摘要
为探究绿肥混播与氮肥配施对水稻产量、土壤碳氮和微生物群落的影响,明确影响微生物群落结构的主要环境因子,在紫云英与油菜混播的条件下,设置不施氮(CK)、常规施氮(MRN)与减施氮肥常规量20%、40%、60%(MRN1、MRN2、MRN3)共5个处理,测定水稻产量及构成要素、土壤碳组分、土壤氮组分和微生物群落相对丰度,分析碳氮对微生物群落的影响。结果显示:与CK相比,早稻产量增加24.42%~39.23%,晚稻增产19.34%~31.59%,处理MRN1早稻和晚稻的产量最高;与CK相比,MRN1处理的硝态氮、铵态氮、碱解氮含量分别显著高出22.07%、19.05%、11.20%(P<0.05)。土壤可溶性有机碳和易氧化有机碳的含量随施氮减少而增加;土壤硝态氮和碱解氮含量随施氮量的减少而降低。优势细菌是绿弯菌门、变形菌门、酸杆菌门、放线菌门、厚壁菌门;增施氮肥增加了细菌群落的均匀度指数。碱解氮、硝态氮、铵态氮与优势菌群呈负相关关系;微生物量氮、易氧化有机碳、可溶性有机碳与优势菌群呈正相关关系;对细菌群落结构影响最大的环境因子是碱解氮、微生物量氮和可溶性有机碳。以上结果表明,绿肥混播与减氮20%提升了水稻产量和土壤无机氮含量,增加了优势细菌群落丰度,有利于稻田减排增效,并维持稻田生态系统稳定。
我国农业生产每年大约使用0.3亿 t氮肥,约占全球农业氮肥使用量的30
绿肥作为有机物还田为土壤增加丰富的养分、促进土壤中难溶性养分转化、改善土壤理化性状、增加土壤微生物活动以及有利于水土保
目前关于绿肥还田与减施氮肥的研究,大多关注后茬作物产量和土壤养分,而关于土壤碳氮和微生物群落结构的研究较少。本研究探讨在绿肥混播还田下,减施氮肥对土壤活性有机碳组分和氮组分的影响及微生物多样性和群落结构的变化,旨在为提升稻田产量、土壤肥力和维持生态系统平衡提供科学依据。
试验于2020年9月-2021年11月,在江西农业大学科技园水稻试验田(28°46′N,115°55′E)进行。试验地属于亚热带季风性湿润气候,年均太阳总辐射量为4.79×1
在冬季种植紫云英18.75 kg/h
处理 Treatment | 早稻施氮量 Nitrogen application to early rice | 晚稻施氮量 Nitrogen application to late rice |
---|---|---|
CK | 0 | 0 |
MRN | 150 | 150 |
MRN1 | 120 | 120 |
MRN2 | 90 | 90 |
MRN3 | 60 | 60 |
注 Note:CK:紫云英、油菜混播+不施氮肥Mixed sowing of Chinese milk vetch and rapeseedseed+no nitrogen; MRN:紫云英、油菜混播+100%氮肥 Mixed sowing of Chinese milk vetch and rapeseedseed+conventional nitrogen application; MRN1:紫云英、油菜混播+减施20% Mixed sowing of Chinese milk vetch and rapeseedseed+ reduced nitrogen application by 20%;MRN2:紫云英、油菜混播+减施40%Mixed sowing of Chinese milk vetch and rapeseedseed+ reduced nitrogen application by 40%;MRN3:紫云英、油菜混播+减施60%氮肥 Mixed sowing of Chinese milk vetch and rapeseedseed+reduced nitrogen application by 60%.下同 The same as follows.
紫云英于2020年9月29日撒播,不施肥;油菜于2020年11月11日撒播,不施肥。早稻于2021年3月25日播种,5月3日移栽,7月21日收获;晚稻于6月27日播种,7月28日移栽,10月24日收获。化肥种类及其用量参照当地常规施肥:氮肥(N)150 kg/h
1)水稻测产及考种。于早晚稻成熟期,各小区普查20蔸作为有效穗计算的依据,用平均法在各小区随机选取有代表性的水稻植株5蔸,风干后作为考种材料。用清水漂洗,去空秕粒晾干后,用1/100分析天平测千粒重(干质量);每小区单打实收作为实际产量。水稻考种项目包括有效穗数、结实率、每穗粒数、千粒重。
2)土壤活性有机碳测定。于晚稻收获后,每小区按5点法取土样,取0~15 cm的耕作层土壤,混合均匀,一部分土壤自然风干,除去杂质过筛,存放于4 ℃冰箱用于活性有机碳的测定。土壤总有机碳测定采用重铬酸钾外加热法;活性有机碳采用333 mmol/L高锰酸钾氧化法测定;可溶性有机碳采用水提取、过滤方法测定;微生物量碳采用氯仿熏蒸K2SO4浸提法测定;易氧化有机碳采用 333 mmol/L高锰酸钾氧化-比色法测定。
3)土壤微生物测定。于晚稻收获后,在每小区进行随机5点取作物根际土样,混匀后立即用液氮冷冻并有-80 ℃冰箱保存,委托美吉生物医药科技有限公司进行高通量测序。首先采用美国QIAGEN 公司的DNeas
如
品种 Variety | 处理 Treatment | 有效穗数/(×1 Effective panicle number | 每穗粒数 Grain number per spike | 结实率/% Seed setting rate | 千粒重/g 1 000-grains weight | 实际产量/(kg/h Actual yield |
---|---|---|---|---|---|---|
早稻 Early rice | CK | 224.74±10.28b | 143.11±7.15a | 62.54±3.39a | 24.21±0.45b | 5 491.18±447.05b |
MRN | 272.73±13.20a | 145.08±10.50a | 59.33±3.99a | 25.16±0.22ab | 7 094.00±128.31a | |
MRN1 | 278.51±10.10a | 149.68±7.48a | 60.00±4.98a | 25.08±0.30ab | 7 645.45±89.54a | |
MRN2 | 277.21±20.18a | 145.89±3.31a | 59.09±8.88a | 24.57±0.28ab | 6 945.45±279.93a | |
MRN3 | 243.63±14.14ab | 141.34±12.05a | 67.59±0.57a | 25.42±0.05a | 6 832.32±470.72a | |
晚稻 Late rice | CK | 195.29±8.35b | 179.58±2.25a | 76.67±1.59a | 22.80±0.10c | 6 334.34±241.54c |
MRN | 228.32±6.94a | 183.17±1.34a | 71.18±1.88a | 22.98±0.12bc | 7 661.62±129.66b | |
MRN1 | 249.44±10.12a | 170.13±15.21a | 75.05±1.34a | 23.17±0.05ab | 8 335.35±92.40a | |
MRN2 | 229.97±6.77a | 181.66±8.54a | 74.58±1.61a | 23.38±0.03a | 7 925.25±247.28ab | |
MRN3 | 228.35±12.36a | 172.52±9.34a | 75.76±1.6a | 23.18±0.16ab | 7 559.6±252.74b |
在紫云英与油菜混播还田的条件下,不同减氮量对晚稻成熟期土壤活性有机碳组分的影响如
处理 Treatment | 有机碳/(g/kg) Organic carbon | 微生物量碳/(mg/kg) Microbial biomass carbon | 可溶性有机碳/(g/kg) Dissolved organic carbon | 活性有机碳/(g/kg) Active organic carbon | 易氧化有机碳/(g/kg) Easily oxidized organic carbon |
---|---|---|---|---|---|
CK | 16.47±0.66a | 467.44±6.42a | 0.33±0.02a | 2.74±0.12a | 3.12±0.12a |
MRN | 18.47±0.50a | 509.33±37.63a | 0.29±0.02a | 2.81±0.13a | 2.83±0.07a |
MRN1 | 19.36±0.36a | 535.76±4.46a | 0.31±0.01a | 2.97±0.20a | 2.97±0.09a |
MRN2 | 18.32±0.32a | 542.48±19.00a | 0.32±0.03a | 2.85±0.29a | 3.00±0.06a |
MRN3 | 17.98±0.36a | 536.52±25.62a | 0.32±0.01a | 2.84±0.04a | 3.03±0.09a |
在紫云英与油菜混播还田的条件下,不同施氮量对晚稻成熟期土壤氮组分的影响如
处理 Treatment | 全氮/(g/kg) Total N | 硝态氮/(mg/kg) NO | 铵态氮/(mg/kg) NH | 碱解氮/(mg/kg) Alkali hydrolyed nitrogen | 微生物量氮/(mg/kg) Microbial biomass nitrogen |
---|---|---|---|---|---|
CK | 1.67±0.01b | 6.69±0.11b | 4.78±0.17b | 119.9±3.22b | 52.54±1.47a |
MRN | 2.05±0.05a | 8.22±0.50a | 5.51±0.29ab | 133.57±2.48a | 54.93±3.07a |
MRN1 | 1.90±0.05a | 8.17±0.11a | 5.69±0.21a | 133.33±6.14a | 55.77±1.94a |
MRN2 | 1.93±0.05a | 7.48±0.22ab | 5.38±0.27ab | 131.02±4.09ab | 55.28±1.27a |
MRN3 | 1.92±0.05a | 7.54±0.37ab | 5.27±0.17ab | 126.47±1.72ab | 57.95±1.47a |
不同施氮水平下土壤碳库和氮库的相关性如
指标 Index | TOC | SMBC | DOC | AOC | ROC | TN | AN | NO | NH | SMBN |
---|---|---|---|---|---|---|---|---|---|---|
TOC | 1 | |||||||||
SMBC | -0.398 | 1 | ||||||||
DOC | -0.196 | 0.510 | 1 | |||||||
AOC | -0.077 | 0.089 |
0.77 | 1 | ||||||
ROC | -0.149 | 0.041 |
0.52 |
0.53 | 1 | |||||
TN | 0.495 |
-0.55 | -0.069 | 0.133 | 0.006 | 1 | ||||
AN |
0.55 |
-0.57 | -0.301 | 0.147 | 0.072 |
0.66 | 1 | |||
NO |
0.61 |
-0.65 | -0.385 | -0.097 | -0.348 |
0.69 |
0.57 | 1 | ||
NH |
0.79 | -0.495 | -0.222 | 0.002 | 0.153 | 0.390 |
0.60 |
0.55 | 1 | |
SMBN |
-0.59 | 0.474 | 0.413 | 0.174 | 0.041 | -0.387 |
-0.52 | -0.459 |
-0.59 | 1 |
注: TOC表示土壤有机碳,SMBC表示微生物量碳,DOC表示可溶性有机碳,AOC表示活性有机碳,ROC表示有氧化有机碳,TN表示全氮,AN表示碱解氮,SMBN表示微生物量氮。Note:TOC represents soil organic carbon,SMBC represents microbial biomass carbon,DOC represents soluble organic carbon,AOC represents active organic carbon,ROC represents readily organic carbon,TN represents total nitrogen,AN represents alkali-hydrolyzable nitrogen,SMBN represents microbial biomass nitrogen.
从微生物群落的Pan/Core OTU分析曲线(

图1 不同施氮量下土壤细菌群落Pan/Core OTU分析
Fig.1 Pan/Core OTU analysis of soil bacterial community under different nitrogen application rates
通过高通量测序共获得优化序列843 800条,351 572 912 bases,平均长度416 bp。物种注释共获得门水平物种59个,属水平物种947个,OTU水平7 622个。在晚稻成熟期的土壤样品中,处理MRN含OTUs 5 693个,其中特有的OTUs 111个;处理MRN含OTUs 5 693个,其中特有的OTUs 111个;处理MRN1含OTUs 6 183个,其中特有的OTUs 173个;处理MRN2含OTUs 5 945个,其中特有的OTUs 67个;处理MRN3含OTUs 5 844个,其中特有的OTUs 36个;处理CK含OTUs 6 006个,其中特有的OTUs 69个(

图2 不同施氮量下土壤细菌群落OTUs分布的Venn图
Fig.2 Venn diagram of OTUs distribution of soil bacterial community under different nitrogen application rates
不同施氮处理土壤细菌群落Alpha多样性指数分析(
处理 Treatment | Sobs | Simpson even | Shannon | Coverage |
---|---|---|---|---|
CK | 52.00±2.00a | 0.17±0.00b | 2.57±0.03a | 1.00±0.00a |
MRN | 49.00±0.58a | 0.19±0.01a | 2.62±0.01a | 1.00±0.00a |
MRN1 | 51.00±1.53a | 0.18±0.01ab | 2.60±0.05a | 1.00±0.00a |
MRN2 | 52.33±0.33a | 0.17±0.00b | 2.55±0.00a | 1.00±0.00a |
MRN3 | 52.00±2.00a | 0.17±0.01ab | 2.57±0.01a | 1.00±0.00a |
紫云英、油菜混播下不同施氮量处理土壤微生物群落在门水平的优势物种丰度如

图3 不同施氮量下土壤细菌群落的优势物种丰度(门水平)
Fig.3 Abundance diagram of dominant species of soil bacterial community under different nitrogen application rates (phylum level)
紫云英、油菜混播条件下不同施氮量细菌群落门水平与物种Circos关系如

图4 不同施氮量下样本与物种的Circos图
Fig.4 Circos diagram of samples and species under different nitrogen application rates
土壤细菌群落与碳氮组分的冗余分析(RDA)(

图5 不同施氮量下的土壤细菌群落与碳氮的RDA分析
Fig.5 RDA analysis of soil bacterial community and carbon and nitrogen under different nitrogen application rates
紫云英与油菜混播还田后,适当减施氮肥不会降低水稻产量;混播处理中,减氮20%的实际产量最高。减施氮肥降低了土壤全氮、硝态氮、铵态氮和碱解氮含量,增加了可溶性有机碳和易氧化有机碳含量。碱解氮、微生物量氮和可溶性有机碳是影响细菌群落的主要环境因子;施氮量会影响土壤微生物群落结构,减施氮肥会降低细菌群落均匀度指数,减施氮肥可增加优势菌门的相对丰度。
施用氮肥是提高作物产量的重要手段。紫云英、油菜混播可以充分利用光、热、水、养分、土地资源。王吕
土壤有机碳累积量既与有机物料施用量、施用时间有关,更与当地气候和土壤条件有
减氮施肥的目的是在保证产量的基础上提高氮素利用率,降低氮素损失。罗跃
在土壤生态系统中,微生物是物质循环和能量流动的重要参与者、维持者和贡献者,承担了碳氮循环等多种重要的生态服务功能。翻压绿肥可为微生物生长繁殖提供充足的碳源及氮源,影响微生物对碳源的利用,从而改变微生物群落的结构及多样性,施肥改变土壤组成和水稻根际环境,从而直接或间接地改变稻田土壤微生物群落结
参考文献 References
姜海斌,张克强,邹洪涛,等.减氮条件下不同施肥模式对稻田氮素淋溶流失的影响[J].环境科学,2021,42(11): 5405-5413.JIANG H B,ZHANG K Q,ZOU H T,et al.Effects of different fertilization modes on nitrogen leaching loss in rice fields under nitrogen reduction conditions [J].Environmental science,2021,42(11): 5405-5413 (in Chinese with English abstract). [百度学术]
史天昊,段英华,王小利,等.我国典型农田长期施肥的氮肥真实利用率及其演变特征[J].植物营养与肥料学报,2015,21(6): 1496-1505.SHI T H,DUAN Y H,WANG X L,et al.The true nitrogen utilization rate and its evolution characteristics of long-term fertilization in typical farmland in China [J].Journal of plant nutrition and fertilizer,2015,21(6): 1496-1505 (in Chinese with English abstract). [百度学术]
JU X T,KOU C L,ZHANG F S,et al.Nitrogen balance and groundwater nitrate contamination:comparison among three intensive cropping systems on the North China Plain[J].Environmental pollution,2006,43: 117-125. [百度学术]
李虹儒,许景钢,徐明岗,等.我国典型农田长期施肥小麦氮肥回收率的变化特征[J].植物营养与肥料学报,2009,15(2): 336-343.LI H R,XU J G,XU M G,et al.Variation characteristics of nitrogen recovery rate of wheat after long-term fertilization in typical farmland in China [J].Journal of plant nutrition and fertilizer,2009,15(2): 336-343 (in Chinese with English abstract). [百度学术]
张璐,黄晶,高菊生,等.长期绿肥与氮肥减量配施对水稻产量和土壤养分含量的影响[J].农业工程学报,2020,36(5): 106-112.ZHANG L,HUANG J,GAO J S,et al.Effects of long-term combined application of green manure and nitrogen fertilizer on rice yield and soil nutrient content [J].Journal of agricultural engineering,2020,36(5): 106-112 (in Chinese with English abstract). [百度学术]
黄国勤.江南丘陵区农田循环生产技术研究Ⅰ.江西绿肥生产的发展[J].耕作与栽培,2008(2): 1-2,12.HUANG G Q.Study on circular production technology of farmland in hilly area of Jiangxi Ⅰ.Development of green manure production in Jiangxi [J].Tillage and cultivation,2008(2): 1-2,12 (in Chinese). [百度学术]
黄建余,廖育林,鲁艳红,等.紫云英与油菜混播对绿肥及早稻产量的影响[J].湖南农业科学,2021(6): 34-37,48.HUANG J Y,LIAO Y L,LU Y H,et al.Effect of mixed sowing of Chinese milk vetch and rapeseed on green manure and early rice yield [J].Hunan agricultural sciences,2021(6): 34-37,48 (in Chinese with English abstract). [百度学术]
张秋丽,宋安易,费全凤,等.紫云英(蚕豆)与油菜混种对土壤及后茬水稻产量的影响[J].上海农业科技,2020(5): 122-123,128.ZHANG Q L,SONG A Y,FEI Q F,et al.Effects of mixed Chinese milk vetch (broad bean) and rapeseed on soil and rice yield in the next crop [J].Shanghai agricultural science and technology,2020(5): 122-123,128 (in Chinese). [百度学术]
MIYAZAWA K,MURAKAMI T,TAKEDA M,et al.Intercropping green manure crops: effects on rooting patterns[J].Plant and soil,2010,331(1/2):231-239. [百度学术]
TANG X,BERNARD L,BRAUMAN A,et al.Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions[J].Soil biology & biochemistry,2014,75:86-93. [百度学术]
夏文建,秦文婧,刘佳,等.长期绿肥利用下红壤性水稻土有机碳和可溶性有机碳的垂直分布特征[J].浙江农业学报,2020,32(5):878-885.XIA W J,QIN W J,LIU J,et al.Vertical distribution characteristics of organic carbon and soluble organic carbon in red paddy soil under long-term utilization of green manure [J].Zhejiang agricultural journal,2020,32(5):878-885 (in Chinese with English abstract). [百度学术]
王义祥,王峰,叶菁,等.绿肥还土对红壤有机碳组分的影响[J].福建农业科技,2019(11): 65-68.WANG Y X,WANG F,YE J,et al.Effect of returning green manure to soil on organic carbon components of red soil [J].Fujian agricultural science and technology,2019(11): 65-68 (in Chinese ). [百度学术]
魏夏新,熊俊芬,李涛,等.有机物料还田对双季稻田土壤有机碳及其活性组分的影响[J].应用生态学报,2020,31(7): 2373-2380.WEI X X,XIONG J F,LI T,et al.Effects of organic materials returning to field on soil organic carbon and its active components in double-cropping rice fields [J].Journal of applied ecology,2020,31(7): 2373-2380 (in Chinese with English abstract). [百度学术]
张迪,韩晓增,侯雪莹.长期不同施肥管理对黑土活性有机碳及碳库管理指数的影响[J].土壤通报,2011,42(3): 654-658.ZHANG D,HAN X Z,HOU X Y.Effects of long-term different fertilization management on active organic carbon and carbon pool management index of black soil [J].Soil bulletin,2011,42(3): 654-658 (in Chinese with English abstract). [百度学术]
肖小平,李超,唐海明,等.秸秆还田下减氮增密对双季稻田土壤氮素库容及氮素利用率的影响[J].中国生态农业学报(中英文),2019,27(3): 422-430.XIAO X P,LI C,TANG H M,et al.Effects of reducing nitrogen and increasing nitrogen density under straw returning on soil nitrogen storage capacity and nitrogen utilization efficiency in double-cropping rice fields [J].Chinese journal of ecological agriculture,2019,27(3): 422-430(in Chinese with English abstract). [百度学术]
王利利,董民,张璐,等.不同碳氮比有机肥对有机农业土壤微生物生物量的影响[J].中国生态农业学报,2013,21(9): 1073-1077.WANG L L,DONG M,ZHANG L,et al.Effects of organic fertilizers with different C/N ratios on microbial biomass of organic agricultural soils [J].Chinese journal of ecological agriculture,2013,21(9): 1073-1077 (in Chinese with English abstract). [百度学术]
高凤杰,马泉来,张志民,等.黑土区小流域土壤氮素空间分布及主控因素研究[J].环境科学学报,2016,36(8): 2990-2999.GAO F J,MA Q L,ZHANG Z M,et al.Study on spatial distribution and controlling factors of soil nitrogen in small watershed of black soil area [J].Journal of environmental sciences,2016,36(8): 2990-2999 (in Chinese with English abstract). [百度学术]
佀国涵,赵书军,王瑞,等.连年翻压绿肥对植烟土壤物理及生物性状的影响[J].植物营养与肥料学报,2014,20(4): 905-912.SI G H,ZHAO S J,WANG R,et al.Effects of successive years of turning green manure on physical and biological characteristics of tobacco-growing soil [J].Journal of plant nutrition and fertilizer,2014,20(4): 905-912 (in Chinese with English abstract). [百度学术]
田雅楠,王红旗.Biolog法在环境微生物功能多样性研究中的应用[J].环境科学与技术,2011,34(3):50-57.TIAN Y A,WANG H Q.Application of Biolog method in the study of functional diversity of environmental microorganisms [J].Environmental science and technology,2011,34(3): 50-57(in Chinese with English abstract). [百度学术]
XIE Z,HE Y,TU S,etal.Chinese milk vetch improves plant growth, developmentand
王吕,崔月贞,吴玉红,等.绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J].作物学报,2022,48(4): 952-961.WANG L,CUI Y Z,WU Y H,et al.Short-term effect of increasing yield and fertilizing by reducing nitrogen fertilizer under the cooperative return of green manure rice straw to the field [J].Acta crotalaria sinica,2022,48(4): 952-961(in Chinese with English abstract). [百度学术]
郭晓彦,宋晓华,刘春增,等.紫云英翻压量和化肥用量对水稻生长、产量及经济效益的影响[J].山地农业生物学报,2014,33(5): 7-12.GUO X Y,SONG X H,LIU C Z,et al.Effects of the amount of Chinese milk vetch and the amount of chemical fertilizer on the growth,yield and economic benefits of rice [J].Journal of mountain agriculture and biology,2014,33(5): 7-12(in Chinese with English abstract). [百度学术]
张俊莹,赵立琴,吴金花,等.秸秆还田条件下氮肥减施对稻田土壤养分及酶活性和产量的影响[J].黑龙江八一农垦大学学报,2021,33(5): 30-35.ZHANG J Y,ZHAO L Q,WU J H,et al.Effects of reduced application of nitrogen fertilizer on soil nutrients,enzyme activity and yield in paddy field under the condition of straw returning [J].Journal of Heilongjiang Bayi Agricultural University,2021,33(5): 30-35(in Chinese with English abstract). [百度学术]
黄晶,高菊生,刘淑军,等.冬种紫云英对水稻产量及其养分吸收的影响[J].中国土壤与肥料,2013(1): 88-92.HUANG J,GAO J S,LIU S J,et al.Effects of winter Chinese milk vetch on rice yield and nutrient absorption [J].Chinese soil and fertilizer,2013 (1): 88-92(in Chinese with English abstract). [百度学术]
王小彬,蔡典雄,张镜清,等.旱地玉米秸秆还田对土壤肥力的影响[J].中国农业科学,2000(4): 54-61.WANG X B,CAI D X,ZHANG J Q,et al.Effect of returning corn stalk to field in dry land on soil fertility [J].Chinese agricultural sciences,2000(4): 54-61(in Chinese with English abstract). [百度学术]
李锦,田霄鸿,王少霞,等.秸秆还田条件下减量施氮对作物产量及土壤碳氮含量的影响[J].西北农林科技大学学报(自然科学版),2014,42(1): 137-143.LI J,TIAN X H,WANG S X,et al.Effects of reducing nitrogen application on crop yield and soil carbon and nitrogen content under the condition of straw returning to field [J].Journal of Northwest A&F University (natural science edition),2014,42(1): 137-143(in Chinese with English abstract). [百度学术]
石柯,董士刚,申凤敏,等.小麦播量与减氮对潮土微生物量碳氮及土壤酶活性的影响[J].中国农业科学,2019,52(15): 2646-2663.SHI K,DONG S G,SHEN F M,et al.Effects of wheat sowing rate and nitrogen reduction on microbial biomass carbon and nitrogen and soil enzyme activity in fluvo-aquic soil [J].Chinese agricultural sciences,2019,52(15): 2646-2663(in Chinese with English abstract). [百度学术]
王兴龙,莫太相,邱传志,等.减氮配施有机肥对土壤碳库及玉米产量的影响[J].生态环境学报,2017,26(8): 1342-1348.WANG X L,MO T X,QIU C Z,et al.Effects of nitrogen reduction combined with organic fertilizer on soil carbon pool and corn yield [J].Journal of ecological environment,2017,26(8): 1342-1348(in Chinese with English abstract). [百度学术]
罗跃,卢秉林,周国朋,等.河西绿洲灌区玉米间作绿肥根茬还田的氮肥减施效应[J].植物营养与肥料学报,2021,27(12): 2125-2135.LUO Y,LU B L,ZHOU G P,et al.Effect of nitrogen fertilizer reduction on maize intercropping with green manure stubble and returning to field in Hexi Oasis Irrigation Area [J].Journal of plant nutrition and fertilizer,2021,27(12): 2125-2135(in Chinese with English abstract). [百度学术]
朱荣,柳丽丽,齐永波,等.稻田氨挥发和水稻产量对增效复合肥减氮施用的响应[J].农业环境科学学报,2021,40(9): 1935-1943.ZHU R,LIU L L,QI Y B,et al.Response of ammonia volatilization and rice yield in paddy field to nitrogen reduction application of synergistic compound fertilizer [J].Journal of agricultural environmental sciences,2021,40(9): 1935-1943(in Chinese with English abstract). [百度学术]
BOWLES T M,ACOSTA-MARTíNEZ V,CALDERON F,et al.Soil enzyme activities,microbial communities,and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape[J].Soil biology and biochemistry,2014,68: 252-262. [百度学术]
万水霞,唐杉,蒋光月,等.紫云英与化肥配施对土壤微生物特征和作物产量的影响[J].草业学报,2016,25(6): 109-117.WAN S X,TANG S,JIANG G Y,et al.Effects of combined application of Chinese milk vetch and chemical fertilizer on soil microbial characteristics and crop yield [J].Journal of prataculture,2016,25(6): 109-117(in Chinese with English abstract). [百度学术]
WANG C,LIU D W,BAI E.Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition[J].Soil biology and biochemistry,2018,120: 126-133. [百度学术]
陈玲,万韦韬,刘兵,等.稻虾共作对稻田水体微生物多样性和群落结构的影响[J].华中农业大学学报,2022,41(1): 141-151.CHEN L,WAN W T,LIU B,et al.Effects of rice-shrimp farming on microbial diversity and community structure in paddy water [J].Journal of Huazhong Agricultural University,2022,41(1): 141-151(in Chinese with English abstract). [百度学术]
理鹏,吴建强,沙晨燕,等.粪肥和有机肥施用对稻田土壤微生物群落多样性影响[J].环境科学,2020,41(9): 4262-4272.LI P,WU J Q,SHA C Y,et al.Effect of manure and organic fertilizer application on microbial community diversity in paddy soil [J].Environmental science,2020,41(9): 4262-4272(in Chinese with English abstract). [百度学术]
ZHU Y G,SU J Q,CAO Z H,et al.A buried Neolithic paddy soil reveals loss of microbial functional diversity after modern rice cultivation[J].Science bulletin,2016,61(13): 1052-1060. [百度学术]
ZECHMEISTER-BOLTENSTERN S,KEIBLINGER K M,MOOSHAMMER M,et al.The application of ecological stoichiometry to plant-microbial-soil organic matter transformations[J].Ecological monographs,2015,85(2): 133-155. [百度学术]
邹雪峰,何翔,李铭刚,等.稻油轮作农田土壤碳氮微生物群落多样性特征[J].环境科学与技术,2021,44(10): 27-35.ZOU X F,HE X,LI M G,et al.Diversity characteristics of soil carbon and nitrogen microbial community in rice tanker farming [J].Environmental science and technology,2021,44(10): 27-35(in Chinese with English abstract). [百度学术]
赵春梅,王文斌,张永发,等.不同母质橡胶林土壤真菌群落结构特征及其与土壤环境因子的相关性[J].南方农业学报,2021,52(7): 1869-1876.ZHAO C M,WANG W B,ZHANG Y F,et al.Structural characteristics of soil fungal communities in different parent rubber forests and their correlation with soil environmental factors [J].Journal of south China agriculture,2021,52(7): 1869-1876(in Chinese with English abstract). [百度学术]