基于微型近红外光谱的黑茶地理溯源研究
CSTR:
作者:
作者单位:

1.淮南师范学院安徽省酿造工业微生物资源开发与应用工程研究中心/数字生态与健康研究所,淮南 232038;2.安徽农业大学茶树种质创新与资源利用全国重点实验室,合肥 230036;3.安徽省农业科学院,合肥 230001

作者简介:

任广鑫,E-mail:rgx@hnnu.edu.cn

通讯作者:

张正竹,E-mail:zzz@ahau.edu.cn

中图分类号:

S571.1

基金项目:

国家重点研发计划项目(2021YFD1601102);安徽农业大学茶树种质创新与资源利用全国重点实验室开放基金(SKLTOF20220127);安徽省高校自然科学研究重点项目(2022AH051590);淮南市科技计划项目(2023A314)


Geographical traceability of dark tea based on miniature near infrared spectroscopy
Author:
Affiliation:

1.Anhui Province Brewing Industry Microbial Resources Development and Application Engineering Research Center/Institute of Digital Ecology and Health, Huainan Normal University, Huainan 232038, China;2.State Key Laboratory of Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China;3.Anhui Province Academy of Agricultural Sciences, Hefei 230001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为规范茶叶市场秩序,保障消费者权益,本研究提出基于微型近红外光谱结合化学计量学的黑茶地理溯源的快速甄别方法,以提供透明、可信的黑茶产地溯源信息。以安徽安茶、四川雅安藏茶、湖南安化黑茶和湖北青砖茶为研究对象,采用微型近红外光谱仪原位采集样品光谱信息,利用模拟退火算法、粒子群优化算法、蚁群优化(ant colony optimization,ACO)算法与迭代变量子集优化法结合线性判别分析和极限学习机(extreme learning machine,ELM)方法构建黑茶地理溯源分类模型。结果显示,采用ACO提取10个与黑茶地理溯源有关的特征波长信息,基于上述10个波长信息的ELM预测模型的正确判别率为97.5%。研究结果表明,基于微型近红外光谱结合化学计量学方法对国内主要产区的黑茶地理溯源具有良好的实用价值。

    Abstract:

    A rapid identification method for geographical traceability of dark tea based on the miniature near-infrared spectroscopy combined with chemometrics was proposed to provide transparent and reliable traceability information about the areas of producing dark tea, standardize the order of tea market and protect rights of consumers. The miniature near-infrared spectrometer was used to collect spectral information in situ of dark tea including the An-tea in Anhui Province, Tibetan tea in Ya'an City of Sichuan Province, Anhua dark tea in Hunan Province, and Chin-brick tea in Hubei Province. The simulated annealing algorithms, particle swarm optimization algorithms, ant colony optimization(ACO) algorithm, and iterative variable set optimization method combined with linear discriminant analysis and extreme learning machine(ELM) method were used to construct a geographical traceability classification model for dark tea. The results showed that the accuracy of the ELM prediction model based on the 10 characteristic wavelength information related to the geographical traceability of dark tea extracted with ACO was 97.5%. It is indicated that the combination of the miniature near-infrared spectroscopy and chemometric methods has good practical value for the geographical traceability of dark tea from major production areas in China.

    参考文献
    相似文献
    引证文献
引用本文

任广鑫,张银凤,尹畅,甄亭,陈璐,宁井铭,张正竹.基于微型近红外光谱的黑茶地理溯源研究[J].华中农业大学学报,2025,44(6):59-66

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-16
  • 出版日期:
文章二维码