.93 | 2.08 | 1.78 | 2.27 | |
I5农业费用盈利率/% Profit rate of agricultural expenses | 615.16 | 716.06 | 595.26 | 655.14 | 653.80 | |
I6光能利用率/% Light energy utilization | 0.82 | 0.99 | 0.98 | 1.11 | 0.91 | |
I7有效积温利用率/% Effective accumulated temperature utilization | 86.79 | 87.61 | 77.78 | 78.15 | 77.28 | |
I8有机质增加比/% Organic matter increase | 1.13 | 14.86 | 13.30 | 22.34 | -0.45 | |
I9温室气体全球增温潜势/(kg/h Global warming potential of greenhouse gases | 12 609.21 | 3 345.46 | 8 503.73 | 2 314.04 | 5 687.17 | |
I10耕地资源生产率/% Cultivated land resource productivity | 115.15 | 134.04 | 111.43 | 122.64 | 122.39 | |
I11粮食产量/(kg/h | 17 736.26 | 20 645.30 | 17 162.45 | 18 888.95 | 18 850.31 | |
I12劳动净产值率/% Labor net output rate | 326.11 | 345.35 | 309.01 | 287.23 | 365.42 | |
I13粮食安全指数Food security index | 2.38 | 2.93 | 2.27 | 2.60 | 2.59 | |
2020 |
I1经济总产值/(元/h | 41 071.57 | 50 442.31 | 38 733.93 | 48 062.72 | 41 874.82 |
I2总成本/(元/h | 21 668.08 | 27 789.79 | 21 458.08 | 27 579.79 | 21 618.08 | |
I3纯收入/(元/h | 19 403.49 | 22 652.52 | 17 275.85 | 20 482.93 | 2 256.74 | |
I4经济产投比 Output input ratio | 1.90 | 1.82 | 1.81 | 1.74 | 1.94 | |
I5农业费用盈利率/% Profit rate of agricultural expenses | 547.89 | 672.90 | 516.71 | 641.16 | 558.61 | |
I6光能利用率/% Light energy utilization | 0.72 | 0.92 | 0.88 | 1.08 | 0.82 | |
I7有效积温利用率/% Effective accumulated temperature utilization | 92.88 | 82.45 | 82.42 | 71.99 | 80.04 | |
I8有机质增加比/% Organic matter increase | 16.04 | 31.13 | 18.28 | 24.54 | 18.77 | |
I9温室气体全球增温潜势/(kg/h Global warming potential of greenhouse gases | 13 356.48 | 6 687.17 | 9 935.31 | 3 530.34 | 7 258.85 | |
I10耕地资源生产率/% Cultivated land resource productivity | 104.98 | 128.94 | 99.01 | 122.85 | 107.04 | |
I11粮食产量/(kg/h | 16 169.91 | 19 859.18 | 15 249.58 | 18 922.33 | 16 486.15 | |
I12劳动净产值率/% Labor net output rate | 258.84 | 302.18 | 230.46 | 273.24 | 270.22 | |
I13粮食安全指数Food security index | 2.08 | 2.78 | 1.90 | 2.60 | 2.14 |
注: 经济总产值为各处理的农作物产值相加值,不包含绿肥的经济产值。资金净产值率=劳动消耗/经济总产值;耕地资源生产率=某种植系统的作物单位面积产量/该作物单一种植的单位面积平均产量×100%,劳动净产值率=净产值/劳动消耗,单个劳动力价格为150元/d;粮食安全指数=(种植系统单位面积粮食产量-保证我国粮食安全所需耕地资源单位面积平均产量)/保证我国粮食安全所需耕地资源单位面积平均产
由于
年份 Year | 效益评价指标 Benefits evaluation indexes | 模式Pattern | ||||
---|---|---|---|---|---|---|
CRR(CK) | CRI | RRR | RRI | PRR | ||
2019 | I1 | 0.16 | 1.00 | 0.00 | 0.50 | 0.48 |
I2 | 0.04 | 0.93 | 0.00 | 1.00 | 0.03 | |
I3 | 0.50 | 0.74 | 0.28 | 0.00 | 1.00 | |
I4 | 0.71 | 0.31 | 0.61 | 0.00 | 1.00 | |
I5 | 0.71 | 0.31 | 0.61 | 0.00 | 1.00 | |
I6 | 0.00 | 0.59 | 0.55 | 1.00 | 0.31 | |
I7 | 0.92 | 1.00 | 0.05 | 0.08 | 0.00 | |
I8 | 0.07 | 0.67 | 0.60 | 1.00 | 0.00 | |
I9 | 0.00 | 0.90 | 0.40 | 1.00 | 0.67 | |
I10 | 0.16 | 1.00 | 0.00 | 0.50 | 0.48 | |
I11 | 0.16 | 1.00 | 0.00 | 0.50 | 0.48 | |
I12 | 0.50 | 0.74 | 0.28 | 0.00 | 1.00 | |
I13 | 0.16 | 1.00 | 0.00 | 0.50 | 0.48 | |
2020 | I1 | 0.20 | 1.00 | 0.00 | 0.80 | 0.27 |
I2 | 0.03 | 1.00 | 0.00 | 0.97 | 0.03 | |
I3 | 0.40 | 1.00 | 0.00 | 0.60 | 0.55 | |
I4 | 0.79 | 0.37 | 0.32 | 0.00 | 1.00 | |
I5 | 0.79 | 0.37 | 0.32 | 0.00 | 1.00 | |
I6 | 0.00 | 0.56 | 0.44 | 1.00 | 0.28 | |
I7 | 1.00 | 0.50 | 0.50 | 0.00 | 0.39 | |
I8 | 0.00 | 1.00 | 0.15 | 0.56 | 0.18 | |
I9 | 0.00 | 0.68 | 0.35 | 1.00 | 0.62 | |
I10 | 0.20 | 1.00 | 0.00 | 0.80 | 0.27 | |
I11 | 0.20 | 1.00 | 0.00 | 0.80 | 0.27 | |
I12 | 0.40 | 1.00 | 0.00 | 0.60 | 0.55 | |
I13 | 0.20 | 1.00 | 0.00 | 0.80 | 0.27 |
年份 Year | 效益评价指标 Benefits evaluation indexes | 模式Pattern | ||||
---|---|---|---|---|---|---|
CRR(CK) | CRI | RRR | RRI | PRR | ||
2019 | I1 | 0.374 5 | 1.000 0 | 0.333 3 | 0.497 9 | 0.492 4 |
I2 | 0.343 3 | 0.879 3 | 0.333 3 | 1.000 0 | 0.339 1 | |
I3 | 0.498 6 | 0.660 7 | 0.409 4 | 0.333 3 | 1.000 0 | |
I4 | 0.636 5 | 0.420 2 | 0.564 5 | 0.333 3 | 1.000 0 | |
I5 | 0.636 5 | 0.420 2 | 0.564 5 | 0.333 3 | 1.000 0 | |
I6 | 0.333 3 | 0.547 2 | 0.527 3 | 1.000 0 | 0.420 3 | |
I7 | 0.863 0 | 1.000 0 | 0.344 4 | 0.353 2 | 0.333 3 | |
I8 | 0.349 5 | 0.603 7 | 0.557 8 | 1.000 0 | 0.333 3 | |
I9 | 0.333 3 | 0.833 1 | 0.454 0 | 1.000 0 | 0.604 1 | |
I10 | 0.374 5 | 1.000 0 | 0.333 3 | 0.497 9 | 0.492 4 | |
I11 | 0.374 5 | 1.000 0 | 0.333 3 | 0.497 9 | 0.492 4 | |
I12 | 0.498 6 | 0.660 7 | 0.409 4 | 0.333 3 | 1.000 0 | |
I13 | 0.374 5 | 1.000 0 | 0.333 3 | 0.497 9 | 0.492 4 | |
2020 | I1 | 0.3845 | 1.000 0 | 0.333 3 | 0.711 0 | 0.405 9 |
I2 | 0.340 9 | 1.000 0 | 0.333 3 | 0.937 8 | 0.339 0 | |
I3 | 0.452 8 | 1.000 0 | 0.333 3 | 0.553 4 | 0.528 8 | |
I4 | 0.700 5 | 0.443 6 | 0.424 1 | 0.333 3 | 1.000 0 | |
I5 | 0.700 5 | 0.443 6 | 0.424 1 | 0.333 3 | 1.000 0 | |
I6 | 0.333 3 | 0.529 4 | 0.473 7 | 1.000 0 | 0.409 1 | |
I7 | 1.000 0 | 0.500 4 | 0.499 6 | 0.333 3 | 0.448 6 | |
I8 | 0.333 3 | 1.000 0 | 0.370 0 | 0.534 1 | 0.379 1 | |
I9 | 0.333 3 | 0.608 8 | 0.434 1 | 1.000 0 | 0.568 5 | |
I10 | 0.384 5 | 1.000 0 | 0.333 3 | 0.711 0 | 0.405 9 | |
I11 | 0.384 5 | 1.000 0 | 0.333 3 | 0.711 0 | 0.405 9 | |
I12 | 0.452 8 | 1.000 0 | 0.333 3 | 0.553 4 | 0.528 8 | |
I13 | 0.384 5 | 1.000 0 | 0.333 3 | 0.711 0 | 0.405 9 |
年份 Year | 模式 Pattern | 经济效益 Economic benefit | 生态效益 Ecological benefit | 社会效益 Social benefit | 综合效益 Comprehensive benefits | 综合效益排名 Comprehensive benefits rank |
---|---|---|---|---|---|---|
2019 | CRR(CK) | 0.250 3 | 0.135 0 | 0.083 6 | 0.468 9 | 4 |
CRI | 0.334 8 | 0.239 0 | 0.176 3 | 0.750 0 | 1 | |
RRR | 0.221 7 | 0.133 3 | 0.072 0 | 0.427 0 | 5 | |
RRI | 0.249 1 | 0.233 2 | 0.088 1 | 0.570 3 | 3 | |
PRR | 0.386 1 | 0.132 1 | 0.134 0 | 0.652 1 | 2 | |
2020 | CRR(CK) | 0.258 0 | 0.143 1 | 0.081 5 | 0.482 6 | 4 |
CRI | 0.388 3 | 0.217 3 | 0.200 0 | 0.805 7 | 1 | |
RRR | 0.184 9 | 0.126 7 | 0.066 7 | 0.378 3 | 5 | |
RRI | 0.287 2 | 0.216 1 | 0.131 6 | 0.634 9 | 2 | |
PRR | 0.327 6 | 0.133 3 | 0.089 4 | 0.550 3 | 3 |
由
研究表明,多熟种植模式比冬闲单作模式能提高资源利用率,麦稻模式和油稻模式的积温利用率、辐射利用率和土地利用率与冬闲对照模式相比均处于较高水平,其中麦稻模式表现最优,分别达到94.2%、95.5%和86.3
Su
为了更全面客观地评价农田生态系统,反映各种植模式对于农田生态系统的整体效益功
综上所述,2 a内,油菜-早稻-甘薯||晚大豆模式的周年光能生产效率和年总光能利用率较高,其次是紫云英-早稻-甘薯||晚大豆。冬种紫云英处理的年有效积温利用率均较高,紫云英-早稻-甘薯||晚大豆和紫云英-早稻-晚稻模式表现较好,提高了积温利用率。连续2 a均是紫云英-早稻-甘薯||晚大豆模式的综合效益加权关联度最大,分别为0.75和0.81,综合效益最优。在综合考虑产量、温室气体排放、土壤质量、资源利用效率和综合效益的情况下,紫云英-早稻-甘薯||晚大豆模式表现较好,对长江中游地区稻田种植模式的优化具有重要意义。
参考文献 References
陈阜,梁志杰,陈述泉.多熟制的发展前景[J].世界农业,1997(6):18-20.CHEN F,LIANG Z J,CHEN S Q.The development prospect of multiple cropping[J].The world’s agriculture,1997,(6):18-20(in Chinese). [百度学术]
张帆.冬季作物-双季稻轮作模式资源利用效率及经济效益比较研究[J].农业资源与环境学报,2021,38(1):87-95.ZHANG F.Comparative study on resource utilization efficiency and economic benefits of winter crop-double cropping rice rotation system in Hunan Province[J].Journal of agricultural resources and environment,2021,38(1):87-95 (in Chinese with English abstract). [百度学术]
龚松玲,曹培,高珍珍,等.种植模式对南方作物产量及资源利用效率的影响[J].作物杂志,2021(1):68-73.GONG S L,CAO P,GAO Z Z,et al.Effects of cropping patterns on crop yield and resource utilization efficiency in Southern China[J].Crops,2021(1):68-73 (in Chinese with English abstract). [百度学术]
WANG G P,LI Y B,HAN Y C,et al.Resource use efficiency in a cotton-wheat double-cropping system in the Yellow River Valley of China[J].Experimental agriculture,2020,56(3):422-439. [百度学术]
黄国勤.中国耕作学[M].北京:新华出版社,2001.HUANG G Q.Chinese agronomy[M].Beijing:Xinhua Publishing House,2001 (in Chinese). [百度学术]
杨滨娟,黄国勤,陈洪俊,等.稻田复种轮作模式的生态经济效益综合评价[J].中国生态农业学报,2016,24(1):112-120.YANG B J,HUANG G Q,CHEN H J,et al.Comprehensive evaluation of eco-economic benefits of multi-crop rotation in paddy field systems[J].Chinese journal of eco-agriculture,2016,24(1):112-120(in Chinese with English abstract). [百度学术]
李鹏红,吴兵,高玉红,等.覆膜种植模式对旱地胡麻经济效益的影响分析——基于熵权灰色关联耦合的综合评价[J].干旱区资源与环境,2021,35(4):180-188.LI P H,WU B,GAO Y H,et al.Effect of plastic film mulching on economic benefit of oil flax in dryland:comprehensive evaluation based on entropy weight and grey correlation coupling[J].Journal of arid land resources and environment,2021,35(4):180-188(in Chinese with English abstract). [百度学术]
周海波,付江凡,王长松,等.江西省双季稻田三熟制种植模式综合效益评价[J].江苏农业科学,2019,47(4):294-299.ZHOU H B,FU J F,WANG C S,et al.Comprehensive benefit evaluation of triple cropping system in double cropping rice field in Jiangxi Province[J].Jiangsu agricultural sciences,2019,47(4):294-299 (in Chinese). [百度学术]
崔爱花,周丽华,杨滨娟,等.红壤旱地不同复种方式的生态功能评价[J].应用生态学报,2017,28(2):456-464.CUI A H,ZHOU L H,YANG B J,et al.Ecological evaluation of different multiple cropping systems in red soil drylands[J].Chinese journal of applied ecology,2017,28(2):456-464 (in Chinese with English abstract). [百度学术]
古翼瑞.成都平原以水稻为核心的种植模式综合效益分析与评价[D].成都:四川农业大学,2016.GU Y R.The chengdu plain with a core of rice planting pattern comprehensive benefit analysis and evaluation[D].Chengdu:Sichuan Agricultural University,2016 (in Chinese with English abstract). [百度学术]
李淑娅,田少阳,袁国印,等.长江中游不同玉稻种植模式产量及资源利用效率的比较研究[J].作物学报,2015,41(10):1537-1547.LI S Y,TIAN S Y,YUAN G Y,et al.Comparison of yield and resource utilization efficiency among different maize and rice cropping systems in Middle Reaches of Yangtze River[J].Acta agronomica sinica,2015,41(10):1537-1547 (in Chinese with English abstract). [百度学术]
王美云,任天志,赵明,等.双季青贮玉米模式物质生产及资源利用效率研究[J].作物学报,2007,33(8):1316-1323.WANG M Y,REN T Z,ZHAO M,et al.Matter production and resources use efficiency of double-cropping silage maize system[J].Acta agronomica sinica,2007,33(8):1316-1323 (in chinese with english abstract). [百度学术]
侯连涛,江晓东,韩宾,等.不同覆盖处理对冬小麦气体交换参数及水分利用效率的影响[J].农业工程学报,2006,22(9):58-63.HOU L T,JIANG X D,HAN B,et al.Effects of different mulching treatments on the gas exchange parameters and water use efficiency of winter wheat[J].Transactions of the CSAE,2006,22(9):58-63 (in Chinese with English abstract). [百度学术]
骆世明.农业生态学[M].北京:中国农业出版社,2001.LUO S M.Agroecology[M].Beijing:China Agriculture Press,2001 (in Chinese). [百度学术]
邓聚龙.灰色系统基本方法[M].武汉:华中科技大学出版社,2005.DENG J L.Basic method of grey system[M].Wuhan:Huazhong University of Science and Technology Press,2005 (in Chinese). [百度学术]
黄国勤,钟树福,刘隆旺.鄱阳湖旱地耕作制度的模糊综合评判[J].耕作与栽培,1993 (1):7-10.HUANG G Q,ZHONG S F,LIU L W.Fuzzy comprehensive evaluation of dryland farming system in Poyang Lake[J].Cultivation and cultivation,1993 (1):7-10(in Chinese). [百度学术]
张鹏,钟川,周泉,等.不同冬种模式对稻田土壤碳库管理指数的影响[J].中国生态农业学报(中英文),2019,27(8):1163-1171.ZHANG P,ZHONG C,ZHOU Q,et al.Effects of different winter planting patterns on carbon management index of paddy field[J].Chinese journal of eco-agriculture,2019,27(8):1163-1171(in Chinese with English abstract). [百度学术]
黄国勤,熊云明,钱海燕,等.稻田轮作系统的生态学分析[J].土壤学报,2006,43(1):69-78.HUANG G Q,XIONG Y M,QIAN H Y,et al.Ecological analysis of crop rotation systems in paddy field[J].Acta pedologica sinica,2006,43(1):69-78 (in Chinese with English abstract). [百度学术]
于镇超.鄂中北两熟区不同种植模式资源利用效率评价[D].武汉:华中农业大学,2019.YU Z C.Evaluation on resource utilization efficiency of different cropping systems in double cropping area of north central Hubei Province[D].Wuhan:Huazhong Agricultural University,2019(in Chinese with English abstract). [百度学术]
ZHANG H,JING W J,ZHAO B H,et al.Alternative fertilizer and irrigation practices improve rice yield and resource use efficiency by regulating source-sink relationships[J].Field crops research,2021,265:108-124. [百度学术]
SU Z E,LIU Z J,BAI F,et al.Cultivar selection can increase yield potential and resource use efficiency of spring maize to adapt to climate change in Northeast China[J].Journal of integrative agriculture,2021,20(2):371-382. [百度学术]
王兰.红壤旱地以玉米和大豆为主体的多熟种植模式优化研究[D].南昌:江西农业大学,2018.WANG L.Research on optimized mode of multiple cropping pattern with corn and soybean as the subject in red soil dryland[D].Nanchang:Jiangxi Agricultural University,2018 (in Chinese with English abstract). [百度学术]