摘要
为了探索不同轮作休耕种植模式下稻田土壤氮素及相关微生物群落结构的变化,采用乙炔抑制法测定土壤反硝化潜势,利用高通量测序手段分析反硝化微生物群落多样性和组成,以传统种植模式紫云英-早稻-晚稻(A)为对照,比较分析4种轮作休耕种植模式:紫云英-早稻-玉米||甘薯(B)、油菜-甘蔗||春大豆(C)、紫云英-春大豆-秋大豆(D)和休耕(E)的土壤理化性状、土壤反硝化潜势及相关微生物组成变化。结果显示:4种轮作休耕模式的土壤反硝化潜势显著低于传统轮作模式,有效减少了土壤氮素气态损失;4种轮作休耕模式的nirK和nirS功能基因群落结构存在显著差异,其中nirK基因群落结构受轮作休耕模式的影响小于nirS功能基因;与传统种植模式相比,休耕模式更有利于nirS功能基因α多样性的积累;从nirS和nirK基因群落物种相对丰度来看,轮作休耕模式的优势物种丰度高于传统轮作模式,其中紫云英-早稻-玉米||甘薯(B)和休耕(E)的菌属丰度相对较高。并且影响反硝化潜势的关键菌属是大豆根瘤菌Bradythizobium(
水稻是世界三大粮食作物之一。2019年,我国水稻收获面积为6 092.19万h
水稻田属于典型的人工湿地生态系
本试验通过研究不同轮作休耕模式下土壤理化性质、土壤反硝化潜势及土壤反硝化功能基因nirS和nirK群落结构的变化,分析土壤反硝化功能微生物种群的丰度和群落组成,并明确其变化的重要影响因子及关键菌属,旨在为提高农田生态系统氮素利用效率提供科学参考。
于2020年10月至2021年11月在 江西省鹰潭市余江区农业科学研究所试验田(28°14′8″N,116°51′22″E)进行,该试验地属亚热带气候,周年总太阳辐射量为4 542.7 kJ/
本研究5种种植模式,A(CK)为传统轮作模式,B、C、D为3个多种作物轮作模式,E处理为休耕模式(
处理 Treatment | 种植模式Cropping pattern | 类型 Planting type |
---|---|---|
A(CK) |
紫云英-早稻-晚稻 Chinese milk vetch-early rice-late rice |
传统轮作 Traditional crop rotation |
B |
紫云英-早稻-玉米||甘薯 Chinese milk vetch - early rice - maize || batatas |
水旱轮作 Water and drought rotation |
C |
油菜-甘蔗||春大豆 Rapeseed-sugarcane || spring soybeans |
旱旱轮作 Drought and dry crop rotation |
D |
紫云英-春大豆-秋大豆 Chinese milk vetch - spring soybeans - autumn soybeans |
旱旱轮作 Drought and dry crop rotation |
E |
休耕 Annual fallow |
休耕 Fallow |
注: “-”代表接茬,“||”代表间作。Note: “-” represents connection and “||” represents interworking.
用5点取样法分别取每小区0~20 cm耕层土,混合土样,带回实验室自然风干后分析土壤理化性质。用pH计测定土壤pH,采用重铬酸钾法-浓硫酸外加热法测定有机质,NH4OAc浸提-火焰光度法测定土壤速效钾含量,NaHCO3浸提-钼锑抗比色法测定土壤有效磷含量,半微量凯氏法测定土壤全氮,KCl浸提-靛酚蓝比色法测定铵态氮,紫外分光光度法测定硝态氮,碱解扩散法测定土壤碱解氮,环刀法测定土壤容重和土壤含水率。
从每个小区随机挑选5株作物,用无菌勺子刮取其根系表面土壤,装入50 mL无菌离心管中,加入液氮,用干冰将土壤样品运到实验室于-80 ℃冰箱储存。再将取好的土样委托上海美吉生物医药科技有限公司扩增测序。根据biowest agArose (biowest,E.S.)说明书进行土壤微生物群落总DNA抽提。nirS基因采用的引物为:cd3aF_R3cdR(5' - GTSAACGTSAAGGARACSGG - 3'、5'- AGTTCTGSGTRGGCTTSAG - 3'),nirK基因引物为:F1aCu_R3Cu(5' - TTAGCATGGAATAATRRAATAGGA - 3'、5' - TCTGGACCTGGTGAGTTTCC - 3'
根据条形码的精确匹配,对不同样品进行nirS、nirK基因配对端读码解复,与条形码序列出现1个或多个错配,或至少出现2个与引物序列错配的读数被丢弃
采用Microsoft Excel 2019处理数据;采用SPSS软件(version18.0,Chicago,Illinois,USA)对土壤理化性质进行方差分析(ANOVA),Duncan’s法进行多重比较(α=0.05)。采用QIIME(Version 1.9.0)软件估算nirS、nirK基因的α-多样性,采用未加权的UniFrac距离来计算多样性
如
处理 Treatment | pH | AN/ (mg/kg) | AP/ (mg/kg) | AK/ (mg/kg) | TN/ % | SOM/ (g/kg) | NH (mg/kg) | NO (mg/kg) | SBD/ (mg/kg) | SWC/ % |
---|---|---|---|---|---|---|---|---|---|---|
A(CK) | 4.78c | 177.01b | 41.58c | 31.33d | 2.00a | 33.08a | 14.32a | 8.80b | 2.01a | 32.08b |
B | 5.73b | 189.63a | 74.34ab | 61.67bc | 1.92b | 30.92a | 15.56a | 36.75a | 1.11b | 20.99c |
C | 6.28a | 187.33a | 80.98a | 76.00a | 1.95b | 26.80b | 9.19b | 33.14a | 1.14b | 23.08c |
D | 6.11a | 189.43a | 74.02ab | 70.00ab | 1.93b | 31.86a | 9.49b | 28.85a | 1.08b | 4.81d |
E | 6.14a | 188.55a | 70.01b | 52.33c | 1.96ab | 33.22a | 9.45b | 29.56a | 1.06b | 42.37a |
注: 数据为3个重复的平均值,同列不同小写字母分别表示在5%水平的显著差异(P <0.05)。SOM:有机质,AP:有效磷,AK:速效钾,AN:碱解氮,TN:全氮,NH
由

图1 不同轮作休耕模式对土壤反硝化潜势的影响
Fig.1 Effects of different crop rotation-fallow patterns on denitrification potential
指标 Indicator | P | |
---|---|---|
pH |
-0.93 | 0.001 |
SOM | 0.555 | 0.332 |
AP |
-0.99 | 0.020 |
AK |
-0.93 | 0.018 |
AN | -0.190 | 0.759 |
TN | 0.878 | 0.050 |
NH | 0.501 | 0.398 |
NO |
-0.94 | 0.016 |
SBD | -0.519 | 0.371 |
SWC | 0.459 | 0.437 |
注 Note:*:P <0.05;**:P <0.01.
由
基因类型 Gene type | 处理Treatment | 香农指数 Shannon index | 辛普森指数 Simpson index | ACE指数 ACE index | Chao 1指数 Chao 1 index |
---|---|---|---|---|---|
nirS | A(CK) | 3.92±0.19a | 0.056 3±0.012 1b | 576.03±32.28b | 526.29±14.99b |
B | 3.28±0.53b | 0.110 2±0.061 6a | 525.11±96.48b | 449.50±60.37b | |
C | 3.94±0.19a | 0.046 5±0.013 2b | 554.19±64.31b | 510.18±17.61b | |
D | 4.20±0.15a | 0.036 3±0.007 0b | 448.82±47.39b | 442.00±50.68b | |
E | 4.38±0.02a | 0.032 3±0.005 3b | 947.56±162.87a | 755.31±52.10a | |
nirK | A(CK) | 3.85±0.26a | 0.071 9±0.018 0a | 633.00±148.16a | 552.34±157.07a |
B | 3.82±0.42a | 0.088 4±0.050 2a | 478.29±36.78a | 446.62±58.90a | |
C | 4.20±0.52a | 0.059 0±0.033 1a | 622.97±271.20a | 538.64±154.09a | |
D | 4.27±0.04a | 0.035 4±0.003 2a | 646.90±76.89a | 565.38±55.03a | |
E | 3.65±0.19a | 0.091 8±0.019 8a | 554.03±45.49a | 489.34±38.43a |
注: 数据为3个重复的平均值和标准误差,同列不同小写字母表示在5%水平有显著差异(P<0.05)。Note: The data are the mean and standard error of three replicates,and different lowercase letters in the same column indicate significant differences at the 5% level (P <0.05).
由

图2 土壤反硝化功能基因nirS(A)和nirK(B)的β-多样性指数
Fig.2 Study on β-diversity of soil denitrification function gene nirS(A)and nirK(B)
结果表明,不同轮作休耕模式的反硝化功能基因的多样性指数有显著性差异(P <0.05),且nirS基因的多样性指数及群落结构受影响程度大于nirK基因,E处理(休耕)更有利于土壤nirS基因α-多样性指数的提高,B、C、D处理的nirS和nirK基因群落结构相似。
属水平下,各处理的反硝化功能基因的相对丰度具有显著性差异(P <0.05)。由

图3 nirS基因(A)和nirK基因(B)群落组成相对丰度
Fig.3 nirS gene(A) and nirK gene (B) community composition abundance
由
基因类型Gene type | 优势菌属 Dominant genera | P | |
---|---|---|---|
nirS | Unclassified_k_norank_d | 1.00 | 0.00 |
Unclasified_p_Proteoba | -0.60 | 0.14 | |
Rhodanobacter | -0.64 | 0.12 | |
nirK | Unclassified_k_norank_d_Bacteria | 0.23 | 0.35 |
Norank_d_Bacteria | -0.56 | 0.16 | |
Bradythizobium |
-0.8 | 0.03 | |
Unclassified_p_Proteobacteria |
0.8 | 0.02 | |
Nitrosospira | 0.33 | 0.29 |
基于RDA分析,采用Bray-Curtis距离冗余度分析对群落组成排序的环境变量进行分析(

图4 土壤反硝化基因nirS(A)、nirK(B)群落与土壤环境因子的相关性
Fig.4 Correlation analysis of soil denitrification gene nirS(A),nirK(B) communities with soil environmental factors
本研究探讨了不同轮作休耕模式下土壤反硝化潜势和反硝化功能微生物(nirS/nirK)群落的多样性和组成,结果表明,不同轮作休耕处理改变了土壤肥力及土壤结构,土壤反硝化潜势及反硝化功能基因群落结构均受到显著性影响。传统轮作模式A(CK)(紫云英-早稻-晚稻)对土壤综合肥力及土壤结构的改善较为缓慢,土壤反硝化潜势也较大,使得土壤氮素气态损失严重。稻田适当采用水旱轮作和休耕模式可以通过不同作物相互作用及土壤生境的改变,增加nirK和nirS功能基因的物种多样性及菌属的相对丰度,不仅有利于土壤环境质量的提高,还促进了稻田土壤氮素循环的可持续发展。
5种稻田轮作模式下土壤反硝化潜势存在显著差异,pH、AP、AK和NO
本试验中稻田不同轮作休耕模式对nirS基因群落结构的影响大于nirK基因,可能是试验年限较短,nirK基因不敏感,不容易受短时间环境的改变所影响。朱杰
通过Pearson相关性分析发现,大豆根瘤菌Bradythizobium和unclassified_p_Proteobacteria是影响土壤反硝化潜势的关键菌属(P <0.05),其中大豆根瘤菌Bradythizobium与土壤反硝化潜势呈现负相关,unclassified_p_Proteobacteria与土壤反硝化潜势呈正相关,原因可能是大豆根瘤菌Bradythizobium能够固氮,可以减少土壤中的氮素损失。程玉柱
参考文献References
董文军,来永才,孟英,等.稻田生态系统温室气体排放影响因素的研究进展[J].黑龙江农业科学,2015(5):145-148.DONG W J,LAI Y C,MENG Y,et al.Research progress of greenhouse gases emission in paddy field ecosystems[J].Heilongjiang agricultural sciences,2015(5):145-148 (in Chinese with English abstract). [百度学术]
颜晓元,周伟.长江三角洲农田地下水反硝化对硝酸盐的去除作用[J].土壤学报,2019,56(2):350-362.YAN X Y,ZHOU W.Groundwater nitrate removal through denitrification under farmland in Yangtze River Delta[J].Acta pedologica sinica,2019,56(2):350-362 (in Chinese with English abstract). [百度学术]
CHAPAGAIN T,YAMAJI E.The effects of irrigation method,age of seedling and spacing on crop performance,productivity and water-wise rice production in Japan[J].Paddy and water environment,2010,8(1):81-90. [百度学术]
郭俊杰,朱晨,刘文波,等.不同施肥模式对土壤氮循环功能微生物的影响[J].植物营养与肥料学报,2021,27(5):751-759.GUO J J,ZHU W,LIU W B,et al.Effects of different fertilization managements on functional microorganisms involved in nitrogen cycle[J].Journal of plant nutrition and fertilizers,2021,27(5):751-759 (in Chinese with English abstract). [百度学术]
陈志刚,刘龙梅,陈蕾,等.水分调控对水稻根际土壤反硝化作用的影响[J].水土保持研究,2015,22(5):133-137.CHEN Z G,LIU L M,CHEN L,et al.Effects of three different irrigation cultivated modes on soil denitrification of rice rhizosphere[J].Research of soil and water conservation,2015,22(5):133-137 (in Chinese with English abstract). [百度学术]
李振高,万焕楣,吴留松,等.水稻根际反硝化细菌生态分布的研究[J].土壤学报,1987,24(2):120-126.LI Z G,WAN H M,WU L S,et al.Studies on the ecological distribution of denitrifying bacteria in rhizosphere of rice[J].Acta pedologica sinica,1987,24(2):120-126 (in Chinese with English abstract). [百度学术]
张文学,王少先,夏文建,等.脲酶抑制剂与硝化抑制剂对稻田土壤硝化、反硝化功能菌的影响[J].植物营养与肥料学报,2019,25(6):897-909.ZHANG W X,WANG S X,XIA W J,et al.Effects of urease inhibitor and nitrification inhibitor on functional nitrifier and denitrifier in paddy soil[J].Journal of plant putrition and fertilizers,2019,25(6):897-909 (in Chinese with English abstract). [百度学术]
朱杰,刘海,吴邦魁,等.稻虾共作对稻田土壤nirK反硝化微生物群落结构和多样性的影响[J].中国生态农业学报,2018,26(9):1324-1332.ZHU J,LIU H,WU B K,et al.Effects of integrated rice crayfish farming system on community structure and diversity of nirK denitrification microbe in paddy soils[J].Chinese journal of eco-agriculture,2018,26(9):1324-1332 (in Chinese with English abstract). [百度学术]
朱旭.秸秆还田与投食对稻虾共作系统土壤硝化作用及微生物的影响[D].武汉:华中农业大学,2020.ZHU X.Effects of straw returning and feeding on soil nitrification and microorganism in rice-crayfish ecosystem[D].Wuhan:Huazhong Agricultural University,2020 (in Chinese with English abstract). [百度学术]
高嵩涓.冬绿肥—水稻模式下的土壤微生物特征及硝化作用调控机制[D].北京:中国农业大学,2018.GAO G J.Soil microbial community and the regulation mechanisms of nitrification in winter green man ure-rice cropping system[D].Beijing:China Agricultural University,2018 (in Chinese with English abstract). [百度学术]
钱晨晨,黄国勤,赵其国.中国轮作休耕制度的应用进展[J].农学学报,2017,7(3):37-41.QIAN C C,HUANG G Q,ZHAO Q G.Application advance of rotation fallow system in china[J].Journal of agriculture,2017,7(3):37-41 (in Chinese with English abstract). [百度学术]
WITTWER R A,DORN B,JOSSI W,et al.Cover crops support ecological intensification of arable cropping systems[J].Scientific reports,2017,7(1):1-12. [百度学术]
MORARU P I,RUSU T.Soil tillage conservation and its effect on soil organic matter,water management and carbon sequestration[J].Journal of food,agriculture and environment,2010,8(3/4):309-312. [百度学术]
PELL M,STENBERG B,STENSTROM J,et al.Potential denitrification activity assay in soil-:with or without chloramphenicol[J].Soil biology and biochemistry,1996,28(3):393-398 [百度学术]
PALMER K,BIASI C,HORN M A.Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra[J].ISME J,2012,6(5):1058-1077. [百度学术]
QUINCE C,LANZEN A,DAVENPORT R J,et al.Removing noise from pyrosequenced amplicons[J].BMC bioinformatics,2011,12(1):1-18. [百度学术]
MAGOC T,SALZBERG S L.FLASH:fast length adjustment of short reads to improve genome assemblies[J].Bioinformatics,2011,27(21):2957-2963. [百度学术]
EDGAR R C.UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J].Nat.methods,2013,10:996-998. [百度学术]
LOZUPONE C,KNIGHT R.UNIFRAC:A new phylogenetic method for comparing microbial communities[J].Applied and environmental microbiology,2005,71:8228-8235. [百度学术]
ABDI H,WILLIAMS L J.Principal component analysis[J].Wiley interdisciplinary reviews:computational statistics,2010,2:433-459. [百度学术]
GU Z,GU L,EILS R,et al.Circlize implements and enhances circular visualization in R[J].Bioinformatics,2014,30:2811-2812. [百度学术]
CLARKE K R.Non-parametric multivariate analyses of changes in community structure[J].Australian journal of ecology,1993,18:117-143. [百度学术]
闵航.微生物学[M].杭州:浙江大学出版社,2011.MIN H.Microbiology [M].Hangzhou:Zhejiang University Press,2011 (in Chinese). [百度学术]
SHCHERBAK I,MILLAR N,ROBERTSON G P.Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen[J].PNAS,2014,111(25):9199-9204. [百度学术]
陈盟.设施菜田温室气体浓度分布特征及N2O排放监测方法比较研究[D].保定:河北农业大学,2019.CHEN M.Research on greenhouse gas con centration distribution characteristics and comparison of N2O emission monitoring methods in facility vegetable field[D].Baoding:Hebei Agricultural University,2019 (in Chinese with English abstract). [百度学术]
龙鹏宇,农梦玲,白雪,等.滴灌施肥蔗田土壤氧化亚氮排放与反硝化酶活性的关系[J].土壤通报,2020,51(1):122-129.LONG P Y,NONG M L,BAI X,et al.Relationship between nitrous oxide emission and denitrifying enzyme activities in sugarcane field soilunder drip fertigation[J].Chinese journal of soil science,2020,51(1):122-129 (in Chinese with English abstract). [百度学术]
邢肖毅,盛荣,徐慧芳,等.不同母质发育旱地土壤反硝化功能差异及其关键影响因素[J].土壤,2019,51(5):949-954.XING X Y,SHENG R,XU H F,et al.Denitrification characteristics of dryland soils derived from different parent materials[J].Soils,2019,51(5):949-954 (in Chinese with English abstract). [百度学术]
陈哲.长期施肥对水稻土反硝化作用和反硝化功能微生物的影响机理[D].北京:中国科学院大学,2010.CHEN Z.Influence mechanism of long-term fertilization on denitrification and denitrification functional microorganisms in paddy soil[D].Beijing:Chinese Academy of Sciences University, 2010 (in Chinese with English abstract). [百度学术]
谢婉玉,王永明,纪红梅,等.秸秆还田种类对稻田N2O排放及硝化反硝化微生物的影响[J].土壤,2022,54(4):769-778.XIE W Y,WANG Y M,JI H M,et al.Effects of returned straw type on N2O emission,nitrification and denitrification microorganisms from paddy field [J].Soils,2022,54(4):769-778 (in Chinese with English abstract). [百度学术]
SNAIDR J,AMANN R,HUBER I,et al.Phylogenetic analysis and in situ identification of bacteria in activated sludge[J].Applied and environmental microbiology,1997,63(7):2884-2896. [百度学术]
衷炜华,朱笔通,赵春贵,等.固氮红细菌 (Rhodobacter azotoformans) YLK20 去除无机氮的影响因素[J].微生物学通报,2019(9):2146-2156.ZHONG W H,ZHU B T,ZHAO C G,et al.Factors affecting nitrogen removal from aquaculture wastewater by Rhodobacter azotoformans YLK20[J].Microbiology China,2019(9):2146-2156 (in Chinese with English abstract). [百度学术]
程玉柱,李龙,周琴,等.玉米/大豆不同配置下的玉米生长和产量形成研究[J].南京农业大学学报,2016,39(1):34-39.CHEN Y Z,LI L,ZHOU Q,et al.Growth and yield formation of maize under different maize/soybean intercropping patterns[J].Journal of Nanjing Agricultural University,2016,39(1):34-39 (in Chinese with English abstract). [百度学术]
周维.水-旱转换中N2O排放特征及其相关功能基因研究[D].武汉:华中农业大学,2018.ZHOU W.N2O emission characteristics and relative functional genes under flooding-drying conversion[D].Wuhan:Huazhong Agricultural University,2018 (in Chinese with English abstract). [百度学术]