网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

茶多酚与肠道微生物的相互作用及其对人体健康的影响  PDF

  • 吴神群
  • 李玉壬
  • 陈春凤
  • 杨慧
  • 杨晓萍
华中农业大学园艺林学学院,武汉 430070

中图分类号: TS272.5+5TS201.3

最近更新:2022-10-11

DOI:10.13300/j.cnki.hnlkxb.2022.05.006

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

近年来茶多酚与肠道微生物的相互作用逐渐成为食品科学、营养学和生物学的研究热点。茶多酚通过肠道微生物代谢产生的活性物质具有抗氧化、降脂、消炎等作用,而茶多酚又可以通过调节肠道微生物而影响人体健康。本文综述了茶多酚在体内的吸收、肠道微生物对茶多酚的代谢去向、茶多酚对肠道微生物组成的调节及二者的相互作用在降血脂、减少脂肪堆积、维持肠道屏障等方面的研究进展,旨在为茶多酚与肠道微生物的双向作用对人体健康的改善研究提供一定参考。

肠道微生物区系稳态与人体的健康密切相关,肥胖、糖尿病、抑郁症等健康问题都与肠道菌群失调有

1,通过调节肠道菌群的组成和结构来改善人体健康的相关研究受到越来越多的关注,特别是利用茶多酚调节肠道菌群,进而预防和治疗肥胖、抑郁症、炎症等症状是近年来研究的热2。在以往的研究中大多只涉及肠道微生物区系对茶多酚的代谢或茶多酚对肠道微生物的调节作用,极少有茶多酚与肠道微生物相互作用的研究报道,关于茶多酚与肠道微生物相互作用促进人体健康的机制尚不清楚。本文通过综述肠道微生物对茶多酚的代谢、茶多酚对肠道微生物的调节,以及两者间相互作用对机体的有益效应,来阐述茶多酚与肠道微生物间的关系,旨在为茶多酚-肠道微生物的双向作用对人体健康的改善研究提供参考。

1 茶多酚在体内的吸收

1.1 茶多酚在体内的吸收过程

茶多酚是茶叶的主要功能成分之一,约占茶叶干质量的18%~36%;儿茶素类是茶多酚的主体成分,约占茶多酚总量70%~80%。由于分子结构的不同,儿茶素又可分为表儿茶素(epicatechin,EC)、表没食子儿茶素(epigallocatechin,EGC)、表儿茶素没食子酸酯(epicatechin-3-gallate,ECG)和表没食子儿茶素没食子酸酯(epigallocatechin-3-gallate,EGCG)4种(图1)。

图1  儿茶素的结构

Fig.1  The structure of catechins

多酚在胃部仅被低程度吸收,少部分在小肠被吸收;肠道吸收多酚的方式主要有主动转运和被动扩散2种,以被动扩散为主。例如肠道主要通过被动扩散吸收儿茶素类物质,这是因为儿茶素类物质含羟基较多,无法通过脂质双层,但可经肠上皮细胞的紧密连接被优先吸收进入血

3。吸收的儿茶素通过门静脉进入肝脏再代谢,也可通过多药耐药蛋白(multidrug resistance protein 2,MRP2)从肝细胞外排到胆汁,再进入肠4

1.2 茶多酚在体内吸收程度的影响因素

茶多酚在体内的的吸收程度受到分子质量和结构、机体生理状态等多种因素的影响。研究发现,人在饮用绿茶后尿液中EGCG和ECG及其结合物占儿茶素摄入量的11.4%,而EGC和EC排泄量为28.5%

5,这说明酯型儿茶素和非酯型儿茶素的比例会影响茶多酚在体内的吸收程度。大鼠灌胃700 mg/kg茶多酚试验进一步证明机体对茶多酚吸收存在差异,EC、EGC、ECG和EGCG在血浆中浓度达到峰值的时间、血药浓度峰值和半衰期均存在差异,其中EGCG的血药浓度最高,为4.92 μg/mL6,说明此质量浓度下大鼠对EGCG的吸收程度最好。机体的生理状态也会影响其对茶多酚的吸收程度。给予茶多酚处理10 d后,采用LC-Q-TOF-MS系统检测肥胖大鼠血清和粪便中茶多酚化合物的含量,结果表明肥胖大鼠血浆中的EGCG和没食子儿茶素没食子酸酯(gallocatechin gallate,GCG)的浓度显著低于正常大鼠,而EGCG、GCG、ECG的排泄量显著升7

1.3 茶多酚的生物利用度

大鼠口服4种儿茶素的生物利用度均小于10%

8,造成茶多酚生物利用度低的主要原因是MRP2的外排机制。研究表明,添加MRP2的抑制剂MK-571可以显著增加EGCG在Caco-2细胞上的摄取,降低EGCG的外排,使表观渗透系数Papp BL-AP/Papp AP-BL从3.36降到0.889,这可能是添加胡椒碱可以增加茶多酚生物利用度的原因。提高茶多酚的生物利用度,是茶多酚在医药应用领域必须攻克的难题。现有研究表明,茶多酚多组分给药比EGCG单独给药的口服生物利用度高,多组分给药可将EGCG的生物利用度从1.34%提高到9.24%~14.3%,并延长t1/28;此外,茶多酚与乳蛋白的结合、将儿茶素包裹在纳米颗粒中都可以提高茶多酚的生物利用10

2 肠道微生物对茶多酚的代谢

2.1 茶多酚在体内代谢的过程

茶汤或茶粉在体内经过口腔、胃和肠道消化后可将4种儿茶素逐渐释放出来,释放量达40%~70%,被释放出的物质经消化道进行降解,其中EGCG和ECG经消化后降解产生聚酯型儿茶素A、D及P-2

11。释放和降解的物质以及未被消化的茶多酚经代谢酶和肠道微生物的作用进一步转化为生物活性代谢物被吸收利用。代谢酶主要存在于肠道和肝脏中,已报道的儿茶酚-O-甲基转移酶、葡萄糖醛酸基转移酶和硫酸基转移酶,可对茶多酚进行甲基化、醛酸化和磺酸化修12。这些经肠-肝循环和酶修饰产生的Ⅰ型代谢物(内酯、酚酸等)和Ⅱ型代谢产物(葡萄醛酸盐和硫酸盐等)被排放进入结肠,经结肠微生物进一步降解成小分子物质,然后通过门静脉再次到达肝脏或进入体循环发挥各项生理功13

2.2 肠道微生物对茶多酚的降解

研究表明摄入的多酚90%~95%会直接到达大肠(结肠)后被微生物降

14,可见肠道微生物在茶多酚的分解代谢中起非常关键的作用。肠道微生物类群丰富,其中厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)和放线菌门(Actinobacteria)是构成肠道菌群的主要成员(占总数90%以上),但只有少部分肠道微生物催化酚类代谢及其分解代谢途径被证实,如双歧杆菌属(Bifidobacterium)、乳杆菌属(Lactobacillus)、拟杆菌属(Bacteroides15

肠道微生物分泌的水解酶、氧化还原酶、裂解酶等可以通过水解、裂解、脱甲基化等反应将未被消化的茶多酚降解成简单的小分子物

16,如PVAs和PVLs17,降解的物质被肠道吸收进入血液,在身体各部位发挥生理功能。采用UHPLC-Q-Orbitrap-MS研究EGCG在人体肠道微生物作用下的代谢过程,结果表明,EGCG经过连续酯解、C环开环、A环裂解等反应,迅速降解为4-苯丁酸和3-(3′,4′-二羟基苯基)丙酸等系列代谢18,而参与这些反应的酶很可能是微生物酯酶、脱羟基酶和脱羧酶。为研究分解茶多酚的具体菌株和分解途径,必须对肠道微生物进行分离和鉴定。从人体肠道微生物中分离的菌株Eggerthella sp. CAT-1和Eubacterium sp. Strain SDG-2可以将(+)-儿茶素(2R,3S)和(―)-表儿茶素(2R,3R)的C-环裂解和B环脱羟基,得到1,3-二苯基丙-2-醇衍生19-20,可见肠道微生物对儿茶素的裂解主要集中在C环上,对B环则进行脱羟基化。此外,有些肠道微生物还可水解茶多酚的酯键。植物乳杆菌299v可将TF-3,3′-双没食子酸转化为TF-3-没食子酸或TF-3′-没食子21

肠道微生物对茶多酚的降解受到茶多酚结构组成、菌群种类等多种因素的影响。特定降解菌对(+)-儿茶素和(―)-表儿茶素的降解速率对比结果显示,Eggerthella lenta rK3对两者的C环裂解产物相同,但(+)-儿茶素的裂解速率是(―)-表儿茶素的5

22。茶多酚的立体构象会限制肠道微生物对C环的裂解。尽管聚酯型儿茶素A和EGCG都有相似的黄烷-3-醇骨架,但聚酯型儿茶素A与肠道微生物共孵育的样品中并未检测到C环的裂解产23。不同人的肠道菌群组成存在差异,这会影响茶多酚代谢产物的种类和代谢速率,采用LC-TQ-MS和LC-TOF-MS对(―)-EC与24名健康人的肠道微生物共培养的代谢产物进行定性和定量分析,结果发现其代谢产物(如3,4-diHPV等)的类型和水平都存在显著的个体差24

2.3 茶多酚降解产物的生物活性

肠道微生物将茶多酚转化成简单的酚酸类物质后,不仅提高了茶多酚的生物利用度,还增加了生物活性。有研究表明,经肠道微生物降解后的代谢产物更易被吸收和利用,如黄烷-3-醇经结肠微生物降解后生物利用度提高到62%

25。已报道的茶多酚降解产物,如苯基-γ-戊内酯可保护棕色脂肪细胞免受氧化应激,PVAs和PVLs可改善炎症、尿路感染、增加神经细胞轴突数目和长度26。体外研究也证明了儿茶素和表儿茶素的C-环裂解产物,即具有3′,4'-二羟基化结构的代谢产物均有较高的抗氧化活性,尤其是3,4-二羟基苯基-2-醇,其DPPH测定的EC50值为5.97 μmol/L,是儿茶素的2倍、表儿茶素的1.827。肠道微生物还可通过促进EGCG和茶黄素的氧化和胺化作用产生代谢物,清除碳水化合物、脂质及氨基酸氧化产生的活性羰基化合物(人体的主要致病因子之一28-29。不同结构的茶多酚在肠道菌群的作用下能够转化成相同或相似的代谢产物,这可能是茶多酚结构不同但功能相同的原30

3 茶多酚对肠道菌群的调节

3.1 人体肠道微生物

肠道微生物可以分解膳食纤维,并代谢产生更加多样化的代谢产物,在调节宿主消化吸收、免疫应答等方面起着重要的作

31。按照生理功能可将肠道菌群划分为益生菌、有害菌和中性菌。主要益生菌有:乳杆菌属、链球菌属(Streptococcus)、双歧杆菌属等23个属的乳酸菌以及普氏栖粪杆菌(Faecalibacterium prausnitzii)、嗜黏蛋白阿克曼菌(Akkermansia muciniphila)等,其中嗜黏蛋白阿克曼菌在调节免疫、抗肿瘤、抑制肥胖、缓解炎症等方面具有重要作用,是新型的益生32。有害菌可以产生LPS等内毒素,进而引起慢性肠炎、直肠癌等疾病,如脱硫弧菌科(Desulfovibrionaceae)、产气荚膜梭状芽孢杆菌(Clostridium perfringens)、肠道沙门菌(Salmonella enterica)。中性菌具有两面性,只有在有害菌数量增多时,中性菌才会转变成致病菌,如肠球菌(Enterococcus)。肠道微生物在人体中的作用表明其可作为预防和治疗疾病的潜在靶点。

3.2 茶多酚调节肠道微生物的组成和丰度

1)增加肠道有益菌丰度。饮食方式、运动等因素都会改变肠道菌群的组成和结构,而茶多酚的摄入可以影响肠道菌群的生长和代谢,进而调节菌群。经青砖茶提取物处理后,小鼠肠道内的肠杆菌(Enterobacteria)数量减少14.69%、肠球菌减少8.69%,乳杆菌属和双歧杆菌属的数量分别增加10.47%和7.53%

33。与此类似,Yuan34的临床研究表明健康人连续饮用绿茶提取物(400 mL/d)2周后,α多样性指数显著升高,同时诱导短链脂肪酸产生菌,如毛螺菌科(Lachnospiraceae)、瘤胃球菌科(Ruminococcaceae)和双歧杆菌的生长,其中短链脂肪酸(short chain fatty acids,SCFAs)的乙酸、丙酸和丁酸与宿主的胆固醇代谢、血糖水平、胰岛素水平和炎症等密切相35,在促进人体健康方面具有重要的作用。

2)重塑肠道菌群。茶多酚可以重塑因高脂饮食等导致的肠道菌群紊乱,从而降低肥胖、癌症、糖尿病和炎症等疾病的发生。研究表明,茶多酚处理可显著降低因高脂饮食升高的α多样性指数,说明茶多酚可以重塑肠道菌群的结构;经体外试验进一步验证,茶多酚添加可显著降低厚壁菌门和拟杆菌门的比例,促进拟杆菌属和梭杆菌属(Fusobacterium),抑制肠道炎症致病菌Lachnoclostridium和巨单胞菌属(Megamonas)的生

36。对小鼠各肠段菌群检测结果进行α和β多样性分析发现,茶多酚还可显著缓解因抗生素处理导致的肠道菌群丰度和多样性下降,显著提高乳杆菌属、嗜黏蛋白阿克曼菌、布劳特菌属(Blautia)、罗斯菌属(Roseburia)等有益菌的相对丰度,其中拟杆菌属相对丰度增加18.6%37-38。有益菌丰度增加可抑制有害菌的生长,构建健康的肠道菌群组成,形成良性循环,对促进宿主健康具有重要的作用。

氧化后的茶多酚对肠道菌群的调节能力不变,但菌群种类和调节程度发生了改变。研究表明茶多酚及其氧化产物都具有调控狄氏副拟杆菌(Parabacteroides distasonis)、双歧杆菌属、普雷沃菌属(Prevotella)和嗜黏蛋白阿克曼菌等肠道菌群的能

39,但仅茶多酚可以富集与降血糖相关的肠道微生物,而茶黄素不能富集这类菌40。在调节程度上,氧化程度越深调节效果可能越明显,如熟普洱比生普洱在调节拟杆菌属、瘤胃球菌属(Ruminococcus)、嗜黏蛋白阿克曼菌等菌群上具有更好的效41

3)茶多酚对肠道菌群调节的局限性。茶多酚对肠道菌群的调节作用存在着一定的局限性。茶多酚在调节肠道菌群中显示出了明显的个体差异,EGCG和白藜芦醇组合可显著降低肥胖男性的拟杆菌门和普氏栖粪杆菌的相对丰度,但对女性没有影

42。10名平常不喝茶的健康志愿者连续10 d每天饮用约1 000 mL的绿茶,仅8名受试者的双歧杆菌比例增加,其中1名受试者的拟杆菌比例增加了643。对于同一菌群而言,不同的茶多酚组分可能导致完全相反的结果。研究发现,0.8% EGCG处理增加了与直肠癌相关的消化链球菌科(Peptostreptococcaceae)细菌的丰44,这与绿茶多酚处理的结果截然相45。因此,在今后的研究中应注重个体差异的问题,同时还要明确不同结构的茶多酚对肠道菌群的影响以及具体的调节程度和范围。

4 茶多酚与肠道微生物的相互作用对宿主健康的影响

4.1 降血脂

血脂中的主要成分为甘油三酯(triglycerides,TG)和胆固醇(total cholesterol,TC)。TG在肝脏中积累会引起简单脂肪变性,诱导非酒精性脂肪肝病,最终可能发展为肝硬化和肝癌。微生物在非酒精性肝病的发生、发展中扮演着重要角色,而茶多酚的摄入可增加乳酸菌的多样性,抑制有害菌,如腐生葡萄球菌的生长,呈剂量依赖的方式减小肝脏脂肪变

46。绿茶多酚也可通过上调AMPK基因的表达,增加AMPK乙酰辅酶A羧化酶和SREBP-1c的磷酸化水平,使肝脏中TG含量从13.65 μmol/g降至9.05 μmol/g47

茶多酚及其氧化产物还具有良好的调节胆固醇代谢物胆汁酸(bile acid,BAs)的作用,且这种效果是由肠道微生物介导的。茶褐素对胆固醇代谢的影响研究发现,225 mg/(kg·d)茶褐素处理可以抑制小鼠和人体内与胆盐酸水解酶活性相关的微生物生长,增加回肠中结合态BAs的水平,抑制肠道FXR-FGF15信号通路,使BAs的肝脏产生和粪便排泄量增加,从而降低肝脏TC含

48。茶多酚除促进BAs生成外,还可降低BAs的再吸收,0.32% EGCG可提高胆固醇7α-羧化酶(提高5.6倍)、HMG-CoA还原酶、低密度脂蛋白受体mRNA表达水平,降低BAs的再吸收,粪便总BAs排泄量增加1.5倍,使肠道BAs水平降49。可见茶多酚通过调节相关菌群种类和丰度降低体内TG和TC的水平以达到降血脂的目的,从而预防高脂血症、肝硬化等疾病的发生。

4.2 减少脂肪的堆积

肠道微生物与脂肪代谢密切相关。已有研

50表明,厚壁菌门与体质量增加有关,而拟杆菌门则相反;副干酪乳杆菌(Lactobacillus paracasei CNCM I-4270)、鼠李糖乳杆菌(L. rhamnosus I-3690)等乳酸菌和双歧杆菌属特定菌种的摄入可以不同程度地降低脂质代谢相关基因的表达,如AMPKPPARαSREBP⁃1cSREBP⁃2CPT⁃1等,这些基因的表达量关系着脂质的吸收、脂肪的生成和氧化。

茶多酚可以通过改变特定菌群的组成和相关基因的表达,抑制脂肪的生成,促进脂肪氧化,调节宿主能量代谢,达到减少脂肪堆积的目的,进而改善肥胖及其并发症。红茶多酚处理可以诱导盲肠厚壁菌门减少和拟杆菌门增加,同时在属水平上降低与体质量呈正相关的双歧杆菌属、布劳特菌属、布兰特菌属(Bryantella)等菌群的比例,提高AMPK磷酸化水平,调节脂质代谢相关基因的表

51,刺激脂肪的氧化和分解,抑制脂肪细胞中的脂肪堆52。通过调节宿主能量转换也可减少脂肪积累,经16S rRNA基因测序、靶向代谢组学分析和KEGG推断分析,可以得出茶多酚通过增加瘤胃球菌科、毛螺菌科和拟杆菌科等有益微生物,促进肠道微生物的线粒体TCA循环和尿素循环来增加能量转53,从而加快脂肪的消耗,减少脂肪积累量。

4.3 维持肠道屏障完整

1)破坏肠道屏障的因素。肠道菌群的改变是破坏肠道屏障的诱因。慢性肠炎患者的厚壁菌门丰度大幅下降,变形菌门和放线菌门的比例上升,产气荚膜菌、脱硫弧菌等有害菌数量增加,直接破坏了肠上皮紧密连接蛋白,导致肠道屏障被破坏,免疫系统紊乱,促炎因子如白细胞介素-6(interleukin-6,IL-6)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素-1β(interleukin-1β,IL-1β)等大量产生,引起炎症反

54。肠道微生物还可以产生和响应氧化还原信号(主要为ROS),而氧化还原信号是宿主免疫和肠道微生物串扰的关键调控因子,过量的ROS会破坏肠道黏膜屏障的完整55

2)维持肠道屏障完整的途径。茶多酚作为一种很好的调节剂,可以通过增加有益菌的数量、降低致病菌的丰度来调节肠道菌群的组成,进而维持肠道屏障完整性。已有研究表明绿茶多酚的摄入可以降低拟杆菌门和梭杆菌属的丰度,增加厚壁菌门的丰度,降低炎性因子IL-6、TNF-α和IL-1β的表达,抑制炎症信号通路toll样受体4(toll-like receptor 4,TLR4)的诱导水平,使肠细胞壁得到修

56。其中厚壁菌门的普氏栖粪杆菌可以产生抗炎代谢产物短链脂肪酸(SCFAs),是治疗炎症的关键菌之一。口服EGCG也可以通过丰富SCFAs产生菌达到同样的效57。肠道紧密连接蛋白(tight junction protein)是肠道机械屏障的主要结构基础,用2%的绿茶多酚处理C57BL/6J雄性小鼠,可以提高小鼠肠道紧密连接蛋白(claudin-1、occludin和ZO-1)mRNA的表达水平,进而维持正常的细胞旁路通透性,防止有毒物质入侵机体,达到预防炎症的目58

降低肠道氧化应激状态也是维持肠道屏障完整的有效途径。毛螺菌科、拟杆菌属、另枝菌属(Alistipes)和粪杆菌属(Faecalibaculum)等菌群是肠道氧化还原状态的生物标志物,与ROS的产生有关,对盲肠细菌进行16S rRNA基因测序并采用LEfSe和CCA分析茶多酚、肠道微生物和肠道氧化应激状态的关系,得出茶多酚的摄入可以调节相关菌群的组成,进而降低肠道氧化应激状

59。免疫系统的相对稳定意味着肠道氧化应激状态得到减轻,炎症产生通路被阻断。Liu60研究结果表明,EGCG可通过调节肠道菌群谱和回肠免疫球蛋白的产生来改善代谢紊乱,而回肠中表达的基因,尤其是IghvsC2Iftm1pigRAnpep,可能在协调小鼠肠道微生物和宿主相互作用的免疫中发挥重要作用。因此,茶多酚对机体的直接作用以及通过肠道微生物的间接作用共同维持了肠道屏障完整,进而预防炎症的产生。

4.4 保护神经系统

肠道微生物通过合成和分泌神经递质(如5-羟色胺(5-hydroxytryptamine,5-HT))、代谢色氨酸、产生SCFAs,来调节中枢和外周神经系统,诱发大脑功能改变,从而影响肠道分泌等功能,形成肠-脑轴双向作用。人体的某些代谢性疾病是由于昼夜节律紊乱引起的,而肠道菌群和下丘脑均存在昼夜节律振荡,从肠-脑轴角度利用茶多酚调节昼夜节律相关疾病成为未来研究的新方

61

微生物-肠-脑轴功能障碍是抑郁症等精神障碍疾病的主要病理基础。Pearson相关分析结果揭示精神分裂症的严重程度与琥珀酸弧菌属(Succinivibrio)的丰度呈正相关,与棒状杆菌属(Corynebacterium)的呈负相

62。EGCG通过调节NF-κB和STAT3信号通路减轻下丘脑炎症和小胶质细胞的过度激活,进而改善能量代谢紊乱和中枢神经系统功能障63。40 mg/(kg·d)的茶多酚给药后可以显著提高小鼠因抑郁症而降低的5-羟色胺(5-HT)和去甲肾上腺素的含量,同时小鼠强迫游泳静置时间从88 s缩短至48 s,悬尾静置时间从107 s缩短至62 s64,表明茶多酚对抑郁症具有一定的缓解作用。

4.5 其他有益影响

茶多酚与肠道微生物的相互作用还可以产生多种有益的影响。对糖尿病前期患者粪便细菌进行16S rRNA基因测序和Pearson相关性分析发现,饮用普洱茶粉可以改变与GLP-1、GLP-2、SCFAs相关的15个菌属丰度,增加糖尿病前期患者的胰岛素敏感性,进而治疗糖尿

65。2%氧化型茶多酚增加了老年大鼠肠道微生物代谢相关基因的表达,促使机体新陈代谢加快;同时还显著降低ABC转运系统ATP结合蛋白和染色质分割蛋白的含量,其中ABC转运体是动脉粥样硬化、恶性肿瘤等疾病防治的重要靶66,这提示茶多酚与肠道微生物作用对维持衰老个体的健康状况也有益处。茶多酚与肠道微生物相互作用是否还产生其他有益影响,有待后续深入研究。

4.6 茶多酚的安全性

尽管茶多酚对健康有诸多好处,但高剂量摄入可能会对机体造成毒害。已有报道表明大鼠口服2 000 mg/kg的EGCG制剂会致死,但口服剂量为200 mg/kg的EGCG对大鼠无毒

67。此外,高剂量的茶多酚也可能对机体的发育和繁殖产生不利影响,10 mg/mL的绿茶多酚会损害腹黑果蝇的发育和繁殖,雌性后代的数量减少、生殖器官萎缩,但雄性没有受到影68。由于多酚在人体和果蝇体内的代谢机制和生物利用度存在较大差异,因此很难就其对人体的影响得出直接结论。临床试验利用 1 200 mg/d EGCG对30名代谢综合征患者进行为期36个月的治疗,只有1名患者因转氨酶升高而停止治69,这说明1 200 mg/d的EGCG剂量对人体总体上是安全的,并不会对肝脏造成毒害。

综上,茶多酚与肠道微生物的相互作用机制如图2所示。

图2  茶多酚与肠道微生物的相互作用

Fig.2  Interaction between tea polyphenols and intestinal microorganism

5 总结与展望

茶多酚的摄入会影响肠道微生物的多样性,反之肠道微生物可以降解茶多酚并产生多种活性代谢产物,这种双向作用在维持肠道屏障、降低氧化应激、调节脂质代谢、增强免疫能力等方面具有重要作用,还可以有效预防和缓解肥胖及其并发症、炎症和抑郁症等疾病,改善宿主健康状况。

鉴于目前对茶多酚与肠道微生物的研究大多在体外和动物模型中进行,未运用在临床上,今后的研究可以从以下三方面进行:一是明确茶多酚与肠道微生物的因果关系,明确哪些是茶多酚的直接效应,哪些是肠道微生物的介导效应;二是明确茶多酚及其氧化产物的有效调节剂量范围及对具体菌群的调节程度,重视个体差异带来的影响,制定针对个体的有效给药方案;三是明确产生活性代谢产物的菌株以及具体产生途径,以便更好地预防和治疗疾病。

参考文献 References

1

郭慧玲,邵玉宇,孟和毕力格,等.肠道菌群与疾病关系的研究进展[J].微生物学通报,2015,42(2):400-410.GUO H L,SHAO Y Y,MENG H,et al.Research on the relation between gastrointestinal microbiota and disease[J].Microbiology China,2015,42(2):400-410(in Chinese with English abstract). [百度学术] 

2

MA H,HU Y Z,ZHANG B W,et al.Tea polyphenol-gut microbiota interactions:hints on improving the metabolic syndrome in a multi-element and multi-target manner[J].Food science and human wellness,2022,11(1):11-21. [百度学术] 

3

KOSIŃSKA A,ANDLAUER W.Cocoa polyphenols are absorbed in Caco-2 cell model of intestinal epithelium[J].Food chemistry,2012,135(3):999-1005. [百度学术] 

4

SANG S M,LAMBERT J D,HO C T,et al.The chemistry and biotransformation of tea constituents[J].Pharmacological research,2011,64(2):87-99. [百度学术] 

5

STALMACH A,TROUFFLARD S,SERAFINI M,et al.Absorption,metabolism and excretion of Choladi green tea flavan-3-ols by humans[J].Molecular nutrition & food research,2009,53(S1):44-53. [百度学术] 

6

ZHANG L,HAN Y H,SHAN J J,et al.Simultaneous determination of seven catechins in rat plasma by ultra-high performance liquid chromatography tandem mass spectrometry and its application to a pharmacokinetics study[J].Analytical methods,2015,7(22):9415-9420. [百度学术] 

7

陈博.茶多酚与茶黄素在高脂膳食诱导肥胖大鼠体内的吸收、代谢和排泄研究[D].合肥:安徽农业大学,2018.CHEN B.Study on the absorption,metabolism and excretion of tea polyphenols and theaflavins in obese rats induced by high-fat diet[D].Hefei:Anhui Agricultural University,2018(in Chinese with English abstract). [百度学术] 

8

李秋莎.茶多酚在大鼠的多组分药代动力学和抗自由基药效动力学及其相关性研究[D].大连:大连医科大学,2010.LI Q S.Multicomponent pharmacokinetics and antioxidation pharmacodynamics of tea polyphenols in rats as well as their correlations[D].Dalian:Dalian Medical University,2010(in Chinese with English abstract). [百度学术] 

9

郭子涛.表没食子儿茶素没食子酸酯(EGCG)在Caco-2细胞中的摄取、跨膜转运和外排研究[D].上海:华东师范大学,2011.GUO Z T.Uptake and transportation characteristics of EGCG across caco-2 monolayers[D].Shanghai:East China Normal University,2011(in Chinese with English abstract). [百度学术] 

10

ZHENG X J,ZHU J Y,ZHANG X,et al.The modulatory effect of nanocomplexes loaded with EGCG3''Me on intestinal microbiota of high fat diet-induced obesity mice model[J/OL].Journal of food biochemistry,2018,42(3):e12501[2022-01-22].https://doi.org/10.1111/jfbc.12501. [百度学术] 

11

NEILSON A P,HOPF A S,COOPER B R,et al.Catechin degradation with concurrent formation of homo- and heterocatechin dimers during in vitro digestion[J].Journal of agricultural and food chemistry,2007,55(22):8941-8949. [百度学术] 

12

SHRESTHA S P,THOMPSON J A,WEMPE M F,et al.Glucuronidation and methylation of procyanidin dimers b2 and 3,3″-di-O-galloyl-b2 and corresponding monomers epicatechin and 3-O-galloyl-epicatechin in mouse liver[J].Pharmaceutical research,2012,29(3):856-865. [百度学术] 

13

VAN DUYNHOVEN J,VAUGHAN E E,JACOBS D M,et al.Metabolic fate of polyphenols in the human superorganism[J].PNAS,2011,108(S1):4531-4538. [百度学术] 

14

WESTFALL S,PASINETTI G M.The gut microbiota links dietary polyphenols with management of psychiatric mood disorders[J/OL].Frontiers in neuroscience,2019,13:1196[2022-01-22].https://doi.org/10.3389/fnins.2019.01196. [百度学术] 

15

CARDONA F,ANDRÉS-LACUEVA C,TULIPANI S,et al.Benefits of polyphenols on gut microbiota and implications in human health[J].The journal of nutritional biochemistry,2013,24(8):1415-1422. [百度学术] 

16

杜敏如,房倩安,廖振林,等.微生物介导的表没食子儿茶素没食子酸酯生物转化及其代谢物活性研究进展[J].食品科学,2020,41(9):204-210.DU M R,FANG Q N,LIAO Z L,et al.A review on microbial biotransformation of epigallocatechin gallate and bioactivities of its metabolites[J].Food science,2020,41(9):204-210(in Chinese with English abstract). [百度学术] 

17

CHEN H D,SANG S M.Biotransformation of tea polyphenols by gut microbiota[J].Journal of functional foods,2014,7:26-42. [百度学术] 

18

LIU Z B,DE BRUIJN W J C,BRUINS M E,et al.Reciprocal interactions between epigallocatechin-3-gallate (EGCG) and human gut microbiota in vitro[J].Journal of agricultural and food chemistry,2020,68(36):9804-9815. [百度学术] 

19

JIN J S,HATTORI M.Isolation and characterization of a human intestinal bacterium Eggerthella sp.CAT-1 capable of cleaving the C-ring of (+)-catechin and (―)-epicatechin,followed by p-dehydroxylation of the B-ring[J].Biological and pharmaceutical bulletin,2012,35(12):2252-2256. [百度学术] 

20

WANG L Q,MESELHY M R,LI Y,et al.The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp.strain SDG-2,a human intestinal bacterium[J].Chemical & pharmaceutical bulletin,2001,49(12):1640-1643. [百度学术] 

21

CHEN T T,YANG C S.Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract:implications on health effects[J].Critical reviews in food science and nutrition,2020,60(16):2691-2709. [百度学术] 

22

KUTSCHERA M,ENGST W,BLAUT M,et al.Isolation of catechin-converting human intestinal bacteria[J].Journal of applied microbiology,2011,111(1):165-175. [百度学术] 

23

LIU Z B,DE BRUIJN W J C,SANDERS M G,et al.Insights in the recalcitrance of theasinensin A to human gut microbial degradation[J].Journal of agricultural and food chemistry,2021,69(8):2477-2484. [百度学术] 

24

LIU C,VERVOORT J,BEEKMANN K,et al.Interindividual differences in human intestinal microbial conversion of (―)-epicatechin to bioactive phenolic compounds[J].Journal of agricultural and food chemistry,2020,68(48):14168-14181. [百度学术] 

25

CALANI L,DEL RIO D,LUISA CALLEGARI M,et al.Updated bioavailability and 48 h excretion profile of flavan-3-ols from green tea in humans[J].International journal of food sciences and nutrition,2012,63(5):513-521. [百度学术] 

26

MENA P,BRESCIANI L,BRINDANI N,et al.Phenyl-γ-valerolactones and phenylvaleric acids,the main colonic metabolites of flavan-3-ols:synthesis,analysis,bioavailability,and bioactivity[J].Natural product reports,2019,36(5):714-752. [百度学术] 

27

CHEN W B,ZHU X L,LU Q,et al.C-ring cleavage metabolites of catechin and epicatechin enhanced antioxidant activities through intestinal microbiota[J/OL].Food research international,2020,135:109271[2022-01-22].https://doi.org/10.1016/j.foodres.2020.109271. [百度学术] 

28

ZHANG S W,OHLAND C,JOBIN C,et al.Black tea theaflavin detoxifies metabolic toxins in the intestinal tract of mice[J/OL].Molecular nutrition & food research,2021,65(4):2000887[2022-01-22].https://doi.org/10.1002/mnfr.202000887. [百度学术] 

29

ZHANG S W,ZHAO Y T,OHLAND C,et al.Microbiota facilitates the formation of the aminated metabolite of green tea polyphenol (―)-epigallocatechin-3-gallate which trap deleterious reactive endogenous metabolites[J].Free radical biology and medicine,2019,131:332-344. [百度学术] 

30

陈欣.普洱茶茶褐素与EGCG在大鼠肠道菌群作用下代谢产物分析[D].合肥:安徽农业大学,2016.CHEN X.The analysis of metabolites of Pu-erh tea theabrownine and EGCG by the intestinal flora in rats in vivo[D].Hefei:Anhui Agricultural University,2016(in Chinese with English abstract). [百度学术] 

31

王洁婧,王军,邓子新.微生物与生命健康专题序言[J].生物工程学报,2021,37(11):3711-3716.WANG J J,WANG J,DENG Z X.Preface for special issue on microbiome and human health[J].Chinese journal of biotechnology,2021,37(11):3711-3716(in Chinese with English abstract). [百度学术] 

32

ANHÊ F F,PILON G,ROY D,et al.Triggering Akkermansia with dietary polyphenols:a new weapon to combat the metabolic syndrome?[J].Gut microbes,2016,7(2):146-153. [百度学术] 

33

唐飞,艾于杰,张善明,等.不同年份青砖茶改善小鼠胃肠道功能的研究[J].华中农业大学学报,2018,37(1):82-88.TANG F,AI Y J,ZHANG S M,et al.Effect of storage time of dark brick tea on improving gastrointestinal function in mice[J].Journal of Huazhong Agricultural University,2018,37(1):82-88(in Chinese with English abstract). [百度学术] 

34

YUAN X J,LONG Y,JI Z H,et al.Green tea liquid consumption alters the human intestinal and oral microbiome[J/OL].Molecular nutrition & food research,2018,62(12):1800178[2022-01-22].https://doi.org/10.1002/mnfr.201800178. [百度学术] 

35

KIM C H,PARK J,KIM M.Gut microbiota-derived short-chain Fatty acids,T cells,and inflammation[J].Immune network,2014,14(6):277-288. [百度学术] 

36

李金.绿茶对肠道微生物的调节机理研究[D].南京:南京农业大学,2018.LI J.Mechanism research of regulation of green tea on intestinal microbes[D].Nanjing:Nanjing Agricultural University,2018(in Chinese with English abstract). [百度学术] 

37

薛俊敏.茶多酚对小鼠肠道菌群、肠道酶活性及短链脂肪酸的影响[D].济南:山东中医药大学,2018.XUE J M.Effect of tea polyphenols on intestinal flora,intestinal enzyme activities and short chain fatty acids in mice[D].Ji’nan:Shandong University of Traditional Chinese Medicine,2018(in Chinese with English abstract). [百度学术] 

38

LI J,CHEN C F,YANG H,et al.Tea polyphenols regulate gut microbiota dysbiosis induced by antibiotic in mice[J/OL].Food research international,2021,141:110153[2022-01-22].https://doi.org/10.1016/j.foodres.2021.110153. [百度学术] 

39

LIU Z B,CHEN Q,ZHANG C,et al.Comparative study of the anti-obesity and gut microbiota modulation effects of green tea phenolics and their oxidation products in high-fat-induced obese mice[J/OL].Food chemistry,2022,367:130735[2022-01-22].https://doi.org/10.1016/j.foodchem.2021.130735. [百度学术] 

40

CHEN T T,LIU A B,SUN S L,et al.Green tea polyphenols modify the gut microbiome in db/db mice as co-abundance groups correlating with the blood glucose lowering effect[J/OL].Molecular nutrition & food research,2019,63(8):1801064[2022-01-22].https://doi.org/10.1002/mnfr.201801064. [百度学术] 

41

YE J,ZHAO Y,CHEN X M,et al.Pu-erh tea ameliorates obesity and modulates gut microbiota in high fat diet fed mice[J/OL].Food research international,2021,144:110360[2022-01-22].https://doi.org/10.1016/j.foodres.2021.110360. [百度学术] 

42

MOST J,PENDERS J,LUCCHESI M,et al.Gut microbiota composition in relation to the metabolic response to 12-week combined polyphenol supplementation in overweight men and women[J].European journal of clinical nutrition,2017,71(9): 1040-1045. [百度学术] 

43

JIN J S,TOUYAMA M,HISADA T,et al.Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species[J].Microbiology and immunology,2012,56(11):729-739. [百度学术] 

44

胡凌.EGCG对高脂饮食诱导的肥胖HFA小鼠肠道菌群及脂质代谢的影响[D].广州:华南农业大学,2018.HU L.Effect of EGCG on gut microbiota diversity and fat deposition in KM mice[D].Guangzhou:South China Agricultural University,2018(in Chinese with English abstract). [百度学术] 

45

WANG J C,TANG L L,ZHOU H Y,et al.Long-term treatment with green tea polyphenols modifies the gut microbiome of female sprague-dawley rats[J].The journal of nutritional biochemistry,2018,56:55-64. [百度学术] 

46

WANG L,ZENG B H,ZHANG X J,et al.The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice[J].Food & function,2016,7(12):4956-4966. [百度学术] 

47

TAN Y,KIM J,CHENG J,et al.Green tea polyphenols ameliorate non-alcoholic fatty liver disease through upregulating AMPK activation in high fat fed Zucker fatty rats[J].World journal of gastroenterology,2017,23(21):3805-3814. [百度学术] 

48

HUANG F,ZHENG X,MA X,et al.Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J/OL].Nature communications,2019,10(1):4971[2022-01-22].https://doi.org/10.1038/s41467-019-12896-x. [百度学术] 

49

HUANG J B,FENG S M,LIU A N,et al.Green tea polyphenol EGCG alleviates metabolic abnormality and fatty liver by decreasing bile acid and lipid absorption in mice[J/OL].Molecular nutrition & food research,2018,62(4):1700696[2022-01-22].https://doi.org/10.1002/mnfr.201700696. [百度学术] 

50

WANG J,TANG H,ZHANG C,et al.Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice[J].The ISME journal,2015,9(1):1-15. [百度学术] 

51

HENNING S M,YANG J P,HSU M,et al.Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice[J].European journal of nutrition,2018,57(8):2759-2769. [百度学术] 

52

KAYASHIMA Y,MURATA S,SATO M,et al.Tea polyphenols ameliorate fat storage induced by high-fat diet in Drosophila melanogaster[J].Biochemistry and biophysics reports,2015,4:417-424. [百度学术] 

53

ZHOU J,TANG L L,SHEN C L,et al.Green tea polyphenols boost gut-microbiota-dependent mitochondrial TCA and urea cycles in Sprague-Dawley rats[J/OL].The journal of nutritional biochemistry,2020,81:108395[2022-01-24].https://doi.org/10.1016/j.jnutbio.2020.108395. [百度学术] 

54

田亚针,张晨曦,杨涛,等.益生菌和粪菌移植调节炎症性肠病的研究进展[J].食品科学,2021,42(19):250-259.TIAN Y Z,ZHANG C X,YANG T,et al.Progress in understanding the role of probiotics and fecal microbiota transplantation in regulating inflammatory bowel disease[J].Food science,2021,42(19):250-259(in Chinese with English abstract). [百度学术] 

55

CAMPBELL E L, COLGAN S P. Control and dysregulation of redox signalling in the gastrointestinal tract[J]. Nature reviews gastroenterol & hepatolgy, 2019, 16(2): 106-120. [百度学术] 

56

LI Y,RAHMAN S U,HUANG Y Y,et al.Green tea polyphenols decrease weight gain,ameliorate alteration of gut microbiota,and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity[J/OL].The journal of nutritional biochemistry,2020,78:108324[2022-01-22].https://doi.org/10.1016/j.jnutbio.2019.108324. [百度学术] 

57

WU Z H,HUANG S M,LI T T,et al.Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis[J/OL].Microbiome,2021,9(1):184[2022-01-22].https://doi.org/10.1186/s40168-021-01115-9. [百度学术] 

58

DEY P,SASAKI G Y,WEI P,et al.Green tea extract prevents obesity in male mice by alleviating gut dysbiosis in association with improved intestinal barrier function that limits endotoxin translocation and adipose inflammation[J].The journal of nutritional biochemistry,2019,67:78-89. [百度学术] 

59

MA H,ZHANG B W,HU Y Z,et al.Correlation analysis of intestinal redox state with the gut microbiota reveals the positive intervention of tea polyphenols on hyperlipidemia in high fat diet fed mice[J].Journal of agricultural and food chemistry,2019,67(26):7325-7335. [百度学术] 

60

LIU X X,ZHAO K,JING N N,et al.Epigallocatechin gallate (EGCG) promotes the immune function of ileum in high fat diet fed mice by regulating gut microbiome profiling and immunoglobulin production[J/OL].Frontiers in nutrition,2021,8:720439[2022-01-22].https://doi.org/10.1016/j.brainres.2007.07.083. [百度学术] 

61

SONG D,YANG C S,ZHANG X,et al.The relationship between host circadian rhythms and intestinal microbiota:a new cue to improve health by tea polyphenols[J].Critical reviews in food science and nutrition,2021,61(1):139-148. [百度学术] 

62

李时佳.人类肠道菌群特征及其与精神分裂症的相关性研究[D].广州:华南理工大学,2020.LI S J.The characteristics of human gut microbiota and its correlation with schizophrenia[D].Guangzhou:South China University of Technology,2020(in Chinese with English abstract). [百度学术] 

63

ZHOU J H,MAO L M,XU P,et al.Effects of (―)-epigallocatechin gallate (EGCG) on energy expenditure and microglia-mediated hypothalamic inflammation in mice fed a high-fat diet[J/OL].Nutrients,2018,10(11):1681[2022-01-22].https://pubmed.ncbi.nlm.nih.gov/30400620/.DOI:10.3390/nu10111681. [百度学术] 

64

付小彬,缑灵山,何冬梅,等.茶多酚改善慢性不可预知应激小鼠抑郁症状的作用[J].茶叶科学,2013,33(4):301-305.FU X B,GOU L S,HE D M,et al.The antidepressant effect of tea polyphenols to the chronic unpredictable stress induced depressive mice[J].Journal of tea science,2013,33(4):301-305(in Chinese with English abstract). [百度学术] 

65

李沫.普洱茶通过作用于肠道菌群从而对糖尿病前期患者糖脂代谢影响的机制研究[D].长春:吉林大学,2020.LI M.Mechanism of Puer tea improving glucose and lipid metabolism in pre-diabetic patients by effecting on intestinal microflora[D].Changchun:Jilin University,2020(in Chinese with English abstract). [百度学术] 

66

张蒙,聂妍,颜平,等.氧化型茶多酚对高脂饮食老年大鼠肠道微生物的影响[J].基因组学与应用生物学, 2021,41(3):577-586. ZHANG M, NIE Y, YAN P, et al. Effect of oxidized tea polyphenols on gut microbiota in aged rats fed with high fat diet[J]. Genomics and applied biology, 2021,41(3):577-586(in Chinese with English abstract). [百度学术] 

67

ISBRUCKER R A,EDWARDS J A,WOLZ E,et al.Safety studies on epigallocatechin gallate (EGCG) preparations.Part 2:dermal,acute and short-term toxicity studies[J].Food and chemical toxicology,2006,44(5):636-650. [百度学术] 

68

LOPEZ T E,PHAM H M,BARBOUR J,et al.The impact of green tea polyphenols on development and reproduction in Drosophila melanogaster[J].Journal of functional foods,2016,20:556-566. [百度学术] 

69

RUST R,CHIEN C,SCHEEL M,et al.Epigallocatechin gallate in progressive MS:a randomized,placebo-controlled trial[J/OL]. Neuroimmunology & neuroinflammation,2021,8(3):e964[2022-01-22].http://nn.neurology.org/content/8/3/e964.full.html.DOI:10.1212/NXI.0000000000000964. [百度学术]