摘要
为了优化筛选双季稻田绿色高效的复种轮作休耕模式,通过连续2 a的田间试验,研究不同轮作休耕模式对稻田土壤有机碳及其组分的影响。结果显示:“油菜-甘蔗||春大豆→紫云英-早稻-玉米||甘薯”模式2 a 的总生物量高出休耕模式以外的其他处理31.68%~65.91%。2018-2019年,“油菜-甘蔗||春大豆”和“紫云英-春大豆-秋大豆”模式更有利于土壤全碳的积累,复种轮作模式和休耕模式较连作模式更有利于土壤活性有机碳的积累,以“紫云英-早稻-玉米||甘薯”和“油菜-甘蔗||春大豆”模式表现最好。“油菜-甘蔗||春大豆”模式更有利于土壤可溶性有机碳、微生物量碳的积累。2019年“油菜-甘蔗||春大豆”的碳库活度、碳库活度指数和土壤碳库管理指数均达到最大,且分别显著高出其他处理59.46%~84.38%、59.06%~84.47%和52.81%~71.40%(P<0.05),轮作模式更有利于提高碳库活度、碳库活度指数和土壤碳库管理指数,尤其是“紫云英-早稻-玉米||甘薯”和“油菜-甘蔗||春大豆”模式表现较好。在当地土壤肥力条件下,复种轮作模式能提高土壤有机碳及其组分的含量,有利于改善土壤质量,提高土壤肥力,5种模式中“油菜-甘蔗||春大豆→紫云英-早稻-玉米||甘薯”复种轮作模式表现最佳。
耕地是不可再生资源。农村农业部明确提出“坚持用地养地结合,推进耕地质量保护与提升”,要“采用间套轮作、深耕深松、保护性耕作、粮草轮作、秸秆还田、增施有机肥、种植绿肥等多种方式,促进种养结合
试验于2017年9月至2019年11月,在江西省鹰潭市余江区农业科学研究所试验田(28°14′8″N,116°51′22″E)进行,试验地属亚热带季风湿润气候,四季分明,降雨充沛,年降雨量1 788.8 mm,年平均气温17.6 ℃,太阳年辐射总量4 542.7 kJ/
试验设5个处理,其中处理A为连作对照,处理B、C、D进行2 a 复种轮作,处理E为休耕模式,具体试验设计见
处理Treatment | 2017-2018 | 2018-2019 | 备注Note |
---|---|---|---|
A(CK) |
紫云英-早稻-晚稻 Chinese milk vetch-early rice-late rice |
紫云英-早稻-晚稻 Milk vetch-early rice-late rice |
复种连作系统 Multiple cropping continuous systems |
B |
紫云英-春大豆-秋大豆 Chinese milk vetch-spring soybean-autumn soybean |
油菜-甘蔗||春大豆 Rapeseed-sugarcane‖spring soybean |
复种轮作系统 Multiple cropping rotation systems |
C |
紫云英-早稻-玉米||甘薯 Chinese milk vetch-early rice-maize‖sweet potato |
紫云英-春大豆-秋大豆 Milk vetch - spring soybean-autumn soybean |
复种轮作系统 Multiple cropping rotation systems |
D |
油菜-甘蔗||春大豆 Rapeseed-sugarcane‖spring soybean |
紫云英-早稻-玉米||甘薯 Milk vetch-early rice-maize‖sweet potato |
复种轮作系统 Multiple cropping rotation systems |
E | 休耕 Rotation fallow | 休耕 Rotation fallow |
休耕系统 Rotation fallow systems |
注: “-”表示接茬,“‖”表示间作。Note:“-” represents continuous planting; “‖” represents intercropping.
试验作物和品种:紫云英(余江大叶籽),油菜(赣油1号),早稻(中早33),晚稻(黄花占),大豆(沪鲜豆6号),玉米(赣1号),甘蔗(赣紫皮果蔗),甘薯(赣南瓜红薯)。
2018年和2019年早晚稻播期均相同,均采用移栽方式。早稻4月15日移栽,行株距为20 cm×14 cm,7月8日收获;晚稻7月10日移栽,行株距为20 cm×17 cm,11月4日收获;紫云英播种量为22.5 kg/h
肥料种类及用量:作物施肥料为尿素(N 46%)、“施大壮”复合肥(N∶P2O5∶K2O=15%∶15%∶15%)。早、晚稻化肥施肥量相等,水稻氮、钾肥分基肥、蘖肥、穗肥3次撒施,施用比例为基肥∶分蘖肥∶穗肥=4∶3∶3,分蘖肥在移栽后5~7 d施用,穗肥在主茎幼穗长1~2 cm时施用。作物施肥量详见
年份 Year | 处理 Treatment | 作物 Corp | 施肥量 Fertilization amount |
---|---|---|---|
2017- 2018 | A(CK) | 紫云英 Milk vetch | 0 |
早稻 Early rice | 尿素(折合成N) 103.5 ,“施大壮”复合肥(折合成N、P2O5、K2O)分别为:67.5 、67.5 、67.5 | ||
晚稻 Late rice | 尿素(折合成N) 103.5 ,“施大壮”复合肥(折合成N、P2O5、K2O)分别为:67.5 、67.5 、67.5 | ||
B | 紫云英 Milk vetch | 0 | |
春大豆 Spring soybean | 尿素(折合成N) 46.0 | ||
秋大豆 Autumn soybean | 尿素(折合成N) 46.0 | ||
C | 紫云英 Milk vetch | 0 | |
早稻 Early rice | 尿素 (折合成N) 103.5 ,“施大壮”复合肥(折合成N、P2O5、K2O)分别为:67.5 、67.5 、67.5 | ||
玉米 Maize | “施大壮”复合肥(折合成N、P2O5、K2O)分别为:11.25 、11.25 、11.25 | ||
甘薯 Sweet potato | |||
D | 油菜 Rapeseed | 尿素(折合成N ) 34.5 | |
甘蔗 Sugar cane | 尿素(折合成N) 448.5 ,钙镁磷肥(折合:P2O5,CaO,SiO2,MgO)为168.75 、505.25 、225 、125 ;“施大壮”复合肥(折合成N、P2O5、K2O)分别为:225 、225 、225 | ||
春大豆 Spring soybean | 尿素(折合成N )46.0 | ||
2018-2019 | A(CK) | 紫云英 Milk vetch | 0 |
早稻 Early rice | 尿素(折合成N) 103.5 ,“施大壮”复合肥(折合成N、P2O5、K2O)分别为:67.5 、67.5 、67.5 | ||
晚稻 Late rice | 尿素(折合成N) 103.5 ,“施大壮”复合肥(折合成N、P2O5、K2O)分别为:67.5 、67.5 、67.5 | ||
B | 油菜 Rapeseed | 尿素(折合成N) 34.5 | |
甘蔗 Sugar cane | 尿素(折合成N)448.5 ,钙镁磷肥(折合成P2O5,CaO,SiO2,MgO)为168.75 、505.25 、225 、125;“施大壮”复合肥(折合成N、P2O5、K2O)分别为:225 、225 、225 | ||
春大豆 Spring soybean | 尿素(折合成N) 46.0 | ||
C | 紫云英 Milk vetch | 0 | |
春大豆 Spring soybean | 尿素(折合成N) 46.0 | ||
秋大豆 Autumn soybean | 尿素(折合成N) 46.0 | ||
D | 紫云英 Milk vetch | 0 | |
早稻 Early rice | 尿素(折合成N) 103.5 ,“施大壮”复合肥(折合成N、P2O5、K2O)分别为:67.5 、67.5 、67.5 | ||
玉米 Maize | “施大壮”复合肥(折合成N、P2O5、K2O)分别为:11.25 、11.25 、11.25 | ||
甘薯 Sweet potato |
于2018、2019年晚稻成熟期每小区用5点取样法取0~20 cm土壤,混匀,一部分自然风干,用于土壤总有机碳和可溶性有机碳的测定,另一部分于冰箱内冷藏(4 ℃,< 72 h),用于土壤活性有机碳的测定。参考稻田土壤的总有机碳含量16.67 g/kg,活性有机碳含量计算方法见参考文献[
年份 Year | 处理 Treatment | 作物 Crop | 秸秆干质量 Dry weight of straw | 经济产量 Grain yield | 总计 Total |
---|---|---|---|---|---|
2018 | A(CK) | 紫云英 Milk vetch | 4 458.02 | 0 | 32 091.70 |
早稻 Early rice | 6 716.00 | 7 138.30 | |||
晚稻 Late rice | 7 011.38 | 6 768.00 | |||
B | 紫云英 Milk vetch | 4 707.54 | 0 | 19 957.58 | |
春大豆 Spring soybean | 4 037.00 | 1 682.30 | |||
秋大豆 Autumn soybean | 6 233.00 | 3 297.74 | |||
C | 紫云英 Milk vetch | 4 106.70 | 0 | 28 683.90 | |
早稻 Early rice | 6 023.05 | 6 417.15 | |||
玉米 Maize | 3 249.00 | 3 362.00 | |||
甘薯 Sweet potato | 2 400.00 | 3 126.00 | |||
D | 油菜 Rapeseed | 2 880.45 | 1 721.80 | 45 527.18 | |
甘蔗 Sugar cane | 4 723.69 | 30 983.00 | |||
春大豆 Spring soybean | 3 912.20 | 1 306.04 | |||
E | - | 0 | 0 | 0 | |
2019 | A(CK) | 紫云英 Milk vetch | 4 217.36 | 0 | 27 446.36 |
早稻 Early rice | 5 865.00 | 5 958.50 | |||
晚稻 Late rice | 5 488.00 | 5 917.50 | |||
B | 油菜 Rapeseed | 2 718.10 | 1 698.00 | 37 450.90 | |
甘蔗 Sugar cane | 3 392.66 | 24 764.00 | |||
春大豆 Spring soybean | 3 635.00 | 1 243.14 | |||
C | 紫云英 Milk vetch | 4 665.79 | 0 | 18 570.45 | |
春大豆 Spring soybean | 4 158.34 | 1 598.00 | |||
秋大豆 Autumn soybean | 5 560.70 | 2 587.62 | |||
D | 紫云英 Milk vetch | 4 528.67 | 0 | 32 871.70 | |
早稻 Early rice | 5 892.80 | 5 926.63 | |||
玉米 Maize | 3 092.60 | 3 105.00 | |||
甘薯 Sweet potato | 5 226.00 | 5 100.00 | |||
E | - | 0 | 0 | 0 |
1)土壤全碳含量。 从

图1 各处理2018-2019年间土壤全碳含量
Fig.1 Soil total carbon content during 2018-2019
不同小写字母表示同一年各处理间差异显著(P<0. 05) 。下同。Different letter in same column indicated significantly at 5% levels。The same as follows.
2)土壤活性有机碳。由

图2 各处理2018-2019年土壤活性有机碳含量
Fig.2 Soil active organic carbon content during 2018-2019
3)土壤可溶性有机碳。土壤可溶性有机碳是土壤碳库中非常活跃的有机组分。由

图3 各处理2018-2019年土壤可溶性有机碳含量
Fig.3 Soil dissolved organic carbon content during 2018-2019
4)土壤微生物量碳。由

图4 各处理2018-2019年土壤微生物量碳
Fig.4 Soil microbial biomass carbon content during 2018-2019
从
年份Year | 处理Treatment | 碳库活度A | 碳库活度指数AI | 碳库管理指/% CPMI |
---|---|---|---|---|
2018 | A(CK) | 0.19±0.04ab | 1.35±0.26ab | 218.67±0.25ab |
B | 0.27±0.04a | 1.84±0.27a | 266.67±0.27a | |
C | 0.29±0.06a | 1.98±0.41a | 279.67±0.47a | |
D | 0.23±0.04ab | 1.57±0.31ab | 259.00±0.39a | |
E | 0.16±0.07b | 1.13±0.46b | 174.00±0.58b | |
2019 | A(CK) | 0.32±0.07b | 2.19±0.49b | 304.67±0.55b |
B | 0.59±0.19a | 4.04±1.34a | 507.33±1.69a | |
C | 0.33±0.07b | 2.27±0.45b | 322.67±0.55b | |
D | 0.37±0.06b | 2.54±0.40b | 332.00±0.40b | |
E | 0.32±0.04b | 2.22±0.24b | 296.00±0.35b |
注: 数据为3个重复的“平均值±标准差”;同列不同的字母分别表示差异达5%显著水平。Note:Data is “average ± SD” of 3 replicates. The different letter in same column indicated significantly at 5% levels.
不同耕作措施与秸秆还田方式影响作物产量及土壤有机碳
稻田活性有机碳,如可溶性有机碳和微生物量碳等能够较好地反映稻田土壤质量,能灵敏有效地测度土壤质量的细微变
稻田复种轮作模式能够提高复种指数及资源利用率,能使农田生态系统高产高效。本研究分析了各种植模式下土壤有机碳及其组分的变化情况,特别是对轮作休耕模式进行了综合分析,可为稻田生态系统服务评价提供依据。但由于本试验年限较短,研究还不够深入,有待于长期试验研究。
综上,复种轮作模式有利于作物生物量的积累,尤其是本试验中的油菜-甘蔗||春大豆→紫云英-早稻-玉米||甘薯复种轮作模式。2018-2019年晚稻收获后,采用复种轮作模式、休耕模式较连作模式更有利于土壤活性有机碳含量的积累,休耕模式较连作模式更有利于土壤可溶性有机碳的积累,5种复种轮作模式中,“油菜-甘蔗||春大豆→紫云英-早稻-玉米||甘薯”轮作模式表现更好。耕作方式和管理措施对土壤的土壤碳库管理指数影响明显,轮作模式更有利于提高土壤碳库活度、碳库活度指数、碳库管理指数,尤其是“紫云英-早稻-玉米||甘薯”和“油菜-甘蔗||春大豆”模式表现较好。因此,在南方双季稻区“油菜-甘蔗||春大豆→紫云英-早稻-玉米||甘薯”复种轮作模式能够增加作物产量,有利于土壤活性有机碳及碳库管理指数的提高,值得推广应用。
参考文献References
黄国勤,赵其国.江西省耕地轮作休耕现状、问题及对策[J].中国生态农业学报,2017,25(7):1002-1007.HUANG G Q,ZHAO Q G.Current situation,issues and countermeasures of crop rotation and land fallow in Jiangxi Province[J].Chinese journal of eco-agriculture,2017,25(7):1002-1007 (in Chinese with English abstract). [百度学术]
王志强,黄国勤,赵其国.新常态下我国轮作休耕的内涵、意义及实施要点简析[J].土壤,2017,49(4):651-657.WANG Z Q,HUANG G Q,ZHAO Q G.Brief analysis on connotation,significance and implementing essentiala of rotation fallow under new normal in China[J].Soils,2017,49(4):651-657 (in Chinese with English abstract). [百度学术]
钱晨晨,黄国勤,赵其国.中国轮作休耕制度的应用进展[J].农学学报,2017,7(3):37-41.QIAN C C,HUANG G Q,ZHAO Q G.Application advance of rotation fallow system in China[J].Journal of agriculture,2017,7(3):37-41 (in Chinese with English abstract). [百度学术]
黄国勤.南方稻田耕作制度可持续发展面临的十大问题[J].耕作与栽培,2009 (3):1-2.HUANG G Q.Ten problems of sustainable development of rice paddy farming system in south China[J].Cultivation and cultivation,2009,(3):1-2 (in Chinese). [百度学术]
沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38.SHEN H,CAO Z H,HU Z Y.Characteristics and ecological effects of the active organic carbon in soil[J].Chinese journal of ecology,1999,18(3):32-38(in Chinese with English abstract). [百度学术]
张迪,韩晓增,李海波,等.不同植被覆盖与施肥管理对黑土活性有机碳及碳库管理指数的影响[J].生态与农村环境学报,2008,24(4):1-5.ZHANG D,HAN X Z,LI H B,et al.Impacts of long-term vegetation and fertilization management on black soil labile organic carbon and carbon management index[J].Journal of ecology and rural environment,2008,24(4):1-5(in Chinese with English abstract). [百度学术]
陈小花,杨青青,余雪标,等.热带海岸典型森林类型土壤有机碳储量和碳氮垂直分布特征[J].热带作物学报,2017,38(1):38-44.CHEN X H,YANG Q Q,YU X B,et al.Soil organic carbon storage and vertical distribution of carbon and nitrogen under different typical forest types in the coastal tropical area[J].Chinese journal of tropical crops,2017,38(1):38-44(in Chinese with English abstract). [百度学术]
陈娟,马忠明,刘莉莉,等.不同耕作方式对土壤有机碳、微生物量及酶活性的影响[J].植物营养与肥料学报,2016,22(3):667-675.CHEN J,MA Z M,LIU L L,et al.Effect of tillage system on soil organic carbon,microbial biomass and enzyme activities[J].Journal of plant nutrition and fertilizer,2016,22(3):667-675 (in Chinese with English abstract). [百度学术]
马天娥,魏艳春,杨宪龙,等.长期施肥措施下土壤有机碳矿化特征研究[J].中国生态农业学报,2016,24(1):8-16.MA T E,WEI Y C,YANG X L,et al.Mineralization characteristics of soil organic carbon under long-term fertilization management[J].Chinese journal of eco-agriculture,2016,24(1):8-16 (in Chinese with English abstract). [百度学术]
兰延,黄国勤,杨滨娟,等.稻田绿肥轮作提高土壤养分增加有机碳库[J].农业工程学报,2014,30(13):146-152.LAN Y,HUANG G Q,YANG B J,et al. Effect of green manure rotation on soil fertility and organic carbon pool[J].Transactions of the CSAE,2014,30(13):146-152 (in Chinese with English abstract). [百度学术]
巫芯宇,廖和平,杨伟.耕作方式对稻田土壤有机碳与易氧化有机碳的影响[J].农机化研究,2013,35(1):184-188.WU X Y,LIAO H P,YANG W.Effect of different tillage systems on distribution of organic carbon and readily oxidation carbon in purple paddy soil[J].Journal of agricultural mechanization research,2013,35(1):184-188 (in Chinese with English abstract). [百度学术]
徐尚起,崔思远,陈阜,等.耕作方式对稻田土壤有机碳组分含量及其分布的影响[J].农业环境科学学报,2011,30(1):127-132.XU S Q,CUI S Y,CHEN F,et al.Effect of tillage on content of density fractions of paddy soil organic carbon and its spatial distribution[J].Journal of agro-environment science,2011,30(1):127-132 (in Chinese with English abstract). [百度学术]
刘春增,常单娜,李本银,等.种植翻压紫云英配施化肥对稻田土壤活性有机碳氮的影响[J].土壤学报,2017,54(3):657-669.LIU C Z,SHAN D N,LI B Y,et al.Effects of planting and incorporation of Chinese milk vetch coupled with application of chemical fertilizer on active organic carbon and nitrogen in paddy soil[J].Acta pedologica sinica,2017,54(3):657-669(in Chinese with English abstract). [百度学术]
DUAN Y,CHEN L,ZHANG J B,et al.Long-term fertilization reveals close associations between soil organic carbon composition and microbial traits at aggregate scales[J/OL].Agriculture,ecosystems & environment,2021,306:107169[2022-04-08].https://doi.org/10.1016/j.agee.2020.107169. [百度学术]
周玲红,魏甲彬,唐先亮,等.冬季种养结合对稻田土壤微生物量及有效碳氮库的影响[J].草业学报,2016,25(11):103-114.ZHOU L H,WEI J B,TANG X L,et al.Effects of winter green manure crops with and without chicken rearing on microbial biomass and effective carbon pools in a double-crop rice paddy soil[J].Acta prataculturae sinica,2016,25(11):103-114 (in Chinese with English abstract.) [百度学术]
唐海明,程凯凯,肖小平,等.不同冬季覆盖作物对双季稻田土壤有机碳的影响[J].应用生态学报,2017,28(2):465-473.TANG H M,CHENG K K,XIAO X P,et al.Effects of different winter cover crops on soil organic carbon in a double cropping rice paddy field[J].Chinese journal of applied ecology,2017,28(2):465-473(in Chinese with English abstract). [百度学术]
孙丹平.稻田水旱复种轮作对作物生长、资源利用及土壤生态环境的影响[D].南昌:江西农业大学,2016.SUN D P.Effects on crops growth,resource utilization and soil ecological environment under paddy-upland multiple cropping rotation systems[D].Nanchang:Jiangxi Agricultural University,2016 (in Chinese with English abstract). [百度学术]
袁嘉欣,杨滨娟,胡启良,等.长江中游稻田种植模式对土壤有机碳及碳库管理指数的影响[J].中国生态农业学报(中英文),2021,29(7):1205-1214.YUAN J X,YANG B J,HU Q L,et al.Effects of paddy field cropping patterns on soil organic carbon and carbon pool management index in the middle reaches of the Yangtze River[J].Chinese journal of eco-agriculture,2021,29(7):1205-1214 (in Chinese with English abstract). [百度学术]
王丹丹,周亮,黄胜奇,等.耕作方式与秸秆还田对表层土壤活性有机碳组分与产量的短期影响[J].农业环境科学学报,2013,32(4):735-740.WANG D D,ZHOU L,HUANG S Q,et al.Short-term effects of tillage practices and wheat-straw returned to the field on topsoil labile organic carbon fractions and yields in Central China[J].Journal of agro-environment science,2013,32(4):735-740 (in Chinese with English abstract). [百度学术]
杨晶,沈禹颖,南志标,等.保护性耕作对黄土高原玉米-小麦-大豆轮作系统产量及表层土壤碳管理指数的影响[J].草业学报,2010,19(1):75-82.YANG J,SHEN Y Y,NAN Z B,et al.Effects of conservation tillage on crop yield and carbon pool management index on top soil within a maize-wheat-soy rotation system in the Loess Plateau[J].Acta prataculturae sinica,2010,19(1):75-82(in Chinese with English abstract ). [百度学术]
杨凯,朱教君,张金鑫,等.不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化[J].生态学报,2009,29(10):5500-5507.YANG K,ZHU J J,ZHANG J X,et al.Seasonal dynamics of soil microbial biomass C and N in two larch plantation forests with different ages in Northeastern China[J].Acta ecologica sinica,2009,29(10):5500-5507 (in Chinese with English abstract). [百度学术]
张静,马玲,丁新华,等.扎龙湿地不同生境土壤微生物生物量碳氮的季节变化[J].生态学报,2014,34(13):3712-3719.ZHANG J,MA L,DING X H,et al.Seasonal dynamics of soil microbial biomass C and N in different habitats in Zhalong Wetland[J].Acta ecologica sinica,2014,34(13):3712-3719 (in Chinese with English abstract). [百度学术]
刘占锋,刘国华,傅伯杰,等.人工油松林(Pinus tabulaeformis)恢复过程中土壤微生物生物量C、N的变化特征[J].生态学报,2007,27(3):1011-1018.LIU Z F,LIU G H,FU B J,et al.Dynamics of soil microbial biomass C,N along restoration chronosequences in pine plantations[J].Acta ecologica sinica,2007,27(3):1011-1018 (in Chinese with English abstract). [百度学术]
张鹏,钟川,周泉,等.不同冬种模式对稻田土壤碳库管理指数的影响[J].中国生态农业学报,2019,27(8):1163-1171.ZHANG P,ZHONG C,ZHOU Q,et al.Effects of different winter planting patterns on carbon management index of paddy field[J].Chinese journal of eco-agriculture,2019,27(8):1163-1171 (in Chinese with English abstract). [百度学术]