基于机器学习和中红外光谱的牦牛奶掺假 预测模型研究
作者:
作者单位:

1.华中农业大学动物科学技术学院、动物医学院,武汉 430070;2.甘南藏族自治州畜牧工作站,合作 747000;3.甘肃省碌曲县动物疫病预防控制中心,碌曲 747200

作者简介:

褚楚,E-mail:chu1999@webmail.hzau.edu.cn

通讯作者:

张淑君,E-mail:sjxiaozhang@mail.hzau.edu.cn

中图分类号:

O657.33;TS252.7

基金项目:

国家重点研发计划-政府间国际科技创新合作(2021YFE0115500);湖北省国际合作项目(2022EHB043)


Prediction adulteration of yak milk based on machine learning and mid-infrared spectroscopy
Author:
Affiliation:

1.College of Animal Science and Technology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, China;2.Animal Husbandry Station of Gannan Tibetan Autonomous Prefecture, Hezuo 747000,China;3.Animal Disease Prevention and Control Center of Luqu County, Gannan Prefecture,Luqu 747200,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为监督和规范牦牛奶生产和销售,对牦牛奶中奶牛奶的掺假比例进行定量预测,研发新的快速检测技术,通过中红外光谱技术结合机器学习算法建立检测牦牛奶中掺加奶牛奶的预测模型,以76份纯牦牛奶、76份掺加10%奶牛奶的牦牛奶、76份掺加25%奶牛奶的牦牛奶、76份掺加50%奶牛奶的牦牛奶为研究对象,利用5种光谱预处理算法、6种定性和12种定量机器学习算法,分别建立鉴别纯牦牛奶和掺加奶牛奶的牦牛奶的二分类定性模型和预测掺加奶牛奶比例的定量回归模型。结果显示,基于支持向量机建模算法、无预处理光谱建立的鉴定纯牦牛奶和掺加奶牛奶的牦牛奶的预测模型效果最好,该模型验证集AUC为0.95,准确性0.84,灵敏度0.93,特异性0.87,可用于纯奶和掺假奶的鉴定。利用贝叶斯正则化神经网络建模算法和一阶导数光谱预处理算法建立了预测牦牛奶中奶牛奶掺加比例的最佳定量模型,该模型RP2=0.88,RMSEV=6.57%,RPD=2.89%。结果表明,中红外光谱技术结合机器学习算法可有效地鉴定出掺加奶牛奶的牦牛奶,并可检测出掺假的比例。

    Abstract:

    A predictive model for detecting the addition of milk to yak milk was established by combining mid-infrared spectroscopy (MIRS) with machine learning algorithms to supervise and regulate the production and sale of yak milk, further quantitatively predict the proportion of adulteration in yak milk and provide new technology of rapid detection. 76 samples of pure yak milk, 76 samples of yak milk adulterated with 10% milk, 76 samples of yak milk adulterated with 25% milk, and 76 samples of yak milk adulterated with 50% milk were used to establish binary qualitative models for distinguishing pure yak milk from yak milk adulterated with milk, and quantitative regression models for predicting the proportion of yak milk adulterated with milk with five spectral preprocessing algorithms, six qualitative and twelve quantitative machine learning algorithms. The results showed that the predictive model for identifying pure yak milk and yak milk adulterated with milk based on support vector machine modeling algorithm and the spectrum without preprocessing had the best performance. The validation set AUC, the accuracy, the sensitivity, and the specificity of the model was 0.95, 0.84, 0.93, and 0.87, which can be used for the identification of pure milk and adulterated milk. The optimal quantitative model for predicting the proportion of milk in yak milk was established using Bayesian regularized neural network modeling algorithm and first-order derivative spectral preprocessing algorithm. The model had RP2=0.88, RMSEV=6.57%, and RPD=2.89%. It is indicated that the combination of mid-infrared spectroscopy and machine learning algorithms can effectively identify yak milk adulterated with milk and detect the proportion of adulteration.

    图1 牦牛奶、奶牛奶和不同掺假含量(10%~50%)的牦牛奶-奶牛奶混合物的中红外光谱图Fig.1 Mid-infrared spectroscopy of yak milk, dairy cattle milk and yak milk-dairy cattle milk mixture with different adulteration ratios (10%-50%)
    表 1 牦牛奶和奶牛奶的营养物质组成Table 1 The nutrient composition of yak milk and dairy cattle milk
    表 2 二分类定性模型在校正集和验证集中的性能Table 2 Performance of binary qualitative model in calibration set and validation set
    表 3 二分类最优模型预测校准集和验证集的准确性结Table 3 Accuracy of optimal binary classification model predicting calibration set and verification set data
    表 4 基于中红外光谱的牦牛奶中掺加奶牛奶含量的预测模型性能Table 4 Performance of the predictive model for cow milk content adulteration in yak milk based on mid-infrared spectroscopy
    参考文献
    [1] REN Q R,ZHANG H,GUO H Y,et al.Detection of cow milk adulteration in yak milk by ELISA[J].Journal of dairy science,2014,97(10):6000-6006.
    [2] 付尚辰,李玲,郑卫民,等.掺假羊乳及其制品中牛乳的检测技术研究进展[J].食品安全质量检测学报,2021,12(8):3000-3007.FU S C,LI L,ZHENG W M,et al.Research progress on adulteration detection technology of cow milk in goat milk and its products[J].Journal of food safety & quality,2021,12(8):3000-3007 (in Chinese with English abstract).
    [3] CHAFEN J J S,NEWBERRY S J,RIEDL M A,et al.Diagnosing and managing common food allergies[J/OL].Clinical governance,2010,15(4):7[2024-04-07].https://doi.org/10.1108/cgij.2010.24815dae.007 .
    [4] 尹艳. 奶及奶制品鉴别方法的研究[D].北京:北京化工大学,2013.YIN Y. Study on identification methods of milk and dairy products[D].Beijing:Beijing University of Chemical Technology,2013 (in Chinese with English abstract).
    [5] TRIMBOLI F,COSTANZO N,LOPREIATO V,et al.Detection of buffalo milk adulteration with cow milk by capillary electrophoresis analysis[J].Journal of dairy science,2019,102(7):5962-5970.
    [6] BOSCO C D,PANERO S,NAVARRA M A,et al.Screening and assessment of low-molecular-weight biomarkers of milk from cow and water buffalo:an alternative approach for the rapid identification of adulterated water buffalo mozzarellas[J].Journal of agricultural and food chemistry,2018,66(21):5410-5417.
    [7] NICOLAOU N,XU Y,GOODACRE R.Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species[J].Journal of dairy science,2010,93(12):5651-5660.
    [8] ZHAO X X,SONG Y T,ZHANG Y P,et al.Predictions of milk fatty acid contents by mid-infrared spectroscopy in Chinese Holstein cows[J/OL].Molecules,2023,28(2):666[2024-04-07].https://doi.org/10.3390/molecules28020666.
    [9] SOYEURT H,GRELET C,MCPARLAND S,et al.A comparison of 4 different machine learning algorithms to predict lactoferrin content in bovine milk from mid-infrared spectra[J].Journal of dairy science,2020,103(12):11585-11596.
    [10] CHRISTOPHE O S,GRELET C,BERTOZZI C,et al.Multiple breeds and countries’ predictions of mineral contents in milk from milk mid-infrared spectrometry[J/OL].Foods,2021,10(9):2235[2024-04-07]. https://doi.org/10.3390/foods10092235.
    [11] MENSCHING A,ZSCHIESCHE M,HUMMEL J,et al.Development of a subacute ruminal acidosis risk score and its prediction using milk mid-infrared spectra in early-lactation cows[J].Journal of dairy science,2021,104(4):4615-4634.
    [12] DENHOLM S J,BRAND W,MITCHELL A P,et al.Predicting bovine tuberculosis status of dairy cows from mid-infrared spectral data of milk using deep learning[J].Journal of dairy science,2020,103(10):9355-9367.
    [13] BRAND W,WELLS A T,SMITH S L,et al.Predicting pregnancy status from mid-infrared spectroscopy in dairy cow milk using deep learning[J].Journal of dairy science,2021,104(4):4980-4990.
    [14] TIPLADY K M,TRINH M H,DAVIS S R,et al.Pregnancy status predicted using milk mid-infrared spectra from dairy cattle[J].Journal of dairy science,2022,105(4):3615-3632.
    [15] SILVA L K R,UNIVERSITY S B S,GON?ALVES B R F,et al.Spectroscopic method (FTIR-ATR) and chemometric tools to detect cow’s milk addition to buffalo’s milk[J].Revista mexicana de ingeniería química,2019,19(1):11-20.
    [16] CIRAK O,ICYER N C,DURAK M Z.Rapid detection of adulteration of milks from different species using Fourier transform infrared spectroscopy(FTIR)[J].Journal of dairy research,2018,85(2):222-225.
    [17] SEN S, DUNDAR Z, UNCU O, et al. Potential of Fourier-transform infrared spectroscopy in adulteration detection and quality assessment in buffalo and goat milks[J/OL]. Microchemical journal, 2021,166:106207[2024-04-07].https://doi.org/10.1016/j.microc.2021.106207.
    [18] SPINA A A,CENITI C,PIRAS C,et al.Mid-infrared (MIR) spectroscopy for the detection of cow’s milk in buffalo milk[J].Journal of animal science and technology,2022,64(3):531-538.
    [19] GON?ALVES B H,SILVA G,DE JESUS J,et al.Fast verification of buffalo’s milk authenticity by mid-infrared spectroscopy,analytical measurements and multivariate calibration[J].Journal of the Brazilian chemical society,2020,31:1453-1460.
    [20] NICOLAOU N,XU Y,GOODACRE R.Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species[J].Journal of dairy science,2010,93(12):5651-5660.
    [21] BOUKRIA O,BOUDALIA S,BHAT Z F,et al.Evaluation of the adulteration of camel milk by non-camel milk using multispectral image,fluorescence and infrared spectroscopy[J/OL].Spectrochimica acta part A:molecular and biomolecular spectroscopy,2023,300:122932[2024-04-07].https://doi.org/10.1016/j.saa.2023.122932.
    [22] SOUHASSOU S, BASSBASI, M, HIRRI A, et al. Detection of camel milk adulteration using Fourier transformed infrared spectroscopy FT-IR coupled with chemometrics methods[J]. International food research journal, 2018, 25(3):1213-1218.
    [23] 内蒙古自治区统计局.内蒙古统计年鉴2012[M].北京:中国统计出版社,2012.Inner Mongolia Bureau of Statistics. Neimenggu statistical yearbook 2012 [M]. Beijing: Chinese Statistics Press,2012(in Chinese ).
    [24] SANTOS P M,WENTZELL P D,PEREIRA-FILHO E R.Scanner digital images combined with color parameters:a case study to detect adulterations in liquid cow’s milk[J].Food analytical methods,2012,5(1):89-95.
    [25] CHU C,WANG H T,LUO X L,et al.Possible alternatives:identifying and quantifying adulteration in buffalo,goat,and camel milk using mid-infrared spectroscopy combined with modern statistical machine learning methods[J/OL].Foods,2023,12(20):3856[2024-04-07].https://doi.org/10.3390/foods12203856.
    [26] DELHEZ P,HO P N,GENGLER N,et al.Diagnosing the pregnancy status of dairy cows:how useful is milk mid-infrared spectroscopy?[J].Journal of dairy science,2020,103(4):3264-3274.
    [27] FAWCETT T.An introduction to ROC analysis[J].Pattern recognition letters,2006,27(8):861-874.
    [28] JABRI M E,SANCHEZ M P,TROSSAT P,et al.Comparison of Bayesian and partial least squares regression methods for mid-infrared prediction of cheese-making properties in Montbéliarde cows[J].Journal of dairy science,2019,102(8):6943-6958.
    [29] 褚楚,张静静,丁磊,等.基于中红外光谱的牛奶中三种氨基酸含量预测模型的建立及应用[J].畜牧兽医学报,2023,54(8):3299-3312.CHU C,ZHANG J J,DING L,et al.Establishment and application of prediction model of three amino acids in milk based on mid-infrared spectroscopy[J].Acta veterinaria et zootechnica sinica,2023,54(8):3299-3312 (in Chinese with English abstract).
    [30] BITTANTE G,CECCHINATO A.Genetic analysis of the Fourier-transform infrared spectra of bovine milk with emphasis on individual wavelengths related to specific chemical bonds[J].Journal of dairy science,2013,96(9):5991-6006.
    [31] KAYLEGIAN K E,LYNCH J M,FLEMING J R,et al.Influence of fatty acid chain length and unsaturation on mid-infrared milk analysis 1[J].Journal of dairy science,2009,92(6):2485-2501.
    [32] KAYLEGIAN K E,HOUGHTON G E,LYNCH J M,et al.Calibration of infrared milk analyzers:modified milk versus producer milk 1[J].Journal of dairy science,2006,89(8):2817-2832.
    [33] HANSEN P W.Screening of dairy cows for ketosis by use of infrared spectroscopy and multivariate calibration[J].Journal of dairy science,1999,82(9):2005-2010.
    [34] SEN S,DUNDAR Z,UNCU O,et al.Potential of Fourier-transform infrared spectroscopy in adulteration detection and quality assessment in buffalo and goat milks[J/OL].Microchemical journal,2021,166:106207[2024-04-07].https://doi.org/10.1016/j.microc.2021.106207.
    [35] 赵梦波.牦牛和犏牛乳的比较生物化学研究[D].成都:西南民族大学,2022.ZHAO M B. Comparative biochemical study on yak and yak milk[D].Chengdu:Southwest University for Nationalities,2022 (in Chinese with English abstract).
    [36] 苗金梁,张九凯,周正火,等.不同乳源动物成分鉴别技术研究进展[J].食品安全质量检测学报,2021,12(18):7314-7323.MIAO J L,ZHANG J K,ZHOU Z H,et al.Research progress on identification technology of animal ingredients from different milk sources[J].Journal of food safety & quality,2021,12(18):7314-7323 (in Chinese with English abstract).
    [37] MOTA L F M, PEGOLO S, BABA T, et al. Evaluating the performance of machine learning methods and variable selection methods for predicting difficult-to-measure traits in Holstein dairy cattle using milk infrared spectral data[J]. Journal of dairy science, 2020, 104:8107-8121.
    [38] SHADPOUR S,CHUD T C S,HAILEMARIAM D,et al.Predicting methane emission in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks[J].Journal of dairy science,2022,105(10):8272-8285.
    [39] FRIZZARIN M,GORMLEY I C,BERRY D P,et al.Predicting cow milk quality traits from routinely available milk spectra using statistical machine learning methods[J].Journal of dairy science,2021,104(7):7438-7447.
    [40] 方俊,王艺频.基于支持向量机技术的社会组织信用评估指标体系构建:以G省公益慈善类社会组织为例[J].广西大学学报(哲学社会科学版),2022,44(6):174-183.FANG J,WANG Y P. Construction of credit evaluation index system of social organizations based on support vector machine technology:taking charity social organizations in G province as an example[J].Journal of Guangxi University (philosophy and social science),2022,44(6):174-183 (in Chinese with English abstract ).
    [41] FERRAND-CALMELS M,PALHIèRE I,BROCHARD M,et al.Prediction of fatty acid profiles in cow,ewe,and goat milk by mid-infrared spectrometry[J].Journal of dairy science,2014,97(1):17-35.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

褚楚,罗雪路,王海童,温佩佩,杜超,丁考仁青,拉毛草,张淑君.基于机器学习和中红外光谱的牦牛奶掺假 预测模型研究[J].华中农业大学学报,2025,44(2):116-124

复制
分享
文章指标
  • 点击次数:7
  • 下载次数: 15
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-04-07
  • 在线发布日期: 2025-04-02
文章二维码