基于多源光谱数据和机器学习算法的土壤有机碳反演研究——以内蒙古自治区东北部为例
DOI:
CSTR:
作者:
作者单位:

1.内蒙古自治区测绘地理信息中心;2.湖北省国土测绘院;3.国标(北京)检验认证有限公司;4.华中农业大学资源与环境学院

作者简介:

通讯作者:

中图分类号:

基金项目:

中国国家重点研发计划(2023YFC3709801,2023YFD1500100);国家自然科学基金(42101064,42361028);中国博士后科学基金独立项目(2021M693244)


Inversion of Soil Organic Carbon Using Multi-Source Spectral Data and Machine Learning Algorithms: A Case Study in Northeastern Inner Mongolia Autonomous Region, China
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    土壤有机碳(SOC)是全球碳循环的重要组成部分,对维持土壤健康、促进植物生长及调节气候变化具有重要作用。光谱分析技术因其高效、无损的检测特性,已成为SOC快速测定的重要手段,但外界环境因素(如光照、大气条件)和传感器参数(如光谱与空间分辨率)对基于不同来源光谱数据的SOC反演精度的影响机制尚缺乏系统性研究。本研究以内蒙古自治区东北部为研究区,采集160个表层土壤(0-20 cm)SOC样品,并同步获取近端高光谱(室内人造光源与室外太阳光源)以及星载多光谱(Landsat-8、Sentinel-2)与高光谱(ZY1-02D)数据,使用随机森林(RF)与支持向量机(SVM)算法,分别构建SOC反演模型。通过系统比较不同数据源的模型性能,分析环境因素与传感器参数对SOC反演精度的影响。结果显示:(1)室内人造光源因光谱信号稳定、可控性强,其反演精度略优于室外太阳光源,但二者差异较小,表明自然光照波动对SOC反演的影响有限;(2)近地高光谱数据反演精度显著高于卫星多光谱与高光谱数据,主要因卫星数据受大气散射、水汽吸收及混合像元等问题干扰;(3)在卫星数据中,高光谱卫星ZY1-02D的反演精度高于多光谱卫星,而Sentinel-2较Landsat-8的空间分辨率提升(10m vs. 30m)对模型性能改善有限,说明光谱分辨率对SOC精度的贡献大于空间分辨率。本研究通过多源光谱数据与机器学习算法的综合比较,系统阐明了环境因素和传感器参数对SOC反演精度的影响规律,为区域尺度土壤SOC的估算与制图提供了有益的数据选择依据和实践参考。

    Abstract:

    Soil organic carbon (SOC) is a crucial component of the global carbon cycle, playing a vital role in maintaining soil health, promoting plant growth, and regulating climate change. Owing to its efficiency and non-destructive nature, spectroscopic analysis has become an important method for rapid SOC determination. However, the mechanisms by which external environmental factors (e.g., illumination, atmospheric conditions) and sensor parameters (e.g., spectral and spatial resolution) influence SOC retrieval accuracy across different spectral data sources remain insufficiently understood. In this study, conducted in northeastern Inner Mongolia Autonomous Region, we collected 160 surface (0-20 cm) SOC samples and concurrently acquired proximal hyperspectral measurements (under indoor artificial illumination and outdoor sunlight), as well as spaceborne multispectral (Landsat-8, Sentinel-2) and hyperspectral (ZY1-02D) data. Random Forest (RF) and Support Vector Machine (SVM) algorithms were used to construct SOC retrieval models for each data source. By systematically comparing model performance, we analyzed how environmental factors and sensor parameters affect SOC retrieval accuracy. The results show that: (1) due to stable and controllable spectral signals, indoor artificial illumination yields slightly higher retrieval accuracy than outdoor sunlight, though the difference is small, indicating that natural light variability has a limited impact on SOC retrieval; (2) proximal hyperspectral data achieve significantly higher retrieval accuracy than satellite multispectral and hyperspectral data, primarily because satellite observations are affected by atmospheric scattering, water-vapor absorption, and mixed pixels; and (3) among satellite data, the hyperspectral ZY1-02D provides higher retrieval accuracy than multispectral sensors, while the improvement from Sentinel-2’s higher spatial resolution (10 m) over Landsat-8 (30 m) is limited, suggesting that spectral resolution contributes more to SOC retrieval accuracy than spatial resolution. Through a comprehensive comparison of multi-source spectral data combined with machine learning algorithms, this study elucidates the influence of environmental factors and sensor parameters on SOC retrieval accuracy and offers practical guidance for data selection in regional-scale SOC estimation and mapping.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-16
  • 最后修改日期:2025-10-21
  • 录用日期:2025-10-28
  • 在线发布日期:
  • 出版日期:
文章二维码