摘要
为开展水稻茎粗相关基因的精细定位,利用岗46B/A232的高世代重组自交系群体和基于重测序构建的高密度遗传连锁图谱,采用复合区间作图法(CIM),利用R/qtl软件包对水稻倒二节的节间直径(RSID)和倒三节的节间直径(RTID)进行QTL分析,共检测到3个控制倒二节茎粗的QTL和7个倒三节茎粗的QTL,分布在第2、3、4、7、11号染色体上。其中2号染色体上的qRSID2-1和qRTID2-1距离较近,qRSID2-2/qRTID2-2和qRTID2-3可能是同一位点,并在多次试验中被重复检测到,表型贡献率为7.89%~12.36%,物理区间在100 kb之内。
抗倒伏和高产一直是水稻育种的重要方向,水稻的株型与水稻的抗倒伏能力、产量密切相关。国内外学者针对不同的生态地区和籼粳亚种提出了多种水稻的理想株型模型,粗壮秆是其中重要的指
已有研究发现,水稻的茎粗性状为多基因控制的数量性状,不同节间的茎粗性状可能由相同的QTL控制,具有一因多效
本研究利用已构建完成的岗46B/A232的高世代重组自交系和高密度的遗传连锁图谱,考察2019年和2020年海南与武汉两地群体的茎粗表型,采用R/qtl软件分析水稻的倒二节茎粗(diameter of reciprocal second internode, RSID)和倒3节茎粗(diameter of reciprocal third internode, RTID)性状,以期获得在不同环境下重复检测到的茎粗QTL,为水稻茎粗相关基因的精细定位、克隆以及利用提供遗传资源与材料。
三系保持系岗46B为粗秆籼稻品种,A232为细秆籼稻品种。本研究所使用的岗46B/A232重组自交系群体共包括265个株系,是以G46B为母本、A232为父本,杂交得到F1代,再通过连续自交,并采用单粒传法构建形成的。本研究以双亲和F13代的RIL群体作为试验材料,F9代之前由四川省农业科学院李永洪老师团队构
RIL群体夏季种植于武汉华中农业大学试验田,冬季种植于海南陵水华中农业大学南繁基地试验田。田间按每个株系种4行,每行5株,行株距28 cm×18 cm进行种植,田间管理同当地大田管理。水稻成熟期剥去茎秆外的叶鞘,用游标卡尺测量茎秆倒二节和倒三节节间的上、中、下3个部位的直径,以其平均值作为该节的茎粗表型值;取中间6个单株的主分蘖作为6个重复,以6个重复的平均值作为茎粗的表型值。
利用Excel对表型数据进行统计、整理;利用GraphPad Prism 9.0进行数据的分析与图形的绘制;利用MapGene2Chrom web v2.1(http://mg2c.iask.in/mg2c_v2.1/)绘制QTL的染色体物理位置示意图。
本研究利用的遗传图谱为笔者所在课题组已构建完成的Bin map图谱,该图谱是以籼稻R498作为参考基因组序列(http://www.mbkbase.org/rice),基于群体重测序得到的232 600个SNP位点开发得到3 327个Bin标记,利用高密度的Bin标记构建遗传连锁图谱,总图距为2 136.78 cM,每个Bin标记的平均图距为0.64 cM。采用复合区间作图法(CIM),基于Bin-map的遗传图谱,利用R/qtl包对群体的茎粗性状进行QTL分析,以LOD峰值处的Bin标记来评估QTL的效应,以2.5-LOD作为QTL的置信区间。
A232的茎秆相较于岗46B更细、更长(

图1 亲本的茎秆特征Fig,1 Stem characteristics of two parental lines
A:A232(左)与岗46B(右)倒数三节的节间;B:A232(左)与岗46B(右)倒数三节的茎粗差异。A:Reciprocal of the 1st to 3rd internodes between A232 (left) and G46B (right); B:Difference of each internode diameter between A232 (left) and G46B (right).
注: RSID:Diameter of reciprocal second internode;RSID:Diameter of reciprocal third internode; 采用t测验计算P值。**表示在1%水平显著;***表示在0.1%水平显著。Note:Generation of the P values by t-test. ** indicates significant difference at 1% level; *** indicates significant difference at 0.1% level.
RIL群体的茎粗性状频数分布呈连续的正态分布趋势,表明这2个性状是由多基因控制的数量性状,群体适用于QTL作图(

图2 RIL群体的倒二节茎粗(A)和倒三节茎粗(B)频数分布
Fig.2 Frequent distribution of diameter of reciprocal second internode(A) and diameter of reciprocal third internode(B) in RIL populations
利用R/qtl包对2019年、2020年海南和武汉两地RIL群体的茎粗性状进行QTL定位分析,共检测到10个茎粗相关QTLs,分布在第2、3、4、11号染色体上,包括3个倒二节茎粗QTL、7个倒三节茎粗QTL(
将3次的QTL数据进行汇总,并绘制QTL在染色体上的物理位置示意图(

图3 茎粗QTL在染色体上的物理位置示意图
Fig.3 Schematic diagram of the physical location of QTL to internode diameter on chromosomes
物理位置基于R498的参考基因组序列;左边的标注为QTL起止位置的中间。The physical location is based on the reference genome sequence of R498. The label on the left is the middle of the QTL start and end position.
本研究利用茎粗性状具有极显著差异的A232和岗46B作为亲本构建的F13代RIL群体,以及基于重测序构建的高密度遗传连锁图谱,对海南和武汉两地RIL群体的茎粗性状进行QTL定位分析,得到了多个茎粗性状的QTL。其中在2号染色体上的QTL距离较近,并被重复检测到,表型贡献率在8.26%~12.36%,说明2号染色体上的茎粗QTL重复性较好,可靠性高。多个相距较近的QTL位点可能是同一个QTL,并控制水稻不同节间的茎粗性状,这与前人的研
RIL群体的茎粗性状受到环境的影响,表现为在武汉相比于海南具有更粗的茎秆,这可能与两地不同的日照条件相关。但在两地检测到的茎粗QTL重复性较好,均检测到了倒二节茎粗位点qRTID2-1,说明该位点受环境的影响较小,可利用该位点在不同环境下改良水稻的茎粗性状。
目前在2号染色体上未有水稻茎粗相关基因被克隆。在qRSID2-2/qRTID2-2下游100 kb存在1个脆秆基因BC3,bc3突变体表现为矮秆、脆秆,该基因编码1个动力相关蛋白OsDRP2B,通过参与胞吞作用和高尔基体的跨膜运输,参与纤维素的合成,介导细胞次生细胞壁的形成,从而影响茎秆的机械强
参考文献 References
吴比,胡伟,邢永忠.中国水稻遗传育种历程与展望[J].遗传,2018,40(10):841-857.WU B,HU W,XING Y Z.The history and prospect of rice genetic breeding in China[J].Hereditas,2018,40(10):841-857(in Chinese with English abstract). [百度学术]
李红娇,张喜娟,李伟娟,等.不同穗型粳稻品种抗倒伏性的比较[J].中国水稻科学,2009,23(2):191-196.LI H J,ZHANG X J,LI W J,et al.Lodging resistance in japonica rice varieties with different panicle types[J].Chinese journal rice science,2009,23(2):191-196(in Chinese with English abstract). [百度学术]
KASHIWAGI T,HIROTSU N,MADOKA Y,et al.Improvement of resistance to bending-type lodging in rice[J].Japanese journal of crop science,2007,76(1):1-9. [百度学术]
陈志彬,陈小荣.水稻茎秆粗度主基因+多基因混合遗传分析[J].杂交水稻,2010,25(S1):108-111.CHEN Z B,CHEN X R.Analysis on major genes plus polygenes mixed inheritance of culm thickness trait in rice[J].Hybrid rice,2010,25(S1):108-111(in Chinese). [百度学术]
KASHIWAGI T.Identification of quantitative trait loci for resistance to bending-type lodging in rice (Oryza sativa L.)[J].Euphytica,2014,198(3):353-367. [百度学术]
JIANG M,YAMAMOTO E,YAMAMOTO T,et al.Mapping of QTLs associated with lodging resistance in rice (Oryza sativa L.) using the recombinant inbred lines derived from two high yielding cultivars,Tachisugata and Hokuriku 193[J].Plant growth regulation,2019,87(2):267-276. [百度学术]
杨窑龙,饶玉春,李赓觅,等.水稻茎秆相关性状遗传分析[J].分子植物育种,2011,9(2):160-168.YANG Y L,RAO Y C,LI G M,et al.Genetic analysis of culms traits in rice[J].Molecular plant breeding,2011,9(2):160-168(in Chinese with English abstract). [百度学术]
KASHIWAGI T,ISHIMARU K.Identification and functional analysis of a locus for improvement of lodging resistance in rice[J].Plant physiology,2004,134(2):676-683. [百度学术]
穆平,李自超,李春平,等.水、旱条件下水稻茎秆主要抗倒伏性状的QTL分析[J].遗传学报,2004,31(7):717-723.MU P,LI Z C,LI C P,et al.QTL Analysis for lodging resistance in rice using a DH population under lowland and upland ecosystems[J].Journal of genetics and genomics,2004,31(7):717-723(in Chinese with English abstract). [百度学术]
常思源.一个水稻壮秆QTL qSc8-1的精细定位[D].扬州: 扬州大学,2012:20-30.CHANG S Y.Fine mapping of a major QTL qSc8-1 for strong culm in rice[D].Yangzhou: Yangzhou University,2012:20-30(in Chinese with English abstract). [百度学术]
OOKAWA T,HOBO T,YANO M,et al.New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield[J/OL].Nature communications,2010,1:e132(2010-11-30)[2022-05-12].https://doi.org/10.1038/ncomms1132. [百度学术]
YANO K,OOKAWA T,AYA K,et al.Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism[J].Molecular plant,2015,8(2):303-314. [百度学术]
TU B,TAO Z,WANG S G,et al.Loss of Gn1a/OsCKX2 confers heavy-panicle rice with excellent lodging resistance[J].Journal of integrative plant biology,2022,64(1):23-38. [百度学术]
李永洪,高方远,张长伟,等.利用重组自交系群体分析籼稻A232抗三化螟相关QTL[J].分子植物育种,2015,13(2):254-260.LI Y H,GAO F Y,ZHANG C W,et al.QTL Analysis for resistance to Scirpophaga incertulas using Indica rice A232 recombinant inbred lines[J].Molecular plant breeding,2015,13(2):254-260(in Chinese with English abstract). [百度学术]
鞠晓晨,胡杰,高冠军,等.水稻茎秆抗倒伏相关QTL定位与分析[J].分子植物育种,2016,14(2):475-481.JU X C,HU J,GAO G J,et al.Relevant QTL mapping and analysis of lodging resistance in rice[J].Molecular plant breeding,2016,14(2):475-481(in Chinese with English abstract). [百度学术]
薄娜娜,王昊云,马玉庆,等.长雄蕊野生稻茎围和穗颈围的遗传分析[J].基因组学与应用生物学,2021,40(Z1):2290-2297.BO N N,WANG H Y,MA Y Q,et al.Inheritance analysis on stem circumference and panicle neck circumference of Oryza longistaminata[J].Genomics and applied biology,2021,40(Z1):2290-2297(in Chinese with English abstract). [百度学术]
代建秀,唐子清,吴春文,等.水稻特异粗茎相关性状QTL的初步定位分析[J].分子植物育种,2017,15(4):1395-1402.DAI J X,TANG Z Q,WU C W,et al.Preliminary mapping analysis of QTLs for the related traits of rice extreme culm thickness[J].Molecular plant breeding,2017,15(4):1395-1402(in Chinese with English abstract). [百度学术]
XIONG G,LI R,QIAN Q,et al.The rice dynamin-related protein DRP2B mediates membrane trafficking,and thereby plays a critical role in secondary cell wall cellulose biosynthesis[J].The plant journal,2010,64(1): 56-70. [百度学术]
REN D,RAO Y,WU L,et al.The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height,floral development and grain yield in rice[J].Journal of integrative plant biology,2016,58(6): 529-539. [百度学术]