不同环境基质下武汉蓝绿空间景观格局对降温效应的影响
DOI:
CSTR:
作者:
作者单位:

湖北大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(41401186)


The Influence of Blue-Green Space Landscape Patterns on the Cooling Effect under Different Environmental Matrices in Wuhan
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (41401186)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为探究蓝绿空间景观结构特征对地表温度(Land surface temperature, LST)的影响,更好地发挥蓝绿基础设施的热环境调节功能,基于遥感数据对武汉市地表温度进行反演,统计主城区、都市发展区和市域三个基质范围所有常用景观指数与LST之间的定量关系;采用主成分回归分析寻求不同基质条件下影响LST的主导因子,揭示其影响机制。结果显示:水体和绿地表现出明显的“冷岛效应”,水体的冷岛强度(8.96℃~9.34℃)明显大于绿地(4.44℃~5.47℃)。总体上各景观指数对LST变化的独立解释能力呈现出水体>绿地、景观组成>空间构形、斑块类型水平>景观水平>斑块水平、主城区>都市发展区>市域的规律。不同基质范围蓝绿空间影响地表温度的主导因子不同,主城区依次为水体斑块所占景观面积比例(PLAND_W)、水体斑块密度(PD _W)、绿地有效粒度面积(MESH _G)和绿地边缘密度(ED _G);都市发展区依次为水体对比度加权边缘密度(CWED _W)、水体斑块所占景观面积比例(PLAND _W)、绿地邻近指标均值(SIMI_MN _G)和绿地斑块所占景观面积比例(PLAND _G);市域蓝绿空间5个主要景观指数仅能解释35%的LST变化。综合考虑蓝绿空间之外其他景观要素的叠加影响时,水体和建设用地对热环境变化起到共同主导作用,绿地的降温作用被明显弱化或平抑。结果表明,武汉蓝绿空间表现出“冷岛效应”,蓝绿基础设施对热环境的调节作用呈现出基质效应,基于不同基质环境针对性的进行蓝绿景观空间配置及结构优化,有助于切实提升蓝绿基础设施的降温效果。

    Abstract:

    To enhance the thermal regulation efficiency of blue-green infrastructure, this study investigated the influence of blue-green landscape structure on land surface temperature (LST) across three spatial contexts: the main urban area, the urban development area, and the entire municipality. Remote sensing images acquired on September 18 and 19, 2022 were used to derive LST values and classify land cover categories. The correlation between LST values and all commonly used landscape metrics were statistically quantified. Principal component regression analysis was employed to identify the dominant factors influencing LST under different spatial contexts and to reveal the underlying mechanisms. The results showed thatSboth water bodies and green spaces exhibited significant “cooling island effect”, with the cooling intensity of water bodies (8.96°C–9.34°C) being significantly stronger than that of green spaces (4.44°C–5.47°C).S Overall, the independent explanatory ability of the landscape metrics for LST variation followed the pattern: water bodies > green spaces, landscape composition > spatial configuration, patch-level > landscape-level > class-level, and the main urban area > the urban development area > the entire municipality. The dominant factors influencing LST varied across spatialScontexts. In the main urban area, the key factors were: the percentage of water body area (PLAND_W), water body patch density (PD_W), effective mesh size of green spaces (MESH_G), and edge density of green spaces (ED_G). Together, these four metrics explained 82.4% of the LST variation. In the metropolitan development area, the dominant factors were: contrast-weighted edge density of water bodies (CWED_W), percentage of water body area (PLAND_W), mean proximity index of green spaces (SIMI_MN_G), and percentage of green space area (PLAND_G), collectively explaining 59.2% of the LST variation. In the entire municipality, the five dominant landscape metrics related to blue-green spaces only explained 35% of the LST variation. When the combined effects of other landscape elements were considered, the cooling effect of green spaces was remarkably weakened or suppressed. Water bodies and construction land jointly played a dominant role in impacting thermal environment. The findings indicate that the blue-green spaces exhibit a "cold island effect", and the regulation function of blue-green infrastructure in the thermal environment shows a distinct context effect. Targeted spatial allocation and structural optimization of blue-green landscapes based on specific matrix conditions can enhance the cooling efficiency of blue-green infrastructure.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-10-14
  • 最后修改日期:2025-12-26
  • 录用日期:2026-01-05
  • 在线发布日期:
  • 出版日期:
文章二维码