基于YOLOv11-FS模型的柑橘花粉活力率检测
DOI:
CSTR:
作者:
作者单位:

华中农业大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2024YFD1200501);中央高校基本科研业务费专项资金项目(2662024XXPY001)


Citrus Pollen Viability Detection via Modified YOLOv11-FS Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对柑橘花粉活力准确检测有利于无核柑橘品种培育,满足人们对高品质柑橘的需求,开发智能化的花粉活力检测工具非常重要。本研究通过人工采集和标记方式,构建了适用于花粉活力率检测的数据集。考虑到数据集中花粉样本不均衡及复杂背景的问题,本文改进了YOLOv11深度神经网络,提出了YOLOv11-FS模型;检测过程中,采用Focal-EIOU损失函数替换YOLOv11的EIOU损失,以改善对不均衡样本的检测性能,结合Soft-NMS提升检测框精度,克服了柑橘花粉颗粒抱团明显、体积较小且背景复杂等挑战。实验结果表明,改进的YOLOv11-FS模型在花粉检测任务方面表现卓越,估计的花粉活力率误差值仅0.70%,可育花粉检测的召回率、准确率和F1分数分别达98.76%、99.67%、99.22%,不可育花粉检测的相应指标也高达94.87%、98.89%、96.84%,满足花粉活力检测基本需求,为无核柑橘育种提供可靠支持。该方法可为柑橘果园智能化管理中的花粉活力检测、品种改良等提供技术支撑,也可为其他植物花粉活力检测提供参考。

    Abstract:

    Accurately detecting citrus pollen vitality is crucial for cultivating seedless citrus varieties and satisfying the demand for high-quality citrus products. Developing intelligent tools for this detection is therefore of great significance. In this study, we built a pollen vitality detection dataset through manual collection and labeling, addressing challenges such as the clustering, small size, and complex background of citrus pollen particles. To tackle the issues of imbalanced pollen samples and complex backgrounds in the dataset, we improved the YOLOv11 deep neural network, introducing the YOLOv11-FS model. During detection, we replaced the EIOU loss in YOLOv11 with the Focal EIOU loss function to boost performance on imbalanced samples and combined it with Soft NMS to enhance detection box accuracy. We also leveraged the backbone and neck networks of YOLOv11-FS to boost feature extraction and key pixel region recognition, improving small target detection accuracy. Experimental results showed that our improved YOLOv11-FS model performed outstandingly in pollen detection tasks, with a pollen vitality rate error of only 0.70%. For fertile pollen detection, the recall rate, accuracy rate, and F1 score reached 98.76%, 99.67%, and 99.22%, respectively, while for sterility pollen detection, these metrics were 94.87%, 98.89%, and 96.84%, respectively. These results met the basic requirements for pollen vitality detection and provided reliable support for seedless citrus breeding. This method offers technical support for pollen vitality detection and variety improvement in intelligent citrus orchard management and can also serve as a reference for pollen vitality detection in other plants.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-02
  • 最后修改日期:2025-10-14
  • 录用日期:2025-12-08
  • 在线发布日期:
  • 出版日期:
文章二维码