基于中红外光谱和机器学习算法的牛奶中β-乳球蛋白快速检测方法
作者:
作者单位:

1.华中农业大学动物科学技术学院、动物医学院,武汉 430070;2.宁夏兽药饲料监察所,银川 750000;3.石家庄天泉良种奶牛有限公司,石家庄 050061

作者简介:

邹慧颖,E-mail:1360717697@qq.com

通讯作者:

张淑君,E-mail:sjxiaozhang@mail.hzau.edu.cn

中图分类号:

S823

基金项目:

国家重点研发计划项目(2023YFD1300400);中央高校基本科研业务费专项(2662023DKPY001);石家庄市科技计划项目(221500182A)


A mid-infrared spectroscopy and machine learning algorithm-based method for rapidly detecting content of β-lactoglobulin in milk
Author:
Affiliation:

1.College of Animal Science and Technology,College of Veterinary Medicine, Huazhong Agricultural University,Wuhan 430070,China;2.Ningxia Institute of Veterinary Drug and Feed Supervision,Yinchuan 750000,China;3.Shijiazhuang Tianquan Breeding Dairy Co.,Ltd.,Shijiazhuang 050061,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为建立一种可以快速、批量、高效检测中国荷斯坦牛牛奶中β-乳球蛋白含量的方法,采集501份来自西北、华北和华中主要产奶地区的健康中国荷斯坦牛牛奶样本,采用高效液相色谱法测定牛奶样本中β-乳球蛋白的含量,并同步测定和收集牛奶样本中红外光谱数据(mid-infrared spectroscopy,MIRS)。以MIRS为预测变量,β-乳球蛋白含量为因变量,将12种光谱预处理方法进行连续2次的随机组合,并手动选取特征波段,使用偏最小二乘回归(partial least squares regression,PLSR)作为传统机器学习算法,建立预测牛奶中β-乳球蛋白含量的最优预测模型。结果显示:该模型交叉验证集和测试集的RC2RP2分别为0.812 9、0.768 8,均方根误差RMSEC和RMSEP分别为0.476 2、0.524 9 g/L,性能偏差比(ratio of performance to deviation,RPD)为2.076 6,达到畜禽生产性能的测定要求。试验结果表明,可以利用MIRS建立模型预测中国荷斯坦牛牛奶中的β-乳球蛋白含量。

    Abstract:

    501 milk samples of healthy Chinese Holstein cows were collected from major milk-producing regions in Northwest,North,and Central China to establish a method that can rapidly,in batch,and efficiently detect the content of β-lactoglobulin in milk from Chinese Holstein cows,high-performance liquid chromatography (HPLC) was used to determine the content of β-lactoglobulin in milk samples,and the mid-infrared spectroscopy (MIRS) data of milk samples were synchronously measured and collected 12 methods of spectra pretreatment were randomly combined twice in a row,and the characteristic bands were manually selected with MIRS as the predictor variable and the content of β-lactoglobulin as the dependent variable.Partial least squares regression (PLSR) was used as a traditional machine learning algorithm to establish an optimal model for the prediction of the content of β-lactoglobulin in milk.The results showed that the RC2 and RP2 of the cross validation set and test set in the established model was 0.812 9 and 0.768 8,with the root mean square errors,RMSEC and RMSEP of 0.476 2 g/L and 0.524 9 g/L,the RPD of 2.076 6,meeting the requirements for measuring the production performance of livestock and poultry.It is indicated that MIRS can be used to establish a model for predicting the content of β-lactoglobulin in milk from Chinese Holstein cows.

    图1 牛奶样本的平均光谱Fig.1 Mean spectra of milk samples
    图2 β-乳球蛋白特征波段光谱Fig.2 Characteristic spectral map of β-lactoglobulin
    图3 β-乳球蛋白模型真实值与预测值的线性拟合Fig.3 Linear fitting of true and predicted values of β-lactoglobulin
    表 1 有效样品数量及时间分布Table 1 Effective sample size and time distribution
    表 2 牛奶中β-乳球蛋白的含量Table 2 The content of β-lactoglobulin in milk
    表 3 较优预处理组合选择结果Table 3 Optimal preprocessing combination selection results
    表 4 不同主成分的建模效果Table 4 Modeling effect of different principal components
    表 5 预测模型的预测验证效果Table 5 Effects of prediction model
    参考文献
    相似文献
    引证文献
引用本文

邹慧颖,王东薇,樊懿楷,刘维华,杨俊华,余文莉,SABEK Ahmed Abdalla Ahmed Ibrahim,张淑君.基于中红外光谱和机器学习算法的牛奶中β-乳球蛋白快速检测方法[J].华中农业大学学报,2025,44(2):125-133

复制
分享
文章指标
  • 点击次数:8
  • 下载次数: 18
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-05-08
  • 在线发布日期: 2025-04-02
文章二维码