基于剪枝和知识蒸馏的YOLOv8轻量化苹果叶片病害检测方法
DOI:
CSTR:
作者:
作者单位:

河南农业大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家科技攻关计划


Lightweight YOLOv8 Model for Apple Leaf Disease Detection Based on Pruning and Knowledge Distillation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    苹果叶片病害严重影响其品质和产量。针对现有检测方法在准确率、实时性及复杂噪声环境下鲁棒性等方面的局限性,本研究提出了一种轻量化、实时苹果叶片病害检测模型SMPD-YOLO。首先,将SPPFCSPC(Spatial Pyramid Pooling Fast Cross Stage Partial CSP)特征金字塔模块嵌入到主干网络,增强特征融合能力。其次,引入MPD-IoU(minimum point distance-IoU)作为边界框回归损失函数,提高模型的精度和收敛速度。接着,通过基于层自适应幅度剪枝(layer adaptive magnitude-based pruning, LAMP)进一步压缩模型体积、减少浮点运算数。最后,采用通道级知识蒸馏(channel-wise knowledge distillation, CWD)策略,提升检测性能。实验结果表明,改进后SMPD-YOLO模型在IoU(Intersection over Union)阈值大于0.5时的平均精度均值(mean average precision, mAP@0.5)和每秒传输帧数(frame per second, FPS)上分别达到90.20%和133.3帧/秒,模型权重、浮点运算数分别为5.0MB、7.3GB。此外,改进模型在强光、弱光及图像模糊复杂噪声环境下仍能展现出优异的鲁棒性。综上所述,SMPD-YOLO模型兼具高准确性、轻量化和实时性,为在资源受限设备上实现高效叶片病害检测提供了轻量化设计思路。

    Abstract:

    Apple leaf diseases significantly impact fruit quality and yield. To overcome the limitations of existing detection methods in accuracy, real-time performance, and robustness under complex noise conditions, this study proposes SMPD-YOLO, a lightweight and real-time apple leaf disease detection model. Specifically, a Spatial Pyramid Pooling Fast Cross Stage Partial CSP (SPPFCSPC) module is integrated into the backbone network to enhance feature fusion. The Minimum Point Distance-IoU (MPD-IoU) is employed as the bounding box regression loss to improve model precision and accelerate convergence. The model is further compressed and computational complexity reduced via Layer Adaptive Magnitude-based Pruning (LAMP), while channel-wise knowledge distillation (CWD) is applied to boost detection performance. Experimental results demonstrate that SMPD-YOLO achieves a mean Average Precision (mAP@0.5) of 90.20% and a frame rate of 133.3 frames per second (FPS), with a model size of 5.0 MB and 7.3 GFLOPs. Additionally, SMPD-YOLO maintains strong robustness under challenging conditions, including strong illumination, low light, and image blur. Overall, the model combines high accuracy, lightweight design, and real-time performance, providing a lightweight design approach for achieving efficient leaf disease detection on resource-constrained equipment.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-25
  • 最后修改日期:2025-11-06
  • 录用日期:2026-01-15
  • 在线发布日期:
  • 出版日期:
文章二维码