摘要
为分析我国典型的稻田耕作模式下土壤真菌丰度及群落结构差异,以长期(10 a)4种典型稻田耕作模式为研究对象,设置以下处理:双季稻(DR)、早稻-晚稻(MR)、中稻-油菜(MROR)及中稻-小白菜-油菜(MRPOR),利用实时荧光定量PCR及高通量测序手段测定土壤真菌的丰度及群落组成。结果显示,双季稻转变为单季稻及水旱轮作模式后显著改变了真菌的丰度,其中双季稻转变为中稻-小白菜-油菜后显著增加了真菌的丰度,相关性分析发现,硝态氮与真菌的丰度呈显著的正相关关系;双季稻转为单季稻及水旱轮作模式后显著改变了真菌的群落结构,冗余分析发现水分含量是影响真菌群落结构最主要的环境因子。综上研究表明,不同轮作模式下稻田土壤真菌群落丰度、组成及多样性存在差异。不同处理下真菌丰度受土壤硝态氮影响较大,而真菌群落结构主要受土壤含水量的影响。
土壤微生物群落多样性作为评价土壤质量的关键指标,已越来越引起人们的广泛关
真菌在土壤中的数量仅次于细菌和放线菌,其在有机质分
双季稻在我国水稻种植历史中占据重要的地位,对于保障我国粮食安全意义重大。然而,近年来由于双季稻种植的经济效益逐渐下滑,加之农村劳动力大量转移,这些因素促使农民将部分长期淹水的双季稻田转化为单季稻或者水旱轮作等种植体系。研究表明,水旱轮作引起了土壤养分元素形态和有效性的变
因此,本研究通过实时荧光定量PCR和高通量测序技术研究我国典型稻田耕作模式(双季稻,中稻,中稻-油菜,中稻-小白菜-油菜)对土壤真菌的丰度及群落组成的影响,旨在为稻田生态系统可持续发展等相关措施的制定提供重要的科学依据。
试验样地位于湖南省桃源县中国科学院桃源农业生态试验站水田长期耕作模式试验田(2012年至今),东经111°27΄,北纬28°55΄。该地区属于我国典型的中亚热带向北亚热带过渡的季风湿润气候区,年均温16.5 ℃,年降雨1 447.9 mm,年平均日照1 531.4 h。供试的土壤为第四纪红色黏土发育的红壤,试验前为早稻-晚稻种植模式。试验前耕层土壤(0~15 cm)的有机质含量26.08 g/kg,全氮1.28 g/kg,全磷0.54 g/kg,全钾12.79 g/kg,pH 4.84。
试验田设置4个处理,分别为:中稻、双季稻(早稻-晚稻)、中稻-油菜、中稻-小白菜-油菜,记为MR、DR、MROR、MPOR,每个处理均设置3个野外重复。不同处理之间的施肥种类和施肥用量详见
处理 Treatments | 肥料种类 Fertilizer types | 施肥量 Fertilizer amounts |
---|---|---|
中稻(MR) Middle season rice | 尿素 Urea(N:46%)、过磷酸钙 Calcium superphosphate(P2O5:12%)和氧化钾 Potassium oxide(K2O:60%) | N 126、P2O5 110、K2O181 |
双季稻(DR) Early rice-late rice | 尿素 Urea(N:46%)、过磷酸钙 Calcium superphosphate(P2O5:12%)和氧化钾 Potassium oxide(K2O:60%) | N 84、P2O5 88、K2O 88;N 105、P2O5 110和K2O 154 |
中稻-油菜(MROR) Middle season rice-oilseed rape | 复合肥 Compound fertilizer(N:15%;P2O5:15%;K2O:15%)和有机肥 Organic fertilizer(含水量Water content 23.4%,干基含N Dry basis N 2.85%,P2O5 3.42%,K2O 3.13%) | N 124、P2O5 142 、K2O 133 |
中稻-小白菜-油菜(MRPOR) Middle season rice-pakchoi-oilseed rape | 有机肥 Organic fertilization(含水量 Water content 23.4%,干基含N Dry basis N 2.85%,P2O5 3.42%,K2O 3.13%) | N 90、P2O5 108、K2O 99 |
MR模式下,中稻的氮肥按照基肥∶分蘖肥∶穗肥=4∶5∶1施用,磷钾肥作基肥一次施入。有机质含量为27.34 g/kg,全氮1.58 g/kg,全磷0.64 g/kg,全钾12.11 g/kg,pH 5.13,水分含量28.66%,铵态氮含量2.53 g/kg,硝态氮含量0.51 g/kg,可溶性有机碳84.57 mg/kg。
DR模式下,早稻的氮肥按照基肥∶分蘖肥=4∶6施用,磷钾肥作基肥一次施入,而晚稻采用氮肥按照基肥∶分蘖肥∶穗肥=4∶5∶1施用,磷钾肥作基肥一次施入。有机质含量为34.38 g/kg,全氮1.60 g/kg,全磷0.6 g/kg,全钾12.44 g/kg,pH 5.17,水分含量31.33%,铵态氮含量2.78 g/kg,硝态氮含量0.61 g/kg,可溶性有机碳83.22 mg/kg。
MROR模式下,复合肥和有机肥均作为基肥一次施用。有机质含量为26.23 g/kg,全氮1.47 g/kg,全磷0.57 g/kg,全钾13.58 g/kg,pH 5.22,水分含量26.33%,铵态氮含量1.92 g/kg,硝态氮含量1.19 g/kg,可溶性有机碳85.46 mg/kg。
MRPOR模式下,有机肥均作为基肥一次施用,小白菜移栽40 d后收获,移栽油菜。有机质含量为26.04 g/kg,全氮1.36 g/kg,全磷0.60 g/kg,全钾13.00 g/kg,pH 5.38,水分含量25.33%,铵态氮含量1.87 g/kg,硝态氮含量1.04 g/kg,可溶性有机碳78.76 mg/kg。
2017年晚稻收获后于11月3日采用随机多点对不同耕作模式的0~15 cm的耕作层土壤样品进行取样,去除明显的杂质和根系后,充分混匀后分为两部分,一部分约200 g土壤样品,用锡箔纸包装后,装入灭菌且写有标签的布袋并置于液氮罐中,于-80 ℃冰箱保存,用于真菌丰度及群落结构分析;另一部分新鲜土壤样品放入冰盒后于4 ℃冰箱保存,用于土壤理化性质的测定。
土壤理化性质采用常规分析方
土壤微生物总DNA的提取主要采用Fast DNA SPIN 提取土壤DNA试剂盒(MP Biomedicals, Santa Ana, CA)。提取的土壤DNA用50 µL无菌水进行稀释,然后用1%的琼脂糖凝胶检测其质量,最后采用Nanodrop ND-1000UV-Vis分光光度计测定DNA的浓度及质量系数 (Nanodrop Technologies, Wilmington, DE, USA)。凝胶电泳检测图显示所提取的土壤总DNA条带未发生弥散,完整度较高,可直接用于后续的PCR扩增。
采用Nu-ssu-0817F(5′- TTAGCATGGAATAATRRAATAGGA-3΄)和Nu-ssu-1196R(5΄-TTAGCATGGAATAATRRAATAGGA-3΄)对18S rRNA进行扩增。扩增体系为10 μL,包括上游引物(10 μmol/L)0.2 μL,下游引物(10 μmol/L)0.2 μL,5 μL的SYBR GreenⅡ (TaKaRa),0.2 μL的Rox(TaKaRa),DNA为1 μL (5 ng),补无酶水至10 μL。荧光定量PCR扩增程序为:95 °C 30 s,40个循环的95 °C 5 s,60 °C 30 s。
由于18S rRNA在大多数生物中趋于保守,生物之间的基因组序列变化不大,而其内转录间隔区(ITS)作为非编码区相对变化较大,并且在物种注释分析时可以提供更加详细的物种信息,因此,我们采用ITS区域鉴定真菌的物种组
高通量测序得到的双端序列数据,根据序列首尾两端barcode和引物序列区分样品得到有效序列。过滤去杂的数据采用97%进行OTU(operational taxonomic units)聚类。为了得到每个OTU对应的物种分类信息,采用RDP classifier贝叶斯算法对各个基因的OTU代表序列进行分类学分析,设置分类水平默认置信度阈值为0.8,并在phylum(门)水平上统计各个样本的群落组成。真菌ITS数据库为UNITE 8.0(http://unite.ut.ee/index.php
真菌在不同耕作模式之间的群落组成差异分析采用基于欧式距离的PCA主成分分析 (principal component analysis)。Venn图用于分析不同耕作模式下真菌群落的结构相似性。采用CANOCO 5.0的db-RDA(distance-based redundancy analysis)分析环境因子与真菌群落结构的关系,其中采取前置选择法(forward selection)确定每个环境因子对真菌群落结构的相对贡献率。
从

图1 不同耕作模式土壤真菌丰度的变化
Fig.1 The abundance of soil fungi under different farming patterns
MR代表中稻;DR代表双季稻;MROR代表中稻-油菜;MRPOR代表中稻-小白菜-油菜。不同小写字母表示差异显著(P<0.05)。下同。MR represents middle season rice; DR represents early rice-late rice; MROR represents middle season rice-oilseed rape; MRPOR represents middle season rice-pakchoi-oilseed rape. Different lowercase letters indicate significant difference(P<0.05 ).The same as below.
4种典型的稻田耕作模式对真菌群落结构的影响见PCA分析图(

图2 不同耕作模式土壤真菌的主成分分析PCA
Fig.2 PCA analysis for soil fungi under different farming patterns
如

图3 不同耕作模式土壤真菌群落Venn图
Fig.3 Venn of soil fungi under different farming patterns
由

图4 不同耕作模式土壤真菌门水平群落组成
Fig.4 Composition of soil fungi phylum under different farming patterns
不同耕作模式下稻田土壤真菌群落的Alpha多样性指数如
处理Treatments | Shannon | Simpson | ACE | Chao1 | Coverage | PD whole tree |
---|---|---|---|---|---|---|
DR | 2.837c | 0.152b | 662.039c | 612.741b | 0.996a | 140.365b |
MR | 3.525b | 0.211a | 852.287a | 736.224b | 0.996a | 133.102b |
MROR | 3.549a | 0.072c | 678.479c | 677.524b | 0.996a | 132.764b |
MRPOR | 3.772a | 0.056c | 836.526b | 793.570a | 0.996a | 156.257a |
注: 同列不同小写字母表示差异显著(P<0.05)。Note: Different lowercase letters represent significant differences(P<0.05).
对真菌丰度与环境因子进行Pearson相关性分析,结果表明真菌数量与TK、pH、NO
由

图5 不同耕作模式土壤真菌群落结构的db-RDA图
Fig.5 db-RDA of soil fungi under different farming patterns
土壤微生物的群落结构是土壤生态环境的重要生物指标。本研究结果表明,双季稻转变为中稻-小白菜-油菜后土壤真菌的数量显著增加。通常p
本研究中,不同轮作模式显著改变了真菌的群落结构,这与张慧
不同耕作模式下稻田土壤理化性质的差异导致了土壤真菌丰度及群落结构的差异。其中双季稻转变为中稻-小白菜-油菜种植模式后增加了土壤的硝态氮含量,进而提高了真菌的丰度;而由于双季稻转变为单季稻或者水旱轮作种植模式后改变了土壤的水分含量,间接影响了真菌对土壤养分的利用,导致真菌群落结构发生改变。双季稻转换为单季稻或者水旱轮作过程中改善了土壤的养分状况,提高了真菌的丰度及多样性,这些结果有助于更好地选择科学的轮作模式以改善土壤微生物群落结构并提高土壤生产力。
参考文献 References
LIU J S,ZHANG X,WANG H,et al.Long-term nitrogen fertilization impacts soil fungal and bacterial community structures in a dryland soil of Loess Plateau in China[J].Journal of soils and sediments,2018,18(4):1632-1640. [百度学术]
于淑玲.腐生真菌在有机质分解过程中的作用研究进展[J].河北师范大学学报(自然科学版),2003,27(5):519-522.YU S L.A study of function that rot funguses have in the decomposition of organic matter[J].Journal of Hebei Normal Univesity (natural science),2003,27(5):519-522(in Chinese with English abstract). [百度学术]
BALOTA E L,COLOZZI FILHO A,ANDRADE D S,et al.Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian oxisol[J].Soil and tillage research,2004,77(2):137-145. [百度学术]
曾曙才,苏志尧,陈北光,等.VA菌根真菌对植物养分吸收与传递的影响[J].西南林学院学报,2005,25(1):72-75.ZENG S C,SU Z Y,CHEN B G,et al.Effects of VA mycorrhiza (VAM) on nutrient acquisition and transmission of plants[J].Journal of Southwest Forestry College,2005,25(1):72-75(in Chinese with English abstract). [百度学术]
徐静,董宽虎,高文俊,等.丛枝菌根真菌提高植物耐盐能力的作用机制[J].草业与畜牧,2010(6):5-8.XU J,DONG K H,GAO W J,et al.Mechanism of arbuscular mycorrhizal fungi in alleviation of salt stress[J].Prataculture & animal husbandry,2010(6):5-8(in Chinese with English abstract). [百度学术]
TEDERSOO L,BAHRAM M,PÕLME S,et al.Response to Comment on “Global diversity and geography of soil fungi”[J/OL].Science,2015,349(6251):936[2022-03-24].https://doi.org/10.1126/science.aaa5594. [百度学术]
BEHNKE G D,ZABALOY M C,RIGGINS C W,et al.Acidification in corn monocultures favor fungi,ammonia oxidizing bacteria,and nirK-denitrifier groups[J/OL].Science of the total environment,2020,720:137514[2022-03-24].https://doi.org/10.1016/j.scitotenv.2020.137514. [百度学术]
阳祥,李先德,刘吉龙,等.不同轮作模式的土壤真菌群落结构及功能特征分析[J].环境科学学报,2022,42(4):432-442.YANG X,LI X D,LIU J L,et al.Analysis on the structure and function of soil fungi community in different crop rotation modes[J].Acta scientiae circumstantiae,2022,42(4):432-442(in Chinese with English abstract). [百度学术]
苏婷,韩海亮,赵福成,等.水田、旱地与水旱轮作种植方式土壤微生物群落的差异[J].浙江农业科学,2016,57(2):261-262.SU T,HAN H L,ZHAO F C,et al.Differences of soil microbial communities in paddy field,dry land and paddy-upland rotation cropping system[J].Journal of Zhejiang agricultural sciences,2016,57(2):261-262(in Chinese). [百度学术]
LU H F,BAI Y,REN H,et al.Integrated emergy,energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields:implications for agricultural policy in China[J].Journal of environmental management,2010,91(12):2727-2735. [百度学术]
鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.BAO S D.Soil and agricultural chemistry analysis[M].3rd ed.Beijing:China Agriculture Press,2000(in Chinese). [百度学术]
SCHOCH C L,SEIFERT K A,HUHNDORF S,et al.Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi[J].PNAS,2012,109(16):6241-6246. [百度学术]
ADAMS R I,MILETTO M,TAYLOR J W,et al.Dispersal in microbes:fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances[J].The ISME journal,2013,7(7):1262-1273. [百度学术]
NILSSON R H,LARSSON K H,TAYLOR A F S,et al.The UNITE database for molecular identification of fungi:handling dark taxa and parallel taxonomic classifications[J].Nucleic acids research,2019,47(D1):259-264. [百度学术]
ROUSK J,BÅÅTH E,BROOKES P C,et al.Soil bacterial and fungal communities across a pH gradient in an arable soil[J].The ISME journal,2010,4(10):1340-1351. [百度学术]
COOKSON W R,OSMAN M,MARSCHNER P,et al.Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature[J].Soil biology and biochemistry,2007,39(3):744-756. [百度学术]
周玉杰,李建华,张广宇,等.基于高通量测序的橡胶林土壤真菌多样性及群落组成分析[J].南方农业学报,2018,49(9):1729-1735.ZHOU Y J,LI J H,ZHANG G Y,et al.Analysis of soil fungal diversity and community composition of rubber plantations based on high-throughput sequencing[J].Journal of southern agriculture,2018,49(9):1729-1735(in Chinese with English abstract). [百度学术]
徐国伟,李帅,赵永芳,等.秸秆还田与施氮对水稻根系分泌物及氮素利用的影响研究[J].草业学报,2014,23(2):140-146.XU G W,LI S,ZHAO Y F,et al.Effects of straw returning and nitrogen fertilizer application on root secretion and nitrogen utilization of rice[J].Acta prataculturae sinica,2014,23(2):140-146(in Chinese with English abstract). [百度学术]
王楠,潘小承,王传宽,等.模拟酸雨对毛竹阔叶林过渡带土壤真菌结构及其多样性的影响[J].环境科学,2020,41(5):2476-2484.WANG N,PAN X C,WANG C K,et al.Effects of simulated acid rain on soil fungi diversity in the transition zone of moso bamboo and broadleaf forest[J].Environmental science,2020,41(5):2476-2484(in Chinese with English abstract). [百度学术]
ZHANG X F,ZHAO L,XU S J,et al.Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types[J].Journal of applied microbiology,2013,114(4):1054-1065. [百度学术]
ROMANÍ A M,FISCHER H,MILLE-LINDBLOM C,et al.Interactions of bacteria and fungi on decomposing litter:differential extracellular enzyme activities[J].Ecology,2006,87(10):2559-2569. [百度学术]
张慧,马连杰,杭晓宁,等.不同轮作模式下稻田土壤细菌和真菌多样性变化[J].江苏农业学报,2018,34(4):804-810.ZHANG H,MA L J,HANG X N,et al.Changes of soil bacterial and fungal diversity in paddy soils under different rotation patterns[J].Jiangsu journal of agricultural sciences,2018,34(4):804-810(in Chinese with English abstract). [百度学术]
DEACON L J,JANIE PRYCE-MILLER E,FRANKLAND J C,et al.Diversity and function of decomposer fungi from a grassland soil[J].Soil biology and biochemistry,2006,38(1):7-20. [百度学术]
张立成,邵继海,林毅青,等.稻-稻-油菜轮作对土壤微生物活性和多样性的影响[J].生态环境学报,2017,26(2):204-210.ZHANG L C,SHAO J H,LIN Y Q,et al.Influence of microbial diversity and activity of soil on the rice-rice-rape rotation[J].Ecology and environmental sciences,2017,26(2):204-210(in Chinese with English abstract). [百度学术]
DE VRIES F T,GRIFFITHS R I,BAILEY M,et al.Soil bacterial networks are less stable under drought than fungal networks[J/OL].Nature communications,2018,9:3033[2022-03-24].https://doi.org/10.1038/s41467-018-05516-7. [百度学术]
MANZONI S,SCHIMEL J P,PORPORATO A.Responses of soil microbial communities to water stress:results from a meta-analysis[J].Ecology,2012,93(4):930-938. [百度学术]